Example embodiments generally relate to a capsule containing a matrix, a device with the matrix and a method of forming the matrix.
A heat-not-burn device heats a material to produce an aerosol. The heating process does not involve combustion of the material.
At least one example embodiment is directed toward a capsule.
In one embodiment, the capsule includes a matrix including, one or more portions of a filler material, the filler material including a cellulose material, the one or more portions defining interstices; a containing structure containing the matrix; and at least one first substance infused within the filler material, the at least one first substance being one of nicotine, at least one first flavorant, a pre-aerosol formulation, a combination thereof, or a sub-combination thereof.
In one embodiment, the filler material is a plant-based cellulose material.
In one embodiment, the filler material is a non-tobacco plant-based cellulose.
In one embodiment, the filler material is a tobacco cellulose.
In one embodiment, the at least one first substance includes nicotine, a weight of the nicotine being between about 1 mg and 15 mg.
In one embodiment, the at least one first substance includes the at least one first flavorant, the at least one first flavorant being a tobacco extract.
In one embodiment, the at least one first substance includes the at least one first flavorant, the at least one first flavorant being a non-tobacco flavorant.
In one embodiment, the at least one first substance includes the at least one first flavorant, the at least one first flavorant being a tobacco extract.
In one embodiment, the at least one first substance includes the at least one first flavorant, the at least one first flavorant being a non-tobacco flavorant.
In one embodiment, the filler material is about 30% to 99% alpha-cellulose material, about 0.01% to 2% ash and a remainder is hemicellulose.
In one embodiment, the capsule further includes a filter.
In one embodiment, the capsule further includes a flow restriction section with a first end and a second end, the first end of the flow restriction section being connected to the matrix.
In one embodiment, the capsule further includes a filter connected to the second end of the flow restriction section, the filter being devoid of a consumable substance.
In one embodiment, the containing structure contacts at least a side surface of the flow restriction section and at least a side surface of the filter to contain the matrix, the flow restriction section and the filter together.
In one embodiment, the flow restriction section defines an internal void space with a flow restrictor in the internal void space, the flow restrictor being spaced apart from one of the first end, the second end, or both the first end and the second end.
In one embodiment, the containing structure is at least one of a mesh, cellulose, plant-based cellulose, fabric, cotton, fibers, threads, textiles, paper, tipping paper, a same material as the filler material, a sub-combination thereof, or a combination thereof.
In one embodiment, the containing structure includes the filler material.
At least another example embodiment is directed toward a device.
In one embodiment, the device includes a heating section including, a first housing, a heating element in the first housing, and a capsule within heating proximity of the heating element, the capsule including, a matrix including, one or more portions of a filler material, the filler material being a plant-based cellulose material, the one or more portions defining interstices, a containing structure containing the matrix, and at least one first substance infused within the filler material, the at least one first substance being one of nicotine, at least one first flavorant, a pre-aerosol formulation, a combination thereof, or a sub-combination thereof, and the first housing defining an air inlet and an air outlet that are configured to establish an airflow path that passes across, passes through or both passes across and passes through the capsule.
In one embodiment, the device further includes a power source; at least one first sensor; and control circuitry in electrical communication with the at least one first sensor and the power source, and the control circuitry being configured to cause the power source to send an electrical current to the heating element.
In one embodiment, the at least one first sensor is configured to detect at least one first parameter, the at least one first parameter being at least one of a resistance of the heating element, a temperature of the heating element, a temperature of the matrix of the capsule, a temperature of the capsule, a draw of air, a sub-combination thereof, or a combination thereof.
In one embodiment, the control circuitry is configured to cause the power source to send the electrical current to the heating element based on the at least one first parameter.
In one embodiment, the electrical current is variable based on the at least one first parameter.
In one embodiment, the capsule further includes, a flow restriction section with a first end and a second end, the first end of the flow restriction section being connected to the matrix; and a filter connected to the second end of the flow restriction section, the filter being devoid of a consumable substance.
In one embodiment, the capsule further includes, a filter connected to an end of a flow restriction section, the filter being devoid of a consumable substance.
In one embodiment, the containing structure contacts at least a side surface of the flow restriction section and at least a side surface of the filter to contain the matrix, the flow restriction section and the filter together, and the flow restriction section defines an internal void space with a flow restrictor in the internal void space, the flow restrictor being spaced apart from one of the first end, the second end, or both the first end and the second end.
In one embodiment, the flow restriction section defines an internal void space with a flow restrictor in the internal void space, the flow restrictor being spaced apart from one of the first end, the second end, or both the first end and the second end.
At least another example embodiment is directed toward a method of forming a matrix.
In one embodiment, the method includes forming a filler material from a plant-based cellulose material; processing the filler material to create a matrix; containing the matrix to form a capsule; and infusing the filler material with at least one first substance, the at least one first substance being one of nicotine, at least one first flavorant, a pre-aerosol formulation, a combination thereof, or a sub-combination thereof.
In one embodiment, the forming of the filler material includes forming the filler material from at least one of a non-tobacco plant-based cellulose, a tobacco cellulose, or both the non-tobacco plant-based cellulose and the tobacco cellulose.
In one embodiment, the containing of the matrix includes enveloping at least a portion of the matrix with a containing structure, the containing structure being configured to allow an airflow to contact at least a portion of the matrix.
In one embodiment, the method further includes connecting a first end of a flow restriction section to the matrix; connecting a second end of the flow restriction section to a filter, the flow restriction section defining an internal void space with a flow restrictor in the internal void space, the flow restrictor being spaced apart from the first end and the second end of the flow restriction section; and containing the matrix, the flow restriction section and the filter together using the containing structure.
In one embodiment, the infusing of the filler material includes adding the at least one first flavorant to the filler material, the at least one first flavorant being at least one of a non-tobacco flavorant, a tobacco extract or both the non-tobacco flavorant and the tobacco extract.
The various features and advantages of the non-limiting embodiments herein may become more apparent upon review of the detailed description in conjunction with the accompanying drawings. The accompanying drawings are merely provided for illustrative purposes and should not be interpreted to limit the scope of the claims. The accompanying drawings are not to be considered as drawn to scale unless explicitly noted. For purposes of clarity, various dimensions of the drawings may have been exaggerated.
Some detailed example embodiments are disclosed herein. However, specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. Example embodiments may, however, be embodied in many alternate forms and should not be construed as limited to only the example embodiments set forth herein.
Accordingly, while example embodiments are capable of various modifications and alternative forms, example embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit example embodiments to the particular forms disclosed, but to the contrary, example embodiments are to cover all modifications, equivalents, and alternatives thereof. Like numbers refer to like elements throughout the description of the figures.
It should be understood that when an element or layer is referred to as being “on,” “connected to,” “coupled to,” or “covering” another element or layer, it may be directly on, connected to, coupled to, or covering the other element or layer or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly connected to,” or “directly coupled to” another element or layer, there are no intervening elements or layers present. Like numbers refer to like elements throughout the specification. As used herein, the term “and/or” includes any and all combinations or sub-combinations of one or more of the associated listed items.
It should be understood that, although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers, and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer, or section from another region, layer, or section. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of example embodiments.
Spatially relative terms (e.g., “beneath,” “below,” “lower,” “above,” “upper,” and the like) may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It should be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the term “below” may encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
The terminology used herein is for the purpose of describing various example embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes,” “including,” “comprises,” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
When the words “about” and “substantially” are used in this specification in connection with a numerical value, it is intended that the associated numerical value include a tolerance of ±10% around the stated numerical value, unless otherwise explicitly defined.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which example embodiments belong. It will be further understood that terms, including those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
Hardware may be implemented using processing or control circuitry such as, but not limited to, one or more processors, one or more Central Processing Units (CPUs), one or more microcontrollers, one or more arithmetic logic units (ALUs), one or more digital signal processors (DSPs), one or more microcomputers, one or more field programmable gate arrays (FPGAs), one or more System-on-Chips (SoCs), one or more programmable logic units (PLUs), one or more microprocessors, one or more Application Specific Integrated Circuits (ASICs), or any other device or devices capable of responding to and executing instructions in a defined manner.
In some example embodiment the filler material 105 is also perforated to increase a porosity and/or flow paths through the filler material 105 that is combined to form the matrix 100. In an example embodiment, the matrix 100 is a porous or mesh material, that may be a composite material made from tobacco, non-tobacco materials, or both tobacco and non-tobacco materials. In some example embodiments, the matrix 100 is provided with or without flavors or a flavoring system, and the matrix 100 is provided with or without nicotine.
In an example embodiment, the matrix 100 is contained (e.g., bound together) by a containing structure 103. In an example embodiment, the matrix 100 and the containing structure 103 is in the form of a capsule (cartridge) 104 or a part of the capsule 104. A capsule 104 can be in various shapes or sizes and may include other elements. In an example embodiment, the capsule 104 is sized to include enough of the filler material 105 in the matrix 100, and a concentration of nicotine and/or flavoring (described below) within the filler material 105 of the matrix 100 to provide a determined number of draws and/or a determined numbers of draws over a desired duration of time.
In an example embodiment, the containing structure 103 fully circumscribes the matrix 100. In another example embodiment, the containing structure 103 does not cover all sides of the matrix 100, and may for instance define openings for an entrance and exit airflow. In an example embodiment, the containing structure 103 may include a soft and/or porous covering. In an example embodiment, the containing structure 103 may include a covering made from cellulose, plant-based cellulose, fabric, cotton, fibers, threads, other suitable textiles, paper, tipping paper, or combinations or sub-combinations of these materials, etc. In an example embodiment, the containing structure 103 includes a hard shell made from metal, metal alloys, one or more polymers, plastics, resins, etc., or combinations/sub-combinations thereof. The containing structure 103 and/or the matrix 100 can be in the shape of a cylinder, a rod, a disc, a plug, a flat surface, a square, a rectangle, or any other desirable shape. In an example embodiment, the matrix 100 may be in the shape of a cylinder, and containing structure 103 may be wrapped around the cylinder without covering ends 100a. Other shapes or cross-sectional configurations may be used. In an example embodiment, the containing structure 103 includes a soft covering made from cellulose, plant-based cellulose, fabric, cotton, fibers, threads, other suitable textiles, combinations or sub-combinations of these materials, etc. In an example embodiment, the containing structure 103 is made from the filler material 105. In an example embodiment, the containing structure 103 is porous. The containing structure 103 and/or the matrix 100 of some example embodiments is suitable for allowing airflow to pass along and/or through at least a portion of the matrix 100. In some example embodiments, the containing structure 103 may allow airflow to pass through at least a portion of the containing structure 103, itself.
In other example embodiments, the filler material 105 is a block of material, an extruded material, or a material that is in a shape other than a flat sheet.
In an example embodiment, the filler material 105 is shredded into the strands 102. The strands 102 are combined to form the matrix 100 (
It should be understood that the strands 102 may formed via other processes, other than shredding. For instance, cutting, dicing, or other processes may be used to form the strands 102. In another example embodiment, the strands 102 may be formed via extrusion, such that the filler material 105 is not necessarily in a sheet-like form, prior to the formation of the strands 102. In another example embodiment, as discussed above, the filler material 105 is folded or bunched together to form the matrix 100, where the folded and/or bunched together filler material 105 may or may not also be perforated, either before or after forming the matrix 100. In yet another example embodiment, the filler material 105 may be processed so that the shredded and/or cut strands 102 of the filler material 105 are combined with folded and/or bunched together filler material 105 that is not cut and/or shredded, in order to form the matrix 100.
In an example embodiment, the filler material 105 is a non-tobacco cellulose. In particular, the non-tobacco cellulose is cast or made into the filler material 105, where in an example embodiment the filler material 105 is in the form of the sheet-like (paper-like) 105c layer that may or may not be rolled 105a. The cellulose is a water-insoluble organic polymer material that may be made from plant material, plant-based material, plant cell walls, vegetable fibers, cotton, polysaccharide, chains of glucose units (monomers), cellulose acetate, combinations or sub-combinations of these materials, etc. In another example embodiment, the cellulose is partially water-soluble and made from the same materials, or combinations, or sub-combinations, of the materials, etc.
In an example embodiment, the filler material 105 is about 30% to 99% alpha-cellulose material made from plant material, about 0.01% to 2% ash and the remainder is hemicellulose. In an example embodiment, the hemicellulose is plant based material that includes beta-cellulose, gamma-cellulose, biopolymers, or combinations, or sub-combinations, thereof. In some examples, the primary strength and water-insoluble properties of the filler material 105 may be derived from the content of alpha-cellulose within the filler material 105. In an example embodiment, the filler material 105 is more than 98% alpha-cellulose material made from plant material, about 0.01% to 2% ash, and is water-insoluble and the remainder is hemicellulose—where this embodiment of the filler material 105 is water-insoluble. The ranges of values in these example embodiments are not limiting and may be below or above these ranges.
In another example embodiment, the filler material 105 is a plant-based tobacco cellulose. In particular, the tobacco cellulose is cast or made into the filler material 105, where the filler material 105 may be in the form of the sheet-like (paper-like) 105c layer that may or may not be rolled. In an example embodiment, the filler material 105 is a tobacco cellulose that may or may not include tobacco extract. In other embodiments, the cellulose is a non-tobacco cellulose that includes a tobacco extract. In an example embodiment, the tobacco cellulose is a water-insoluble material, or alternatively a partially water-soluble material.
In an example embodiment, the filler material 105 is about 30% to 99% tobacco cellulose, about 0.01% to 2% ash and the remainder is hemicellulose. In another example embodiment, the filler material 105 is more than 98% tobacco cellulose, and about 0.01% to 2% ash, and is water-insoluble. The ranges of values in these example embodiments are not limiting and may be below or above these ranges.
In an example embodiment, flavoring, a flavorant, or a flavor system, is included in the strands 102 and/or filler material 105 of the matrix 100 in order to release an aroma and/or flavors during operation, including in some cases, upon heating and/or as an airflow passes through the matrix 100. In an example embodiment, the flavoring includes volatile tobacco flavor compounds. Flavoring may also include flavors besides tobacco, or in addition to tobacco flavoring. The flavoring may be at least one flavorant that is a natural flavorant or an artificial flavorant. For instance, the at least one flavorant may include tobacco flavor, tobacco extract, menthol, wintergreen, peppermint, herb flavors, fruit flavors, nut flavors, liquor flavors, roasted, minty, savory, cinnamon, clove, and any other desired flavors, and combinations or sub-combinations thereof. In an example embodiment, the flavoring is added to the filler material 105, either before or after the filler material 105 is processed into a sheet-like material, or before or after the filler material 105 is shredded, or otherwise transformed, into the strands 102. In some example embodiments, this may be accomplished by dipping the filler material 105 and/or the strands 102 in the flavoring, dispersing the flavoring onto the filler material 105 and/or strands 102, or otherwise exposing the filler material 105 and/or strands 102 to the flavoring.
In an example embodiment, the flavoring is infused into the filler material 105 during an initial formation and/or processing of the filler material 105. In an example embodiment, the flavoring is also or alternatively infused into the filler material 105 after the initial formation and/or processing of the filler material 105 and/or strands 102. In another example embodiment, the filler material 105 and/or strands 102 of the matrix 100 are left unflavored, such that flavoring is not included in the matrix 100.
In addition to the examples disclosed above, in an example embodiment the flavoring/flavorant is added to the filler material 105, or the strands 102 made from the filler material 105. The non-tobacco flavoring can include a ‘tobacco flavoring’ that is not tobacco. That is to say, this flavoring is not a tobacco extract, it is not derived from tobacco, and does not include any tobacco material in any form—and yet, this aromatic flavoring sensorially mimics (e.g., smells and/or tastes like) tobacco.
In an example embodiment, nicotine is included in the strands 102 of the matrix 100. In one example embodiment, about 1-15 mg of nicotine is included in the matrix 100. Less or more nicotine may be used in other example embodiments. In an example embodiment, the matrix 100 contains enough nicotine that the initial (first) five “draws” of the matrix 100 includes about 100-500 micrograms of nicotine per draw. Less or more nicotine may be used in the matrix 100 in other example embodiments to obtain other results. A “draw” is defined to be about 55 cm3 of fluid that flows for a period between about 3-5 seconds.
In an example embodiment, nicotine is added to the filler material 105, either before or after the filler material 105 is processed into a sheet-like layer, or before or after the filler material 105 is shredded, or otherwise transformed, into the strands 102. In some example embodiments, this may be accomplished by dipping the filler material 105 and/or the strands 102 in the nicotine, dispersing the nicotine onto the filler material 105 and/or strands 102, or otherwise exposing the filler material 105 and/or the strands 102 to the nicotine.
In an example embodiment, the nicotine is infused into the filler material 105 during an initial formation and/or processing of the filler material 105. In an example embodiment, the nicotine is also or alternatively infused into the filler material 105 after the initial formation and/or processing of the filler material 105 and/or strands 102. In another example embodiment, nicotine is not included in the filler material 105, the strands 102 or the matrix 100.
Example Embodiments with Pre-Aerosol Formulation
In an example embodiment, the flavoring and/or nicotine is included in a pre-aerosol formulation, and then the pre-aerosol formulation with the flavoring and/or nicotine is infused into the filler material 105. The flavoring, nicotine and/or pre-aerosol formulation is collectively referred to as a “consumable substance.” In another embodiment, the pre-aerosol formulation is infused into the filler material 105 separately from the flavoring and/or nicotine. The pre-aerosol formulation is a material or combination of materials that is transformed into an aerosol. Aerosol, vapor and dispersion are terms used interchangeably and are meant to cover any matter generated or output by the devices claimed and equivalents thereof. The pre-aerosol formulation may also be a pre-vapor formulation or a pre-dispersion formulation.
In an example embodiment, the pre-aerosol formulation is a liquid, solid and/or gel formulation including, but not limited to, water, beads, solvents, active ingredients, ethanol, plant extracts, natural or artificial flavors, and/or at least one aerosol former such as glycerin and propylene glycol.
In an example embodiment, at least one aerosol former is included in the pre-aerosol formulation, where the aerosol former includes diols (such as propylene glycol and/or 1,3-propanediol), glycerin and combinations, or sub-combinations, thereof. Various amounts of the aerosol former may be used. For example, in some example embodiments, the at least one aerosol former is included in an amount ranging from about 20% by weight based on the weight of the pre-aerosol formulation to about 90% by weight based on the weight of the pre-aerosol formulation (for example, the aerosol former is in the range of about 50% to about 80%, or about 55% to 75%, or about 60% to 70%), etc. Moreover, in an example embodiment, the pre-aerosol formulation includes a weight ratio of the diol to glycerin that ranges from about 1:4 to 4:1, where the diol is propylene glycol, or 1,3-propanediol, or combinations thereof. In an example embodiment, this ratio is about 3:2. Other amounts or ranges may be used.
In an example embodiment, the pre-aerosol formulation also includes water. Various amounts of water may be used. For example, in some example embodiments, water may be included in an amount ranging from about 5% by weight based on the weight of the pre-aerosol formulation to about 40% by weight based on the weight of the pre-aerosol formulation, or in an amount ranging from about 10% by weight based on the weight of the pre-aerosol formulation to about 15% by weight based on the weight of the pre-aerosol formulation. Other amounts or percentages may be used. For example, in an example embodiment, the remaining portion of the pre-aerosol formulation that is not water (and nicotine and/or flavoring compounds), is the aerosol former (described above), where the aerosol former is between 30% by weight and 70% by weight propylene glycol, and the balance of the aerosol former is glycerin. Other amounts or percentages may be used.
In an example embodiment, the pre-aerosol formulation includes the flavorant in an amount ranging from about 0.2% to about 15% by weight (for instance, the flavorant may be in the range of about 1% to 12%, or about 2% to 10%, or about 5% to 8%). In an example embodiment, the pre-aerosol formulation includes nicotine in an amount ranging from about 1% by weight to about 10% by weight (for instance, the nicotine is in the range of about 2% to 9%, or about 2% to 8%, or about 2% to 6%). In an example embodiment, the portion of the pre-aerosol formulation that is not nicotine and/or the flavorant, includes 10-15% by weight water, where the remaining portion of the non-nicotine and non-flavorant portion of the formulation is a mixture of propylene glycol and an aerosol former where the mixture is in a ratio that ranges between about 60:40 and 40:60 by weight. Other combinations, amounts or ranges may be used.
In another example embodiment, the device 10 is one singular section that includes the elements shown in
The heating section 30 of the device 10 includes a chamber 30b that includes the matrix 100. As stated above in relation to the example of
The matrix 100 resides in or near an airflow path 124 that is defined by the device 10. This airflow path 124 may be formed, for instance, by defining one or more air inlets 116 in the housing 30a of the heating section 30, with an airflow exit provided by a mouthpiece 112 (e.g., air outlet). The airflow path 124 may pass across the matrix 100, or directly through the matrix 100. In an example embodiment, the heating section 30 allows a bypass airflow path 124a to pass across and/or completely circumvent the matrix 100. This embodiment may be accomplished by, for instance, providing a gap 128 between the matrix 100 and/or the containing structure 103 of the capsule 104 and an inner surface of the housing 30a of the heating section 30. It should be understood that, in the event the device 10 includes a bypass airflow 124a, this bypass airflow 124a may include an entrained aerosol just as a downstream aerosol 124b (that passed through the matrix 100) also includes an aerosol, if the bypass airflow 124a passes across an exposed surface of the matrix 100.
In another example embodiment, the heating section 30 allows the entire airflow path 124 to pass through the matrix 100, such that a bypass airflow 124a is not present. That is to say, the gap 128 of
A heating element 110 is included in the heating section 30. The heating element 110 is capable of heating the chamber 30b and the matrix 100 to an extent that the flavoring, nicotine and/or ingredients in a pre-aerosol formulation in the matrix 100 is at least partially extracted (e.g., aerosolized) to create the aerosol 124b (and the bypass airflow 124a that may contain aerosol) that is extracted from the matrix 100. The heating element 110 heats the chamber 30b and the matrix 100 to an extent that the matrix 100 and the flavoring, nicotine and/or pre-aerosol formulation remain below a combustion temperature. That is to say, in some example embodiments, the heating element 110 does not combust any material in the matrix 100, including the flavoring, nicotine and/or pre-aerosol formulation.
In an example embodiment, the heating element 110 is a distance 122 apart from the matrix 100, such that the heating element 110 utilizes convection to heat air in the housing 30a to indirectly heat the matrix 100. In an example embodiment, the distance 122 is negligible and/or non-existent, such that the heating element 110 is nearly touching, or is in direct contact, with the matrix 100 or the containing structure 103 of the matrix 100. In an example embodiment, the heating element 110 uses both conduction and convection to heat the matrix 100. In another example embodiment, the heating element 110 is partially or fully insertable into some or all of the matrix 100 or the containing structure 103 of the matrix 100. In another example embodiment, the heating element 110 contacts or circumscribes one or more sides, or surrounds or nearly surrounds the matrix 100 and/or the containing structure 103. In an example embodiment, the housing 30a of the heating section 30 is made from a material that is heat-insulating (e.g., a thermal insulator). The housing 30a may be made from a metal, metal alloy, polymer, plastic, resin, other suitable heat-insulating materials, and combinations or sub-combinations thereof.
In at least one example embodiment, the heating element 110 is formed of any suitable electrically resistive materials. In an example embodiment, the heating element 110 is in the form of a wire coil, a planar body, a ceramic body, a single wire, a cage of resistive wire, or any other suitable form that heats the matrix 100. In an example embodiment, the heating element 110 is made from a sintered ceramic material that includes metal particles infused within the ceramic. In another example embodiment, the heating element 110 is constructed of an iron-aluminide (e.g., FeAl or Fe3Al).
The power section 20 includes one or more chambers 20b defined by the housing 20a, where the chamber 20b includes the power source 120. The power source 120 may be a battery. In particular, the power source 120 may be a Lithium-ion battery, or one of its variants, for example a Lithium-ion polymer battery. Alternatively, the battery may be a Nickel-metal hydride battery, a Nickel cadmium battery, a Lithium-manganese battery, a Lithium-cobalt battery, a fuel cell or a solar cell. Any other power sources or battery technology may be used. In an example embodiment, the power source 120 is rechargeable and re-useable, where the power source 120 is charged via an external source, solar power, etc. In another example embodiment, the power source 120 is not rechargeable and is therefore disposable.
In an example embodiment, the power section 20 includes at least one sensor 106 (referred to as a “sensor,” throughout the remainder of this document) and control circuitry 126. The sensor 106 can be located anywhere in the device 10. The control circuitry 126 has one or more electrical terminals 126a for electrically connecting the control circuitry 126 to the sensor 106 and other elements of the device 10. In an example embodiment, the sensor 106 is in a fluid communication path that includes the chamber 20b of the power section 20, the chamber 30b of the heating section 30, and one or more holes 114 that open into both chambers 20b/30b. In an example embodiment, the sensor 106 measures a pressure drop in this fluid communication path. The sensor 106 and control circuitry 126 may be mounted on a printed circuit board 108. In an example embodiment, the sensor 106 and/or control circuitry 126 are positioned at a different location in the power section 20, other than the location that is shown in
In an example embodiment, the sensor 106 detects one or more parameters within the device 10 and sends one or more signals to the control circuitry 126. In an example embodiment, in response to receiving one or more signal from the sensor 106 the control circuitry 126 closes an ‘electrical circuit’ that provides an electrical current from the power source 120 to the heating element 110 to cause the heating element 110 to the heat the chamber 30b of the heating section 30 and/or the matrix 100. In an example embodiment, the ‘electrical circuit’ of the device 10 includes the following: the power source 120, terminals 107a and 107b of the power source 120, electrical leads 109a and 109b connected to the terminals 107a/b, the control circuitry 126 and the electrical terminals 126a of the control circuitry 126, the heating element 110 and electrical leads 116a and 116b connected to the heating element 110. In other example embodiments, the electrical circuit may include the housing 20a of the power section 20 and/or the housing 30a of the heating section 30, where the housing 20a/30a may take the place of, or be used in addition to, the electrical leads 109a/b and 116a/b within the electrical circuit of the device 10. The housings 20a/30a in
In an example embodiment, the sensor 106 generates an output signal indicative of a magnitude and direction of airflow 124 through the heating section 30, where the control circuitry 126 receives the sensor 106 output signal and determine if the following internal conditions exist: (1) a direction of the airflow 124 indicates a draw on the mouthpiece 112 (versus blowing air through the mouthpiece 112), and/or (2) a magnitude of the airflow 124 exceeds a threshold value. In some example embodiments, only one condition may be sufficient to activate the heater, while in other examples, two conditions or all conditions may have to be met before activating the heater. If these internal conditions of the device 10 are met, the control circuitry 126 electrically closes the electrical circuit to connect the power source 120 to the heating element 110, thereby activating the heating element 110 by sending an electrical current to the heating element 110. In an example embodiment, the sensor 106 generates a variable output signal that is in at least partial correlation with a magnitude of the pressure drop sensed by the sensor 106.
In another example embodiment, the control circuitry 126 may include, or be in electrical communication with, a measurement circuit 126b, where the measurement circuit 126b is capable of detecting a change in resistance or a temperature of the heating element 110, as discussed below in more detail. In this embodiment, the control circuitry 126 may send a variable electrical current to the heating element 110 based on the variable output signal from the sensor 106. The sensor 106 may be a sensor as disclosed in “Electronic Smoke Apparatus,” U.S. application Ser. No. 14/793,453, filed on Jul. 7, 2015, or a sensor as disclosed in “Electronic Smoke,” U.S. Pat. No. 9,072,321, issued on Jul. 7, 2015, each of which are hereby incorporated by reference in their entirety into this document. Other type of sensors to detect an airflow may be used.
In an example embodiment, the device 10 with the containing structure 103 and/or matrix 100 has a resistance to draw (RTD) between about 5 mm water to 150 mm of water. Other RTD may be implemented, such as for example, in some embodiments, the RTD may be below 5 mm of water or above 150 mm of water. It should be understood that the RTD of the matrix 100 lessens over time as the matrix 100 is in operational use, and therefore the RTD of the device 10 also lessens over time while in operation.
In an example embodiment, the insert 406 includes the containing structure 103 that spans the length of the insert 406, by covering the outer surfaces of the matrix 100, the middle section 408 and the filter 410 and/or any other sections that may form part of the insert 406. In an example embodiment, the only wrapping around the matrix 100, middle section 408, filter section 410 and/or any other sections that may form part of the insert 406, is a containing structure 103 without any other wrapping around each of the sections that form part of insert 406 (i.e., the sections being wrapped only by and connected by a single wrapping such as containing structure 103). In an example embodiment, the containing structure 103 is made from tipping paper. In another embodiment, the containing structure 103 is made from any of the materials described in conjunction with the containing structure 103, included in the embodiments described herein. In an example embodiment, the ends 406a of the insert 406 are open (e.g., the containing structure 103 is only wrapped around insert 406 in a longitudinal direction, such that the containing structure 103 does not exist on the ends 406a of the rod 406). In another embodiment, the containing structure 103 exists on the ends 406a of the insert 406 are made from any of the materials for the containing structure 103 of the example embodiments described herein. The insert 406 can be referred to as a “capsule” for purposes of this document. One or more sections may also have their own cover, and then the various sections may be connected together, either by another covering or by other structure.
In an example embodiment, the diameter 420 of the insert 406 is about 7-10 mm, or about 8.6 mm. In an example embodiment, the internal (restricted) diameter 422 of the flow restrictor 412 is about 4-8 mm, or about 5 mm. In an example embodiment, a longitudinal length of the end section 404 with the matrix 100 is about 5-16 mm, or about 6 mm. In an example embodiment, a longitudinal length of the middle section (flow restriction section) 408 is about 12-25 mm, or about 12 mm. In an example embodiment, the spaces 414/416 of the middle section 408 may each have a longitudinal length of about 4 mm. In an example embodiment, a longitudinal length of the non-consumable filter 410 is about 6-9 mm, or about 6 mm. In an example embodiment, the RTD of the insert 406 is about 30 mm of water or less, or about 26 mm of water or less. In an example embodiment, the insert 406 has the following dimensions: the end section 404 with the matrix 100 has a longitudinal length of about 6 mm, the middle section 408 has a longitudinal length of about 12 mm with spaces 414/416 that are each about 4 mm long, and the non-consumable filter 410 has a longitudinal length of about 6 mm—with a RTD of the insert 406 being about 26 mm of water or less. It should be understood that the existence of the void space within the middle section 408, and a size of the internal diameter 422 of the flow restrictor 412, help control an airflow rate and a RTD of the insert 406, where a lower RTD generally allows a greater amount of flavor and/or nicotine to be imparted to the downstream aerosol 124b exiting the insert 406 (see
In an example embodiment, the insert 406 is disposable, such that the insert 406 may be discarded following a depletion of the consumable substance within the matrix 100.
In step S104, the matrix 100 is contained (e.g., bound together) to form the capsule 104. As described above, this may be accomplished by holding the matrix 100 together using the containing structure 103. In an example embodiment, the containing structure 103 is made from a metal, metal alloy, polymer, plastic, resin, mesh, cellulose, plant-based cellulose, fabric, cotton, fibers, threads, other textiles, pulp, paper, tipping paper, other suitable materials capable of containing the matrix 100, or combinations, or sub-combinations, of these materials. In an example embodiment, the containing structure 103 is made from the filler material 105. In an example embodiment, the matrix 100 is included in the containing structure 103 of the insert 406/406b, where these same recited method steps apply to the insert 406/406b. In an example embodiment, the containing structure 103 is wrapped in a longitudinal direction around the contained matrix 100 without covering upstream and downstream ends of the matrix 100.
In step S106, the filler material 105 is infused with the consumable substance that includes the flavorant, nicotine and/or ingredients of a pre-aerosol formulation. In an example embodiment, the infusing of the consumable substance occurs as the filler material 105 is being formed, or after the filler material 105 is formed (as described above). In another example embodiment, the infusing of the consumable substance occurs as the filler material 105 is being processed into the matrix 100, or after the matrix 100 is formed (as described above).
In step S202, the matrix 100 is inserted into the housing 30a of the device 10. In step S204, an airflow path is established within the device 10. This may be accomplished by adding an air inlet 116 and a mouthpiece 112 to the device 10. In an example embodiment, the air inlet 116 and mouthpiece 112 are on either side of the matrix 100, such that the airflow path is forced to pass by, pass across, or pass through at least a portion of the matrix 100. In an example embodiment, this same method step applies to the insert 406/406b, where the insert 406/406b is inserted into the housing 30a of the heating section 30 of the device 10a—though in this embodiment, the airflow path may be between the air inlet 116 and the non-consumable filter 410 (as the mouthpiece 112 may not be included in the device 10a).
In step S206, the heating element 110 is positioned in the housing 30a in proximity (a heating proximity) to the matrix 100 and/or the containing structure 103 holding the matrix 100. This may include positioning the heating element 110 to be near or in contact with the matrix 100 and/or the containing structure 103, or this may include inserting at least a portion of the heating element 110 within the matrix 100 and/or the containing structure 103.
Example embodiments have been disclosed herein, it should be understood that other variations may be possible. Such variations are not to be regarded as a departure from the spirit and scope of the present disclosure, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.
This application is a divisional of U.S. application Ser. No. 16/125,293, filed Sep. 7, 2018, the entire contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16125293 | Sep 2018 | US |
Child | 17902271 | US |