The present invention relates generally to encapsulated devices, and more particularly to encapsulated plasma sensitive devices, and to methods of making encapsulated plasma sensitive devices.
Many devices are subject to degradation caused by permeation of environmental gases or liquids, such as oxygen and water vapor in the atmosphere or chemicals used in the processing of the electronic product. The devices are usually encapsulated in order to prevent degradation.
Various types of encapsulated devices are known. For example, U.S. Pat. No. 6,268,695, entitled “Environmental Barrier Material For Organic Light Emitting Device And Method Of Making,” issued Jul. 31, 2001; U.S. Pat. No. 6,522,067, entitled “Environmental Barrier Material For Organic Light Emitting Device And Method Of Making,” issued Feb. 18, 2003; and U.S. Pat. No. 6,570,325, entitled “Environmental Barrier Material For Organic Light Emitting Device And Method Of Making”, issued May 27, 2003, all of which are incorporated herein by reference, describe encapsulated organic light emitting devices (OLEDs). U.S. Pat. No. 6,573,652, entitled “Encapsulated Display Devices”, issued Jun. 3, 2003, which is incorporated herein by reference, describes encapsulated liquid crystal displays (LCDs), light emitting diodes (LEDs), light emitting polymers (LEPs), electronic signage using electrophoretic inks, electroluminescent devices (EDs), and phosphorescent devices. U.S. Pat. No. 6,548,912, entitled “Semiconductor Passivation Using Barrier Coatings,” issued Apr. 15, 2003, which is incorporated herein by reference, describes encapsulated microelectronic devices, including integrated circuits, charge coupled devices, light emitting diodes, light emitting polymers, organic light emitting devices, metal sensor pads, micro-disk lasers, electrochromic devices, photochromic devices, microelectromechanical systems, and solar cells.
Generally, encapsulated devices can be made by depositing barrier stacks adjacent to one or both sides of the device. The barrier stacks typically include at least one barrier layer and at least one decoupling layer. There could be one decoupling layer and one barrier layer, there could be multiple decoupling layers on one side of one or more barrier layers, or there could be one or more decoupling layers on both sides of one or more barrier layers. The important feature is that the barrier stack has at least one decoupling layer and at least one barrier layer.
One embodiment of an encapsulated display device is shown in
The barrier layers and decoupling layers in the barrier stack can be made of the same material or of a different material. The barrier layers are typically about 100-400 Å thick, and the decoupling layers are typically about 1000-10,000 Å thick.
Although only one barrier stack is shown in
The barrier layers can be deposited using a vacuum process, such as sputtering, chemical vapor deposition (CVD), metalorganic chemical vapor deposition (MOCVD), plasma enhanced chemical vapor deposition (PECVD), evaporation, sublimation, electron cyclotron resonance-plasma enhanced vapor deposition (ECR-PECVD), and combinations thereof. Suitable barrier materials include, but are not limited to, metals, metal oxides, metal nitrides, metal carbides, metal oxynitrides, metal oxyborides, and combinations thereof.
The decoupling layers can be deposited using a vacuum process, such as flash evaporation with in situ polymerization under vacuum, or plasma deposition and polymerization, or atmospheric processes, such as spin coating, ink jet printing, screen printing, or spraying. Suitable materials for the decoupling layer include, but are not limited to, organic polymers, inorganic polymers, organometallic polymers, hybrid organic/inorganic polymer systems, and silicates.
As an example, an OLED can be encapsulated with a barrier stack including one or more polymeric decoupling layers and one or more barrier layers. The polymeric decoupling layers can be formed from acrylate functional precursors which are deposited using flash evaporation and polymerized by ultraviolet (UV) exposure. The barrier layers can be reactively sputtered aluminum oxide.
Depositing multi-layer barrier stacks on relatively insensitive substrates such polymer films does not typically result in damage to the substrate. In fact, several patents disclose the use of plasma treatment to improve properties for a multi-layer barrier on a substrate. U.S. Pat. No. 6,083,628 discloses plasma treatment of polymeric film substrates and polymeric layers from acrylates deposited using a flash evaporation process as a means of improving properties. U.S. Pat. No. 5,440,466 similarly discusses plasma treatment of substrates and acrylate layers to improve properties.
However, we have found that some of the devices being encapsulated have been damaged by the plasma used in depositing the barrier and/or decoupling layers. Plasma damage has occurred when a substrate with a plasma sensitive device on it, such as an OLED, is encapsulated with a multi-layer barrier stack in which a plasma based and/or assisted process is used to deposit a barrier layer or decoupling layer. For example, plasma damage has occurred when reactively sputtering a barrier layer of AlOx under conditions suitable for achieving barrier properties, sputtering a barrier layer of AlOx onto the top surface of a plasma sensitive device, and/or sputtering a barrier layer of AlOx on a vacuum deposited, acrylate based polymeric layer. The damage observed when depositing a barrier layer onto a previously deposited decoupling layer is distinct, and is the subject of co-pending application Ser. No. 60/711,136 (VIT 0062 MA).
Plasma damage associated with deposition of a barrier layer, a decoupling layer, or another layer essentially has a negative impact on the electrical and/or luminescent characteristics of a device resulting from encapsulation. The effects will vary by the type of device, the manufacturer of the device, and the wavelength of the light emitted. It is important to note that plasma damage is dependent on the design of the device to be encapsulated. For example, OLEDs made by some manufacturers show little to no plasma damage while OLEDs made by other manufacturers show significant plasma damage under the same deposition conditions. This suggests that that there are features within the device that affect its sensitivity to plasma exposure.
One way to detect plasma damage is to measure the voltage needed to achieve a specified level of luminescence. Another way is to measure the intensity of the luminescence. Plasma damage results in higher voltage requirements to achieve the same level of luminescence (typically 0.2 to 0.5 V higher for an OLED), and/or lower luminescence.
Although not wishing to be bound by theory, plasma damage that is observed when a decoupling layer employing plasma, a sputtered AlOx, or another layer employing plasma is formed (deposited) directly on an OLED or other sensitive device is believed to be due to an adverse interaction with one or more components of the plasma, including charged or neutral species, UV radiation, and high thermal input.
Thus, there is a need for a method of preventing the damage caused by processes utilizing plasma in the encapsulation of various devices.
The present invention meets this need by providing a method of making an encapsulated plasma sensitive device comprising: providing a plasma sensitive device adjacent to a substrate; depositing a plasma protective layer on the plasma sensitive device using a process selected from non-plasma based processes, or modified sputtering processes; and depositing at least one barrier stack adjacent to the plasma protective layer, the at least one barrier stack comprising at least one decoupling layer and at least one barrier layer, the plasma sensitive device being encapsulated between the substrate and the at least one barrier stack, wherein the decoupling layer, the barrier layer, or both are deposited using a plasma process, the encapsulated plasma sensitive device having a reduced amount of damage caused by the plasma compared to an encapsulated plasma sensitive device made without the plasma protective layer.
Another aspect of the invention is an encapsulated plasma sensitive device. The encapsulated plasma sensitive device includes a substrate; a plasma sensitive device adjacent to a substrate; a plasma protective layer on the plasma sensitive device, the plasma protective layer deposited using a process selected from non-plasma based processes, or modified sputtering processes; and at least one barrier stack adjacent to the protective layer, the at least one barrier stack comprising at least one decoupling layer and at least one barrier layer, the plasma sensitive device being encapsulated between the substrate and the at least one barrier stack, wherein the encapsulated plasma sensitive device has a reduced amount of damage caused by a plasma compared to an encapsulated plasma sensitive device made without the plasma protective layer. By “adjacent,” we mean next to, but not necessarily directly next to. There can be additional layers intervening between the substrate and the barrier stacks. By “on,” we mean deposited directly on the previous layer without any intervening layers.
The addition of a layer to shield the underlying device from exposure to the plasma (from deposition of the barrier layer, the decoupling layer, or both) has been shown to reduce or avoid plasma damage.
One method involves the deposition of a plasma protective layer using a non-plasma based process. Suitable non-plasma based processes include both vacuum processes and atmospheric processes. Suitable vacuum processes include, but are not limited to, thermal evaporation, electron beam evaporation, chemical vapor deposition (CVD), and metalorganic chemical vapor deposition (MOCVD), catalytic chemical vapor deposition, laser thermal transfer, or evaporation or chemical vapor deposition followed by ion assisted densification. Suitable atmospheric processes include, but are not limited to, spin coating, ink jet printing, screen printing, spraying, gravure printing, offset printing, and laser thermal transfer. With atmospheric processes, the working gases should be free of O2 and H2O content.
The plasma protective layer can be made of inorganic and organic materials. Suitable inorganic materials include, but are not limited to, metal halides, such as LiF2, MgF2, CaF2, and SiOx. Suitable organic materials include, but are not limited to, aluminum tris 8-8-hydroxyquinoline, phthalocyanines, naphthalocyanines, and similar polycyclic aromatics.
Another method involves depositing the plasma protective layer using a modified sputtering process. Modified sputtering processes include, but are not limited to, modified reactive sputtering processes. By changing the sputtering configuration and/or the process conditions of the sputtering, a less energetic process in terms of the impact on the receiving surface can be obtained. This expands the range of plasma protective layers to include a wider range of inorganic compounds, e.g., AlOx and SiOx based layers, which have advantages including being dielectrics and chemically inert. However, the changes impact the physical and, to a lesser degree, the chemical properties of the deposited layers. For example, the density (increased porosity), stress, and grain size can be altered. One result of this can be the loss of barrier properties, despite the demonstrated ability to shield the underlying OLED from plasma damage. For example, a layer of AlOx could be deposited under conditions that avoid plasma damage, and a second layer of AlOx could be deposited as a barrier layer when the encapsulation is designed with the barrier layer first.
One modification of the sputtering process involves the use of a screen placed between the target cathode (the source of at least a part of the material to be deposited) and the substrate with the device to be sputter coated. A diagram of this process is shown in
Another modification of the sputtering process involves off-axis sputtering. A diagram of one embodiment of this process is shown in
Instead of changing the sputtering configuration, or in addition to it, it is also possible to vary the process parameters for the sputtering, including the exposure time or the energy/power of the plasma. Experimental results have shown that the longer the device is exposed to the plasma, the greater the plasma damage. This has led to increasing the process speed in order to reduce or eliminate the plasma damage.
Typically, for a sputtering configuration that has been determined to deposit a satisfactory barrier layer (cathode, magnet placements, spacing, gas feeds, etc.), barrier layers are deposited at a track speed of about 30 cm/min at a power of about 2000 watts. One modified process involves increasing the track speed to about 90 cm/min (about three times standard track speed) and increasing the power to 2500 watts. The increase in track speed offsets the higher power resulting in decreased overall exposure to the plasma. Alternatively, the track speed can be decreased to about 20 cm/min and the power decreased to about 500 watts. The power reduction offsets the slower speed, resulting in lower exposure to the plasma.
OLEDs made by two manufacturers were tested for voltage shift and light decrease. The OLEDs were supplied by the manufacturers on glass substrates. They were then encapsulated. The first layer was a thick layer (1000 Å) of AlOx followed by 4 acrylate polymer (0.5 microns)/AlOx (300 Å) pairs. The oxide layers were sputtered without a screen (Configuration I).
The results are shown in Table 1. A blue OLED made by manufacturer 1 showed a voltage shift of 0.5-0.8 V, and a moderate light decrease. A green OLED made by manufacturer 3 showed a voltage shift of 1 V, with a strong light decrease.
Voltage shift and light decrease for OLEDs encapsulated by sputtering the oxide layer with a screen were measured (Configuration II). The OLEDs were encapsulated with a first thick layer (1000 Å) of AlOx followed by either 4 or 6 acrylate polymer (0.5 microns)/AlOx (300 Å) pairs. The OLEDs were processed at the standard track speed of 30 cm/min and the standard power of 2000 watts.
The results are shown in Table 1. OLEDs from different manufacturers showed varying amounts of voltage shift and light decrease. Furthermore, different colored OLEDs from the same manufacturer showed different amounts of voltage shift and light decrease. This confirms that there is a variation in the plasma damage for OLEDs from different manufacturers, and for different colored OLEDs.
Several encapsulated OLEDs were made with a plasma protective layer of 300 Å of LiF. The LiF was deposited using a thermal evaporation process. The OLEDs had a thick layer (1000 Å) of AlOx followed by either 4 or 6 acrylate polymer (0.5 microns)/AlOx (300 Å) pairs.
The OLEDs were tested for voltage shift, leakage current, and lightout. For comparison, several OLEDs were made without the LiF protective layer. The results are shown in
The effect of process parameters on voltage shift was evaluated. Table 3 shows a comparison of the effect of exposure time on plasma damage. The modified conditions involved increasing the track speed to 90 cm/min (about three time standard track speed) and increasing the power to 2500 watts, and decreasing track speed to 20 cm/min and the power to 500 watts. The voltage shift and light decrease of the OLEDs made using Configuration II and standard sputtering conditions for the barrier (power of 2000 watts, track speed of 30 cm/min) are included for comparison. The voltage shift and light decrease are reduced or eliminated when the exposure time is reduced.
The voltage shift was also measured as a function of aluminum oxide protective layer thickness. By changing the process conditions (increasing the track speed to 90 cm/min (about three time standard track speed) and increasing the power to 2500 watts, and decreasing track speed to 20 cm/min and the power to 500 watts.), the thickness of the aluminum oxide protective layer was varied. As shown in
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the compositions and methods disclosed herein may be made without departing from the scope of the invention, which is defined in the appended claims.
This application is a continuation-in-part of application Ser. No. 11/112880, filed Apr. 22, 2005, entitled Apparatus for Depositing a Multilayer Coating on Discrete Sheets, which is a continuation-in-part of application Ser. No. 10/412133, filed Apr. 11, 2003, entitled Apparatus for Depositing a Multilayer Coating on Discrete Sheets.
Number | Name | Date | Kind |
---|---|---|---|
2382432 | McManus et al. | Aug 1945 | A |
2384500 | Stoll | Sep 1945 | A |
3475307 | Knox et al. | Oct 1969 | A |
3607365 | Lindlof | Sep 1971 | A |
3941630 | Larrabee | Mar 1976 | A |
4061835 | Poppe et al. | Dec 1977 | A |
4098965 | Kinsman | Jul 1978 | A |
4266223 | Frame | May 1981 | A |
4283482 | Hattori et al. | Aug 1981 | A |
4313254 | Feldman et al. | Feb 1982 | A |
4426275 | Meckel et al. | Jan 1984 | A |
4521458 | Nelson | Jun 1985 | A |
4537814 | Itoh et al. | Aug 1985 | A |
4555274 | Kitajima et al. | Nov 1985 | A |
4557978 | Mason | Dec 1985 | A |
4572842 | Dietrich et al. | Feb 1986 | A |
4581337 | Frey et al. | Apr 1986 | A |
4624867 | Iijima et al. | Nov 1986 | A |
4695618 | Mowrer | Sep 1987 | A |
4710426 | Stephens | Dec 1987 | A |
4722515 | Ham | Feb 1988 | A |
4768666 | Kessler | Sep 1988 | A |
4842893 | Yializis et al. | Jun 1989 | A |
4843036 | Schmidt et al. | Jun 1989 | A |
4855186 | Grolig et al. | Aug 1989 | A |
4889609 | Cannella | Dec 1989 | A |
4913090 | Harada et al. | Apr 1990 | A |
4931158 | Bunshah et al. | Jun 1990 | A |
4934315 | Linnebach et al. | Jun 1990 | A |
4954371 | Yializis | Sep 1990 | A |
4977013 | Ritchie et al. | Dec 1990 | A |
5032461 | Shaw et al. | Jul 1991 | A |
5036249 | Pike-Biegunski et al. | Jul 1991 | A |
5047131 | Wolfe et al. | Sep 1991 | A |
5059861 | Littman et al. | Oct 1991 | A |
5124204 | Yamashita et al. | Jun 1992 | A |
5189405 | Yamashita et al. | Feb 1993 | A |
5203898 | Carpenter et al. | Apr 1993 | A |
5204314 | Kirlin et al. | Apr 1993 | A |
5237439 | Misono et al. | Aug 1993 | A |
5260095 | Affinito | Nov 1993 | A |
5336324 | Stall et al. | Aug 1994 | A |
5354497 | Fukuchi et al. | Oct 1994 | A |
5356947 | Ali et al. | Oct 1994 | A |
5357063 | House et al. | Oct 1994 | A |
5376467 | Takao et al. | Dec 1994 | A |
5393607 | Kawasaki et al. | Feb 1995 | A |
5395644 | Affinito | Mar 1995 | A |
5402314 | Amago et al. | Mar 1995 | A |
5427638 | Goetz et al. | Jun 1995 | A |
5440446 | Shaw et al. | Aug 1995 | A |
5451449 | Shetty et al. | Sep 1995 | A |
5461545 | Leroy et al. | Oct 1995 | A |
5464667 | Kohler et al. | Nov 1995 | A |
5510173 | Pass et al. | Apr 1996 | A |
5512320 | Turner et al. | Apr 1996 | A |
5536323 | Kirlin et al. | Jul 1996 | A |
5547508 | Affinito | Aug 1996 | A |
5554220 | Forrest et al. | Sep 1996 | A |
5576101 | Saitoh et al. | Nov 1996 | A |
5578141 | Mori et al. | Nov 1996 | A |
5607789 | Treger et al. | Mar 1997 | A |
5620524 | Fan et al. | Apr 1997 | A |
5629389 | Roitman et al. | May 1997 | A |
5652192 | Matson et al. | Jul 1997 | A |
5654084 | Egert | Aug 1997 | A |
5660961 | Yu | Aug 1997 | A |
5665280 | Tropsha | Sep 1997 | A |
5681615 | Affinito et al. | Oct 1997 | A |
5681666 | Treger et al. | Oct 1997 | A |
5684084 | Lewin et al. | Nov 1997 | A |
5686360 | Harvey, III et al. | Nov 1997 | A |
5693956 | Shi et al. | Dec 1997 | A |
5695564 | Imahashi | Dec 1997 | A |
5711816 | Kirlin et al. | Jan 1998 | A |
5725909 | Shaw et al. | Mar 1998 | A |
5731661 | So et al. | Mar 1998 | A |
5736207 | Walther et al. | Apr 1998 | A |
5747182 | Friend et al. | May 1998 | A |
5757126 | Harvey, III et al. | May 1998 | A |
5759329 | Krause et al. | Jun 1998 | A |
5771177 | Tada et al. | Jun 1998 | A |
5771562 | Harvey, III et al. | Jun 1998 | A |
5782355 | Katagiri et al. | Jul 1998 | A |
5792550 | Phillips et al. | Aug 1998 | A |
5795399 | Hasegawa et al. | Aug 1998 | A |
5811177 | Shi et al. | Sep 1998 | A |
5811183 | Shaw et al. | Sep 1998 | A |
5821138 | Yamazaki et al. | Oct 1998 | A |
5821692 | Rogers et al. | Oct 1998 | A |
5844363 | Gu et al. | Dec 1998 | A |
5869791 | Young | Feb 1999 | A |
5872355 | Hueschen | Feb 1999 | A |
5891554 | Hosokawa et al. | Apr 1999 | A |
5895228 | Biebuyck et al. | Apr 1999 | A |
5902641 | Affinito et al. | May 1999 | A |
5902688 | Antoniadis et al. | May 1999 | A |
5904958 | Dick et al. | May 1999 | A |
5912069 | Yializis et al. | Jun 1999 | A |
5919328 | Tropsha et al. | Jul 1999 | A |
5920080 | Jones | Jul 1999 | A |
5922161 | Wu et al. | Jul 1999 | A |
5929562 | Pichler | Jul 1999 | A |
5934856 | Asakawa et al. | Aug 1999 | A |
5945174 | Shaw et al. | Aug 1999 | A |
5948552 | Antoniadis et al. | Sep 1999 | A |
5952778 | Haskal et al. | Sep 1999 | A |
5955161 | Tropsha | Sep 1999 | A |
5965907 | Huang et al. | Oct 1999 | A |
5968620 | Harvey et al. | Oct 1999 | A |
5994174 | Carey et al. | Nov 1999 | A |
5996498 | Lewis | Dec 1999 | A |
6013337 | Knors | Jan 2000 | A |
6040017 | Mikhael et al. | Mar 2000 | A |
6045864 | Lyons et al. | Apr 2000 | A |
6066826 | Yializis | May 2000 | A |
6083313 | Venkatraman et al. | Jul 2000 | A |
6083628 | Yializis | Jul 2000 | A |
6084702 | Byker et al. | Jul 2000 | A |
6087007 | Fujii et al. | Jul 2000 | A |
6092269 | Yializis et al. | Jul 2000 | A |
6106627 | Yializis et al. | Aug 2000 | A |
6117266 | Horzel et al. | Sep 2000 | A |
6118218 | Yializis et al. | Sep 2000 | A |
6137221 | Roitman et al. | Oct 2000 | A |
6146225 | Sheates et al. | Nov 2000 | A |
6146462 | Yializis et al. | Nov 2000 | A |
6150187 | Zyung et al. | Nov 2000 | A |
6165566 | Tropsha | Dec 2000 | A |
6178082 | Farooq et al. | Jan 2001 | B1 |
6195142 | Gyotoku et al. | Feb 2001 | B1 |
6198217 | Suzuki et al. | Mar 2001 | B1 |
6198220 | Jones et al. | Mar 2001 | B1 |
6203898 | Kohler et al. | Mar 2001 | B1 |
6207238 | Affinito | Mar 2001 | B1 |
6207239 | Affinito | Mar 2001 | B1 |
6214422 | Yializis | Apr 2001 | B1 |
6217947 | Affinito | Apr 2001 | B1 |
6224948 | Affinito | May 2001 | B1 |
6228434 | Affinito | May 2001 | B1 |
6228436 | Affinito | May 2001 | B1 |
6231939 | Shaw et al. | May 2001 | B1 |
6264747 | Shaw et al. | Jul 2001 | B1 |
6268695 | Affinito | Jul 2001 | B1 |
6274204 | Affinito | Aug 2001 | B1 |
6322860 | Stein et al. | Nov 2001 | B1 |
6333065 | Arai et al. | Dec 2001 | B1 |
6348237 | Kohler et al. | Feb 2002 | B2 |
6350034 | Fleming et al. | Feb 2002 | B1 |
6352777 | Bulovic et al. | Mar 2002 | B1 |
6358570 | Affinito | Mar 2002 | B1 |
6361885 | Chou | Mar 2002 | B1 |
6387732 | Akram | May 2002 | B1 |
6397776 | Yang et al. | Jun 2002 | B1 |
6413645 | Graff et al. | Jul 2002 | B1 |
6416872 | Maschwitz | Jul 2002 | B1 |
6420003 | Shaw et al. | Jul 2002 | B2 |
6436544 | Veyrat et al. | Aug 2002 | B1 |
6460369 | Hosokawa | Oct 2002 | B2 |
6465953 | Duggal | Oct 2002 | B1 |
6468595 | Mikhael et al. | Oct 2002 | B1 |
6469437 | Parthasarathy et al. | Oct 2002 | B1 |
6492026 | Graff et al. | Dec 2002 | B1 |
6497598 | Affinito | Dec 2002 | B2 |
6497924 | Affinito et al. | Dec 2002 | B2 |
6509065 | Affinito | Jan 2003 | B2 |
6512561 | Terashita et al. | Jan 2003 | B1 |
6522067 | Graff et al. | Feb 2003 | B1 |
6537688 | Silvernail et al. | Mar 2003 | B2 |
6544600 | Affinito et al. | Apr 2003 | B2 |
6548912 | Graff et al. | Apr 2003 | B1 |
6569515 | Hebrink et al. | May 2003 | B2 |
6570325 | Graff et al. | May 2003 | B2 |
6573652 | Graff et al. | Jun 2003 | B1 |
6576351 | Silvernail | Jun 2003 | B2 |
6592969 | Burroughes et al. | Jul 2003 | B1 |
6597111 | Silvernail et al. | Jul 2003 | B2 |
6613395 | Affinito et al. | Sep 2003 | B2 |
6614057 | Silvernail et al. | Sep 2003 | B2 |
6624568 | Silvernail | Sep 2003 | B2 |
6627267 | Affinito | Sep 2003 | B2 |
6628071 | Su | Sep 2003 | B1 |
6653780 | Sugimoto et al. | Nov 2003 | B2 |
6656537 | Affinito et al. | Dec 2003 | B2 |
6660409 | Komatsu et al. | Dec 2003 | B1 |
6664137 | Weaver | Dec 2003 | B2 |
6681716 | Schaepkens | Jan 2004 | B2 |
6720203 | Carcia et al. | Apr 2004 | B2 |
6734625 | Vong et al. | May 2004 | B2 |
6737753 | Kumar et al. | May 2004 | B2 |
6743524 | Schaepkens | Jun 2004 | B2 |
6749940 | Terasaki et al. | Jun 2004 | B1 |
6765351 | Forrest et al. | Jul 2004 | B2 |
6803245 | Auch et al. | Oct 2004 | B2 |
6811829 | Affinito et al. | Nov 2004 | B2 |
6815887 | Lee et al. | Nov 2004 | B2 |
6818291 | Funkenbusch et al. | Nov 2004 | B2 |
6835950 | Brown et al. | Dec 2004 | B2 |
6836070 | Chung et al. | Dec 2004 | B2 |
6837950 | Berard | Jan 2005 | B1 |
6864629 | Miyaguchi et al. | Mar 2005 | B2 |
6866901 | Burrows et al. | Mar 2005 | B2 |
6867539 | McCormick et al. | Mar 2005 | B1 |
6872114 | Chung et al. | Mar 2005 | B2 |
6872248 | Mizutani et al. | Mar 2005 | B2 |
6872428 | Yang et al. | Mar 2005 | B2 |
6878467 | Chung et al. | Apr 2005 | B2 |
6888305 | Weaver | May 2005 | B2 |
6888307 | Silvernail et al. | May 2005 | B2 |
6891330 | Duggal et al. | May 2005 | B2 |
6897474 | Brown et al. | May 2005 | B2 |
6897607 | Sugimoto et al. | May 2005 | B2 |
6905769 | Komada | Jun 2005 | B2 |
6923702 | Graff et al. | Aug 2005 | B2 |
6936131 | McCormick et al. | Aug 2005 | B2 |
6975067 | McCormick et al. | Dec 2005 | B2 |
6994933 | Bates | Feb 2006 | B1 |
6998648 | Silvernail | Feb 2006 | B2 |
7002294 | Forrest et al. | Feb 2006 | B2 |
7012363 | Weaver et al. | Mar 2006 | B2 |
7015640 | Schaepkens et al. | Mar 2006 | B2 |
7018713 | Padiyath et al. | Mar 2006 | B2 |
7029765 | Kwong et al. | Apr 2006 | B2 |
7033850 | Tyan et al. | Apr 2006 | B2 |
7056584 | Iacovangelo | Jun 2006 | B2 |
7086918 | Hsiao et al. | Aug 2006 | B2 |
7112351 | Affinito | Sep 2006 | B2 |
7156942 | McCormick et al. | Jan 2007 | B2 |
7166007 | Auch et al. | Jan 2007 | B2 |
7183197 | Won et al. | Feb 2007 | B2 |
7186465 | Bright | Mar 2007 | B2 |
7198832 | Burrows et al. | Apr 2007 | B2 |
7221093 | Auch et al. | May 2007 | B2 |
7255823 | Guenther et al. | Aug 2007 | B1 |
20010015074 | Hosokawa | Aug 2001 | A1 |
20010015620 | Affinito | Aug 2001 | A1 |
20020022156 | Bright | Feb 2002 | A1 |
20020025444 | Hebgrink et al. | Feb 2002 | A1 |
20020068143 | Silvernail | Jun 2002 | A1 |
20020069826 | Hunt et al. | Jun 2002 | A1 |
20020102363 | Affinito et al. | Aug 2002 | A1 |
20020102818 | Sandhu et al. | Aug 2002 | A1 |
20020125822 | Graff et al. | Sep 2002 | A1 |
20020139303 | Yamazaki et al. | Oct 2002 | A1 |
20020140347 | Weaver | Oct 2002 | A1 |
20030038590 | Silvernail et al. | Feb 2003 | A1 |
20030045021 | Akai | Mar 2003 | A1 |
20030085652 | Weaver | May 2003 | A1 |
20030098647 | Silvernail et al. | May 2003 | A1 |
20030117068 | Forrest et al. | Jun 2003 | A1 |
20030124392 | Bright | Jul 2003 | A1 |
20030127973 | Weaver et al. | Jul 2003 | A1 |
20030134487 | Breen et al. | Jul 2003 | A1 |
20030184222 | Nilsson et al. | Oct 2003 | A1 |
20030197197 | Brown et al. | Oct 2003 | A1 |
20030218422 | Park et al. | Nov 2003 | A1 |
20030235648 | Affinito et al. | Dec 2003 | A1 |
20040018305 | Pagano et al. | Jan 2004 | A1 |
20040029334 | Bijker et al. | Feb 2004 | A1 |
20040046497 | Schaepkens et al. | Mar 2004 | A1 |
20040071971 | Locovangelo | Apr 2004 | A1 |
20040113542 | Hsiao et al. | Jun 2004 | A1 |
20040115402 | Schaepkens | Jun 2004 | A1 |
20040115859 | Murayama et al. | Jun 2004 | A1 |
20040119028 | McCormick et al. | Jun 2004 | A1 |
20040175512 | Schaepkens | Sep 2004 | A1 |
20040175580 | Schaepkens | Sep 2004 | A1 |
20040209090 | Iwanaga | Oct 2004 | A1 |
20040219380 | Naruse et al. | Nov 2004 | A1 |
20040229051 | Schaepkens et al. | Nov 2004 | A1 |
20040241454 | Shaw et al. | Dec 2004 | A1 |
20040263038 | Ribolzi et al. | Dec 2004 | A1 |
20050003098 | Kohler et al. | Jan 2005 | A1 |
20050006786 | Sawada | Jan 2005 | A1 |
20050051094 | Schaepkens et al. | Mar 2005 | A1 |
20050079295 | Schaepkens | Apr 2005 | A1 |
20050079380 | Iwanaga | Apr 2005 | A1 |
20050093001 | Liu et al. | May 2005 | A1 |
20050093437 | Ouyang | May 2005 | A1 |
20050094394 | Padiyath et al. | May 2005 | A1 |
20050095422 | Sager et al. | May 2005 | A1 |
20050095736 | Padiyath et al. | May 2005 | A1 |
20050112378 | Naruse et al. | May 2005 | A1 |
20050122039 | Satani | Jun 2005 | A1 |
20050129841 | McCormick et al. | Jun 2005 | A1 |
20050133781 | Yan et al. | Jun 2005 | A1 |
20050140291 | Hirakata et al. | Jun 2005 | A1 |
20050146267 | Lee et al. | Jul 2005 | A1 |
20050174045 | Lee et al. | Aug 2005 | A1 |
20050176181 | Burrows et al. | Aug 2005 | A1 |
20050202646 | Burrows et al. | Sep 2005 | A1 |
20050212419 | Vazan et al. | Sep 2005 | A1 |
20050238846 | Arakatsu et al. | Oct 2005 | A1 |
20050239294 | Rosenblum et al. | Oct 2005 | A1 |
20060001040 | Kim et al. | Jan 2006 | A1 |
20060003474 | Tyan et al. | Jan 2006 | A1 |
20060028128 | Ohkubo | Feb 2006 | A1 |
20060061272 | McCormick et al. | Mar 2006 | A1 |
20060062937 | Padiyath et al. | Mar 2006 | A1 |
20060063015 | McCormick et al. | Mar 2006 | A1 |
20060132461 | Furukawa et al. | Jun 2006 | A1 |
20060246811 | Winters et al. | Nov 2006 | A1 |
20060250084 | Cok et al. | Nov 2006 | A1 |
20070009674 | Okubo et al. | Jan 2007 | A1 |
20070281089 | Heller et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
704297 | Feb 1968 | BE |
704 297 | Feb 1968 | BG |
2 353 506 | May 2000 | CA |
196 03 746 | Apr 1997 | DE |
696 15 510 | Jun 1997 | DE |
0 147 696 | Jul 1985 | EP |
0 299 753 | Jan 1989 | EP |
0 340 935 | Nov 1989 | EP |
0 390 540 | Oct 1990 | EP |
0 468 440 | Jan 1992 | EP |
0 547 550 | Jun 1993 | EP |
0 590 467 | Apr 1994 | EP |
0 722 787 | Jul 1996 | EP |
0 777 280 | Jun 1997 | EP |
0 777 281 | Jun 1997 | EP |
0 787 824 | Jun 1997 | EP |
0 787 826 | Jun 1997 | EP |
0 915 105 | May 1998 | EP |
0 916 394 | May 1998 | EP |
0 931 850 | Jul 1999 | EP |
0 977 469 | Feb 2000 | EP |
1 021 070 | Jul 2000 | EP |
1 127 381 | Aug 2001 | EP |
1 130 420 | Sep 2001 | EP |
1 278 244 | Jan 2003 | EP |
1 426 813 | Jun 2004 | EP |
1514317 | Mar 2005 | EP |
2 210 826 | Jun 1989 | GB |
S63-96895 | Apr 1988 | JP |
63136316 | Aug 1988 | JP |
6418441 | Jan 1989 | JP |
1041067 | Feb 1989 | JP |
01041067 | Feb 1989 | JP |
S64-41192 | Feb 1989 | JP |
02183230 | Jul 1990 | JP |
3-183759 | Aug 1991 | JP |
03290375 | Dec 1991 | JP |
4-14440 | Jan 1992 | JP |
4-48515 | Feb 1992 | JP |
04267097 | Sep 1992 | JP |
06158305 | Nov 1992 | JP |
05-217158 | Jan 1993 | JP |
5-147678 | Jun 1993 | JP |
05182759 | Jul 1993 | JP |
06-136159 | May 1994 | JP |
61-79644 | Jun 1994 | JP |
06234186 | Aug 1994 | JP |
07-074378 | Mar 1995 | JP |
7147189 | Jun 1995 | JP |
07147189 | Jun 1995 | JP |
07192866 | Jul 1995 | JP |
8-72188 | Mar 1996 | JP |
08171988 | Jul 1996 | JP |
08179292 | Jul 1996 | JP |
08325713 | Oct 1996 | JP |
8-318590 | Dec 1996 | JP |
09059763 | Apr 1997 | JP |
09132774 | May 1997 | JP |
9-161967 | Jun 1997 | JP |
09161967 | Jun 1997 | JP |
9-201897 | Aug 1997 | JP |
09-232553 | Sep 1997 | JP |
10-725 | Jan 1998 | JP |
10-013083 | Jan 1998 | JP |
10-016150 | Jan 1998 | JP |
10312883 | Nov 1998 | JP |
10-334744 | Dec 1998 | JP |
11-017106 | Jan 1999 | JP |
11040344 | Feb 1999 | JP |
11-149826 | Jun 1999 | JP |
11255923 | Sep 1999 | JP |
2000058258 | Feb 2000 | JP |
2002505 969 | Feb 2002 | JP |
2002505969 | Feb 2002 | JP |
2006-294780 | Oct 2006 | JP |
WO 8707848 | Dec 1987 | WO |
WO 8900337 | Jan 1989 | WO |
WO 9510117 | Apr 1995 | WO |
WO 9623217 | Aug 1996 | WO |
WO 9704885 | Feb 1997 | WO |
WO 9716053 | May 1997 | WO |
WO 9722631 | Jun 1997 | WO |
WO 9810116 | Mar 1998 | WO |
WO 9818852 | May 1998 | WO |
WO 9916557 | Apr 1999 | WO |
WO 9916931 | Apr 1999 | WO |
WO 9946120 | Sep 1999 | WO |
WO 0026973 | May 2000 | WO |
WO 0035603 | Jun 2000 | WO |
WO 0035604 | Jun 2000 | WO |
WO 0035993 | Jun 2000 | WO |
WO 0036661 | Jun 2000 | WO |
WO 0036665 | Jun 2000 | WO |
0053423 | Sep 2000 | WO |
WO 0168360 | Sep 2001 | WO |
WO 0181649 | Nov 2001 | WO |
WO 0182336 | Nov 2001 | WO |
WO 0182389 | Nov 2001 | WO |
WO 0187825 | Nov 2001 | WO |
WO 0189006 | Nov 2001 | WO |
WO 0226973 | Apr 2002 | WO |
WO 03016589 | Feb 2003 | WO |
WO 03098716 | Nov 2003 | WO |
WO 03098716 | Nov 2003 | WO |
WO 2004006199 | Jan 2004 | WO |
WO 2004016992 | Feb 2004 | WO |
WO 2004070840 | Aug 2004 | WO |
WO 2004089620 | Oct 2004 | WO |
2004112165 | Dec 2004 | WO |
WO 2005015655 | Feb 2005 | WO |
WO 2005045947 | May 2005 | WO |
WO 2005048368 | May 2005 | WO |
2005050754 | Jun 2005 | WO |
WO 2006036492 | Apr 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060216951 A1 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11112880 | Apr 2005 | US |
Child | 11439474 | US | |
Parent | 10412133 | Apr 2003 | US |
Child | 11112880 | US |