Claims
- 1. In a method for making a hollow cast metal bolster for a railway car truck, the bolster being of the type having a center, two outboard ends, a top surface and side walls with a plurality of spaced holes along the side walls, the spaced holes having overall lengths and widths, the method comprising the steps of providing a mold having a mold surface defining a mold cavity, the mold surface corresponding in shape with the shape of the exterior of the bolster, providing cores to define the interior of the bolster, placing the cores in the mold cavity, pouring molten metal into the mold to form the cast metal bolster, removing the cast metal bolster from the mold, and separating the cast metal bolster from the cores,the improvement wherein one of the cores comprises a one center core formed as an integral piece including a center core body to be received in the mold cavity for defining the interior surface of part of the bolster, the center core body having a longitudinal axis and outer surfaces to define the interior surfaces of the bolster sidewalls, a pair of center core prints integral with the center core body for supporting the center core body in the mold, a neck connecting each center core print to the center core body, each neck corresponding in size, shape and position with a hole to be produced in the sidewall of the bolster, there being a neck for each of the holes to be made in each sidewall of the bolster, the center core and center core prints having overall lengths sufficient to span across the widths of all of the necks on one side of the center core body, the center core prints having heights sufficient to span across the heights of all of the necks on one side of the center core body; wherein the heights of the center core prints vary with the heights of the adjacent necks across the lengths of the center core prints, and wherein each center core print extends from an opposite side of the center core body.
- 2. The method of claim 1 wherein the core prints have weight support surfaces and positioning surfaces lying in planes intersecting the weight support surfaces, the mold having mating weight support surfaces, the total surface areas of the weight support surfaces of the core prints and mold surface being great enough to support the entire center core on the mold surface free from chaplets.
- 3. The method of claim 2 wherein the core prints include positioning surfaces lying in planes intersecting the plane of the top surface of the core, the mold surface having mating positioning surfaces to limit relative lateral and longitudinal movement of the core in the mold.
- 4. The method of claim 1 wherein the core prints have central zones and end zones, the central zones and end zones having stepped top and bottom surfaces, the heights of the central zones being greater than the heights of the end zones.
- 5. The method of claim 1 wherein the core prints have central zones and top surfaces, the top surfaces of the central zones having recesses for forming a part of a center plate in the cast metal bolster.
- 6. The method of claim 1 wherein the core prints have end zones and wherein the top surfaces of the core prints are stepped at the end zones away from the top surface at the central zone.
- 7. The method of claim 1 wherein the center core body has two ends with end faces and weight support members, the weight support members and end faces lying in intersecting planes that intersect the longitudinal axis of the center core.
- 8. The method of claim 7 further comprising a key at each end of the center core body, each key including a surface lying in a plane that intersects the planes of the weight support members and end faces.
- 9. The method of claim 1 wherein the center core includes interior surfaces defining slits for producing walls in the cast metal bolster.
- 10. The method of claim 9 wherein the longitudinal axis lies in a vertical plane and wherein the center core has a parting line and a top surface on one side of the parting line and a bottom surface on the opposite side of the parting line, the center core being free from any adjacent surfaces extending through a common horizontal plane and diverging from a vertical plane in the same direction.
- 11. The method of claim 1 wherein each neck has an inwardly curved surface having centers of curvature lying in a curved line outside of the periphery of the neck.
- 12. The method of claim 1 wherein the center core has a parting line with a part lying in a plane intersecting the longitudinal axis of the center core, the center core being free of any joint.
- 13. The method of claim 1 wherein the core prints have stepped bottom surfaces.
- 14. In a method of making a hollow cast metal sideframe for a railway car, the sideframe having front and rear ends and a pedestal at each end, a top member extending along a longitudinal axis between the front and rear ends, a tension member having a pair of diagonal portions and a center portion, a bolster opening in the middle of the sideframe between the top member and the center portion of the tension member, a pair of vertical columns along the bolster opening, and a pair of side windows, the sideframe having an inboard side and an outboard side, the pedestals, top member, tension member and columns having interior and exterior surfaces and widths between the inboard and outboard sides,the method comprising the steps of providing cores to define the hollow interior of the sideframe, providing a mold having cope and drag mold surfaces, placing the cores in the mold, and pouring molten metal into the mold to form a sideframe casting; the improvement wherein the cores include one core formed as an integral piece and having a core body including: a diagonal core portion for defining an interior surface of the diagonal portion of the tension member, and a side window portion for defining one side window, the side window portion contacting both the cope and drag mold surfaces, and a core print on the diagonal core.
- 15. The method of claim 14 wherein the integrally-formed core further comprises at least one of the following:a top member portion for defining the interior surface of the entire width of at least a part of the length of the top member; a portion for defining the interior surface of the entire width of at least part of the length of the tension member; and a portion for defining the interior surface of at least part of one pedestal; and wherein the entire core body is formed as an integral core.
- 16. The method of claim 14 wherein the integrally-formed core further comprises all of the following:a top member portion for defining the interior surface of the entire width of at least a part of the length of the top member; a portion for defining the interior surface of the entire width of at least part of the length of the tension member; and a portion for defining the interior surface of at least part of one pedestal; and wherein the entire core body is formed as an integral core.
- 17. The method of claim 16 wherein the integrally-formed core includes a stepped surface for supporting another core.
- 18. The method of claim 14 wherein at least one of the core and the mold includes a locator boss and the other of the core and the mold includes a mating hole to receive the locator boss.
- 19. In a method of making a hollow cast metal sideframe for a railway car, the sideframe having front and rear ends and a pedestal at each end, a top member extending along a longitudinal axis between the front and rear ends, a tension member having a pair of diagonal portions and a center portion, a bolster opening in the middle of the sideframe between the top member and the center portion of the tension member, a pair of vertical columns along the bolster opening, and a pair of side windows, the sideframe having an inboard side and an outboard side, the pedestals, top member, tension member and columns having interior and exterior surfaces and widths between the inboard and outboard sides,the method comprising the steps of providing cores to define the hollow interior of the sideframe, providing a mold having cope and drag mold surfaces, placing the cores in the mold, and pouring molten metal into the mold to form a sideframe casting; the improvement wherein the cores include one core formed as an integral piece and having a core body including: a side window portion for defining one side window, the side window portion contacting both the cope and drag mold surfaces, and one of the core side window portion and the mold includes a locator boss and the other of the core side window portion and the mold includes a mating mole to receive the locator boss.
- 20. The method of claim 19 wherein the integrally-formed core further comprises at least one of the following:a top member portion for defining the interior surface of the entire width of at least a part of the length of the top member; a portion for defining the interior surface of the entire width of at least part of the length of the tension member; and a portion for defining the interior surface of at least part of one pedestal; and wherein the entire core body is formed as an integral core.
- 21. The method of claim 19 wherein the integrally-formed core further comprises all of the following:a top member portion for defining the interior surface of the entire width of at least a part of the length of the top member; a portion for defining the interior surface of the entire width of at least part of the length of the tension member; and a portion for defining the interior surface of at least part of one pedestal; and wherein the entire core body is formed as an integral core.
- 22. The method of claim 20 wherein the integrally-formed core further comprises a core print connected to the core body, the core print and side window portion for supporting the weight of the core in the mold.
- 23. The method of claim 21 wherein the integrally-formed core further comprises a core print connected to the core body, the core print and side window portion for supporting the weight of the core in the mold.
- 24. The method of claim 23 wherein the core print includes a core print body and a reduced diameter neck connecting the core print body to the core body.
- 25. The method of claim 19 wherein the integrally-formed core further includes a pair of raised conical areas on the column portion of the core body.
- 26. The method of claim 21 wherein the integrally-formed core includes a stepped surface for supporting another core.
- 27. In a method of making a hollow cast metal bolster for use in a railway truck, the bolster having first and second outboard ends, a plurality of walls having interior and exterior surfaces, the walls defining a first pair of friction shoe pockets inboard of the first outboard end and a second pair of friction shoe pockets inboard of the second outboard end, the bolster having a central transverse plane between the first and second pairs of friction shoe pockets, the bolster walls including a top wall, a bottom wall and two side walls spaced from each other and connecting the top wall and bottom wall, the method comprising the steps of providing a mold, the mold having a cavity including first and second outboard ends and a center area between the first and second outboard ends, the method further comprising the steps of providing a plurality of cores to define the hollow interior of the bolster, placing the cores in the mold, pouring molten metal in the mold to cast the bolster, removing the cast bolster from the mold, and separating the cast bolster from the cores, the improvement wherein the cores include:a one-piece center core formed as an integral piece having a surface for defining at least a part of the interior surface of the top wall inboard of the friction shoe pockets and on both sides of the central transverse plane of the bolster, a surface for defining at least a part of the interior surface of one side wall inboard of the friction shoe pockets and on both sides of the central transverse plane of the bolster, a surface for defining at least a part of the interior surface of the opposite side wall inboard of the friction shoe pockets and on both sides of the central transverse plane of the bolster, a surface for defining at least a part of the bottom wall inboard of the friction shoe pockets and on both sides of the central transverse plane of the bolster, and a pair of center core prints integral with the center core for supporting the center core in the mold, and wherein each center core print extends from an opposite side of the center core.
- 28. The method of claim 27 wherein the one-piece center core body surfaces are shaped to define the entire interior surfaces of the bolster top wall, bottom wall and side walls on both sides of the central transverse plane of the bolster to positions inboard of the bolster friction shoe pockets.
- 29. A method of making a hollow cast metal bolster for use in a railway truck, the bolster having first and second outboard ends, a top wall, bottom wall and side walls having interior and exterior surfaces, a central longitudinal plane and a central transverse plane, the method comprising the steps of providing a mold, the method further comprising the steps of providing a core, placing the core in the mold, pouring molten metal in the mold to cast the bolster, removing the cast bolster from the mold, and separating the cast bolster from the core, wherein the core comprises:a one-piece center core formed as an integral piece having first and second opposite ends and surfaces to define interior surfaces of the bolster top wall, bottom wall and side walls on both sides of the bolster central transverse plane and bolster central longitudinal plane, and a pair of center core prints integral with the center core for supporting the center core in the mold, and wherein each center core print extends from an opposite side of the enter core.
- 30. The method of claim 29 wherein the mold has surfaces defining a mold cavity with first and second end areas to define exterior surfaces of the bolster side walls at the first and seconds outboard ends of the bolster and a central transverse plane between the first and second end areas, wherein the one-piece center core is positioned in the mold between the first and second end areas of the mold, the method further comprising the steps of providing a second core and placing the second core between the first end of the one-piece center core and the first end area of the mold and providing a third core and placing the third core between the second end of the one-piece center core and the second end area of the mold.
- 31. The method of claim 30 wherein the second core comprises a one-piece end core having surfaces for defining parts of the interior surfaces of the bolster top wall, bottom wall and side walls between one outboard end of the bolster and a position inboard of the outboard end of the bolster and the third core comprises a one-piece end core having surfaces for defining parts of the interior surfaces of the bolster top wall, bottom wall and side walls between one outboard end of the bolster and a position inboard of the outboard end of the bolster.
- 32. In a method for making a hollow cast metal bolster for a railway car truck, the bolster being of the type having a center, two outboard ends, a top surface and side walls with a plurality of spaced holes along the side walls, the spaced holes having overall lengths and widths, the method comprising the steps of providing a mold having a mold surface defining a mold cavity, the mold surface corresponding in shape with the shape of the exterior of the bolster, providing cores to define the interior of the bolster, placing the cores in the mold cavity, pouring molten metal into the mold to form the cast metal bolster, removing the cast metal bolster from the mold, and separating the cast metal bolster from the cores,the improvement wherein one of the cores comprises a one-piece core formed as an integral piece including a center core body to be received in the mold cavity for defining the interior surface of part of the bolster, the center core body having a longitudinal axis and outer surfaces to define the interior surfaces of the bolster sidewalls, a pair of center core prints integral with the center core body for supporting the center core body in the mold, a neck connecting each center core print to the center core body, each neck corresponding in size, shape and position with a hole to be produced in the sidewall of the bolster, and wherein each center core print extends from an opposite side of the center core body.
- 33. In a method of making a hollow cast metal sideframe for a railway car,the sideframe having front and rear ends and a pedestal at each end, a top member extending along a longitudinal axis between the front and rear ends, a tension member having a pair of diagonal portions and a center portion, a bolster opening in the middle of the sideframe between the top member and the center portion of the tension member, a pair of vertical columns along the bolster opening, and a pair of side windows, the sideframe having an inboard side and an outboard side, the pedestals, top member, tension member and columns having interior and exterior surfaces and widths between the inboard and outboard sides, the method comprising the steps of providing cores to define the hollow interior of the sideframe, providing a mold having cope and drag mold surfaces, placing the cores in the mold, and pouring molten metal into the mold to form a sideframe casting; the improvement wherein the cores include one core formed as an integral piece and having a core body including: a diagonal member portion for defining an interior surface of the diagonal portion of the tension member, and a side window portion for defining one side window, the side window portion contacting both the cope and drag mold surfaces.
- 34. The method of claim 33, further comprising the provision of a core print on the diagonal member.
- 35. In a method of making a hollow cast metal sideframe for a railway car,the sideframe having front and rear ends and a pedestal at each end, a top member extending along a longitudinal axis between the front and rear ends, a tension member having a pair of diagonal portions and a center portion, a bolster opening in the middle of the sideframe between the top member and the center portion of the tension member, a pair of vertical columns along the bolster opening, and a pair of side windows, the sideframe having an inboard side and an outboard side, the pedestals, top member, tension member and columns having interior and exterior surfaces and widths between the inboard and outboard sides, the method comprising the steps of providing cores to define the hollow interior of the sideframe, providing a mold having cope and drag mold surfaces, placing the cores in the mold, and pouring molten metal into the mold to form a sideframe casting; the improvement wherein the cores include one core formed as an integral piece and having a core body including: a diagonal member portion for defining an interior surface of the diagonal portion of the tension member, and a side window portion for defining one side window, the side window portion contacting both the cope and drag mold surfaces, and a top member portion for defining the interior surface of the entire width of at least a part of the length of the top member.
- 36. The method of claim 35, further comprising the provision of a core print on the diagonal member.
- 37. A method of making a hollow cast metal bolster for use in a railway truck, the bolster having first and second outboard ends, a top wall, bottom wall and side walls having interior and exterior surfaces, a central longitudinal plane and a central transverse plane, the method comprising the steps of providing a mold, the method further comprising the steps of providing a core, placing the core in the mold, pouring molten metal in the mold to cast the bolster, removing the cast bolster from the mold, and separating the cast bolster from the core, wherein the core comprises:a one-piece center core formed as an integral piece having first and second opposite ends and surfaces to define interior surfaces of the bolster top wall, bottom wall and side walls on both sides of the bolster central longitudinal plane, and a pair of center core prints integral with the center core for supporting the center core in the mold, and wherein each center core print extends from an opposite side of the enter core.
Parent Case Info
This is a division of application Ser. No. 09/748,584, filed on Dec. 22, 2000, which is a division of application, Ser. No. 09/524,469, filed on Mar. 13, 2000, now U.S. Pat. No. 6,330,862, which is a division of application Ser. No. 09/357,061, filed on Jul. 19, 1999, now U.S. Pat. No. 6,089,166, which is a division of application Ser. No. 09/058,680, filed on Apr. 10, 1998, now U.S. Pat. No. 5,967,053, which is a division of application Ser. No. 08/780,546 filed on Jan. 8, 1997, now U.S. Pat. No. 5,752,564, the entire disclosures being part of the disclosure of this application and being hereby incorporated by reference herein.
US Referenced Citations (31)
Foreign Referenced Citations (5)
Number |
Date |
Country |
0445355 |
Nov 1991 |
DE |
0486463 |
Nov 1991 |
DE |
0 445 355 |
Sep 1991 |
EP |
0 486 463 |
May 1992 |
EP |
62013240 |
Jan 1987 |
JP |
Non-Patent Literature Citations (4)
Entry |
W. A. Durley, Practical Aspects of Sodium Silicate Coremaking, Jan. 1978. |
H. W. Dietert, Foundry Core Practice, 1966. |
Flitz et al., Desinging Cast Components for V-8 Engines, Mar./Apr. 1968. |
W. A. Durley, Practical Aspects of Sodium Silicate Coremaking, Steel Foundry Facts, pp. 60-70, Jan. 1978. |