Method of making plastic container having a deep-inset base

Information

  • Patent Grant
  • 8636944
  • Patent Number
    8,636,944
  • Date Filed
    Monday, December 8, 2008
    16 years ago
  • Date Issued
    Tuesday, January 28, 2014
    11 years ago
Abstract
A method of plastic container having a deep inset base of the type that has a standing ring for supporting the container on a flat surface includes steps of molding a container blank having a standing ring and a base projection portion that is formed beneath the standing ring and relatively displacing the base projection portion upwardly with respect to the standing ring until the base projection portion is positioned above the standing ring. An improved plastic container having a deep inset base is also disclosed.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to the design and manufacture of plastic containers, particularly plastic containers that are made by the reheat stretch blow molding process.


2. Description of the Related Technology


Plastic containers for packaging beverages are commonly fabricated from polyesters such as polyethylene terephthalate (PET). PET containers are lightweight, inexpensive, and recyclable and can be economically manufactured in large quantities.


PET containers are typically manufactured using the stretch blow molding process. This involves the use of a preform that is injection molded into a shape that facilitates distribution of the plastic material within the preform into the desired final shape of the container. The preform is first heated and then is longitudinally stretched and subsequently inflated within a mold cavity so that it assumes the desired final shape of the container. As the preform is inflated, it takes on the shape of the mold cavity. The polymer solidifies after contacting the cooler surface of the mold, and the finished hollow container is subsequently ejected from the mold.


PET containers are common for use in packaging beverages such as juices using what is known in the industry as the hot-fill process. This involves filling the containers while the liquid product is at an elevated temperature, typically 68° C.-96° C. (155° F.-205° F.) and usually about 85° C. (185° F.) in order to sterilize the container at the time of filling. Containers that are designed to withstand the process are known as “hot fill” type containers. After filling, such containers undergo significant volumetric shrinkage as a result of the cooling of the product within the sealed container. Hot fill type containers accordingly must be designed to have the capability of accommodating such shrinkage. Typically this has been done by incorporating one or more concave vacuum panels into the side wall of the container that are designed to flex inwardly as the volume of the product within the container decreases as a result of cooling. More recently, it has been proposed to accommodate such volumetric shrinkage by providing a movable vacuum panel in the bottom of the container.


In some instances, it is desirable for a plastic container to be formed with a deep inset base, i.e. a base that is shaped to have a relatively tall and narrow standing ring. A deep inset base may be desirable for any one of a number of different reasons, including but not limited to the placement of a movable vacuum panel in the bottom of the container. For example, a manufacturer may desire to place an article in the space that is defined by the container bottom, or a deep inset base may be desirable in order to provide stackability of the containers with respect to each other.


Unfortunately, it has been problematic in the past to manufacture a container having a deep inset base using the reheat stretch blowmolding process. Efforts to produce such containers often resulted in unwanted extreme stretching and thinning of the container wall in the area of the standing ring of the container base, crimping or folding of the standing ring, or other unwanted deformities in the bottom of the container. These problems made it practically impossible to effectively for a container having a deep inset base. A need exists for an improved container having a deep inset base and an improved method for manufacturing such a container.


SUMMARY OF THE INVENTION

Accordingly, it is an object of the invention to provide an improved container having a deep inset base and an improved method for manufacturing such a container.


In order to achieve the above and other objects of the invention, a method of making a plastic container that has a standing ring for supporting the container on a flat surface and a recessed base portion, according to a first aspect of the invention, includes steps of molding a container blank having a standing ring and a base projection portion that is formed beneath the standing ring; and relatively displacing the base projection portion upwardly with respect to the standing ring until the base projection portion is positioned above the standing ring.


According to a second aspect of the invention, a method of making a plastic container that has a standing ring for supporting the container on a flat surface and a recessed base portion includes steps of applying a pressurization to a plastic preform that is positioned within a mold assembly to mold from the preform a container blank having a standing ring and a base projection portion that is formed beneath the standing ring; and relatively displacing the base projection portion upwardly with respect to the standing ring until the base projection portion is positioned above the standing ring, and wherein the step of relatively displacing the base projection portion is initiated while the container blank remains pressurized.


These and various other advantages and features of novelty that characterize the invention are pointed out with particularity in the claims annexed hereto and forming a part hereof. However, for a better understanding of the invention, its advantages, and the objects obtained by its use, reference should be made to the drawings which form a further part hereof, and to the accompanying descriptive matter, in which there is illustrated and described a preferred embodiment of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a diagrammatical view depicting a container that is made according to a first preferred embodiment of the invention in vertical cross-section;



FIG. 2 is a side elevational view depicting an intermediate container blank according to an alternative preferred embodiment of the invention;



FIG. 3 is an enlarged view of a portion of the article that is depicted in FIG. 2;



FIG. 4 is an enlarged view of a portion of the article that is depicted in FIG. 1;



FIG. 5 is a fragmentary perspective view of a container bottom according to one embodiment of the invention;



FIG. 6 is an exploded view of a mold assembly that is used to make a container according to a preferred embodiment of the invention; and



FIG. 7 is a flow chart depicting a method that is performed according to a preferred embodiment of the invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Referring now to the drawings, wherein like reference numerals designate corresponding structure throughout the views, and referring in particular to FIG. 1, a plastic container 10 that is constructed according to a first preferred embodiment of the invention is preferably fabricated using the well-known reheat stretch blow molding process out of a material such as PET.


Plastic container 10 includes a threaded finish portion 12 to which a closure may be attached in conventional fashion, a main body portion 14 that is preferably substantially symmetrical about a vertical axis 16 and a container bottom 17 that is shaped so as to define a standing ring 18 for supporting the container 10 on a relatively flat underlying surface. In the preferred embodiment, the standing ring 18 is constructed as a continuous annular surface, but could alternatively be constructed as a plurality of downwardly depending feet, each having a lower surface for supporting the container 10 on an underlying surface.


As is best shown in FIG. 4, the container bottom 17 includes a central push-up area 20 that is positioned radially inwardly of the standing ring 18 so as to form a deep inset recessed base portion having relatively tall and narrow profile immediately above the standing ring 18.


The central push-up area 20 is defined in part by an upstanding container bottom sidewall portion 22 that in the preferred embodiment defines a continuous inwardly facing annular ring. The upstanding container bottom sidewall portion 22 is preferably although not necessarily substantially smooth and preferably includes a substantially linear portion when viewed in longitudinal cross-section. It may have a plurality of spaced ribs or grooves, which preferably are longitudinally or vertically oriented, which facilitate separation from the blow mold cavity wall.


The central push-up area 20 is also defined in part by a central portion 24, which may be shaped conventionally according to any one of a number of known configurations, the details of which are not essential to a full understanding of the invention.


Preferably, the upstanding container bottom sidewall portion 22 has a height HS as measured parallel to a longitudinal axis 16 of the container that is greater than about 0.35 inch, and that is more preferably within a range of about 0.35 inch to about 1.2 inch. The substantially smooth upstanding container bottom sidewall portion 22 also has a length LS that is defined as the surface distance between a top portion 28 and a bottom portion 30 as viewed in vertical cross-section as shown in FIG. 4. Preferably, the length LS is within a range of about 100% to about 115% of the height HS.


Preferably, the upstanding container bottom sidewall portion 22 is immediately adjacent to the standing ring 18 of the container 10. In the preferred embodiment, the upstanding container bottom sidewall portion 22 is unitary at its lowermost end with the surface that defines the standing ring 18 of the container 10. Standing ring is this context is defined as the lowermost surface of the container 10 that contacts an underlying flat horizontal surface when the container 10 is placed thereon.


Looking again to FIG. 4, it will be seen that the upstanding container bottom sidewall portion 22 includes a substantially straight portion 26 that is angled with respect to a vertical plane that is parallel to the vertical axis 16 of the container 10 at an angle ΘS that is preferably within a range of about 0° to about 15°. In the embodiment of FIG. 4, angle ΘS is shown as about 0°.


The substantially straight portion 26 is also preferably substantially parallel to a substantially straight portion 27 of an outer sidewall of the container bottom 17, which facilitates the formation of a deep inset base having a relatively tall narrow standing ring. “Substantially parallel” for purposes of this feature is defined as within an angle range of about 0° to about 20°.


Preferably, the substantially smooth upstanding container bottom sidewall portion 22 has an average wall thickness TS that is within a range of about 0.018 inch to about 0.011 inch, and that is most preferably about 0.014 inch.



FIG. 5 depicts a container bottom 50 that is made according to one embodiment of the invention, showing the deep inset base. Container bottom 50 includes a relatively, tall, narrow standing ring 52 and a central push-up area 54 that includes a substantially smooth upstanding container bottom sidewall portion 56.


A method of making a plastic container according to a preferred embodiment of the invention includes steps of molding a container blank having a standing ring and a base projection portion that is formed beneath the standing ring and relatively displacing the base projection portion upwardly with respect to the standing ring until the base projection portion is positioned above the standing ring. A container blank 32 according to a preferred embodiment of the invention is shown in FIGS. 2 and 3.


Container blank 32 includes a threaded finish portion 34, a main body portion 36 and a container blank bottom 38 that defines a standing ring 40 and a downwardly depending base projection portion 42 that is formed beneath the standing ring 40. As FIGS. 2 and 3 show, the base projection portion 42 is at least as wide at a bottom end thereof than at a top end thereof. Preferably, the base projection portion 42 is wider at a bottom end thereof than at a top end thereof, as is clearly shown in FIGS. 2 and 3. The main body portion 36 is preferably although not necessarily formed so as to be substantially symmetrical about a vertical axis 44.


As is best shown in FIG. 3, the base projection portion 42 includes an upstanding sidewall portion 43 that in the preferred embodiment forms the upstanding container bottom sidewall portion 22 shown in FIGS. 1 and 4 after the base projection portion 42 is relatively displaced and inverted with respect to the standing ring 40. Upstanding sidewall portion 43 is preferably although not necessarily substantially smooth, and may include a plurality of spaced vertically or longitudinally oriented ribs or grooves that aid in the separation of the base projection portion 42 from the blow mold cavity wall after molding.


The substantially smooth upstanding sidewall portion 43 preferably has an average wall thickness TB that is preferably within a range of about 0.018 inch to about 0.011 inch, and that is most preferably about 0.014 inch.


Preferably, the plastic container 10 that is made according to embodiment of the invention shown in FIG. 4 has a first maximum diameter DC, and the base projection portion 42 has a second maximum diameter DB, and the second maximum diameter DB is within a range of about 110% to about 80% of the first maximum diameter DC. The second maximum diameter DB is preferably proximate to a bottom end of the base projection portion 42. Most preferably, the second maximum diameter DB is about 95% of the first maximum diameter DC.


The substantially smooth upstanding sidewall portion 43 includes a substantially straight portion 45 on an outwardly facing surface thereof that, as shown in FIG. 3, forms most of the upstanding sidewall portion 43. The substantially straight portion 45 in the preferred embodiment is angled downwardly and outwardly with respect to a vertical plane as viewed in vertical or longitudinal cross-section as shown in FIG. 3. The substantially straight portion 45 is preferably symmetrically shaped about a circumference of the base projection portion 42 so as to define a substantially straight annular wall. The substantially straight portion as viewed in vertical or longitudinal cross-section preferably is substantially parallel to a longitudinal axis 44 of the container blank. Substantially parallel in this case is defined as being angled with respect to a vertical plane at an angle ΘB that is within a range of about 0° to about 15°.


The substantially straight portion 45 has a height HB as measured parallel to a longitudinal axis 44 of the container blank that is preferably greater than about 0.3 inch. The substantially smooth upstanding sidewall portion 43 of the base projection portion 42 has a length LB measured, as is best shown in FIG. 3, along its curvature between a first, upper location 48 and a second, lower location 49. Preferably, the length LB is within a range of about 100% to about 115% of the height HB.


Preferably, the length LB is also within a range of about 75% to about 115% of the height HS of the upstanding container bottom sidewall portion 22.


The inversion or relative displacement of the base projection portion as shown in FIG. 3 into the container bottom shown in FIG. 4 is preferably performed while the plastic material is still formable and stretchable. Accordingly, according to one embodiment of the invention the inversion process may be performed to elongate and stretch the length of the base projection portion so that the height HS of the container bottom is greater than the height HB of the base projection portion. The permits the formation of a deep inset base that is deeper than would otherwise be possible, and permits under some circumstances more optimal material distribution with the container base. Accordingly, it permits lightweighting of the container in order to minimize material costs.



FIG. 6 depicts a mold assembly 70 that is constructed according to a preferred embodiment of the invention for molding a container blank 32 and then relatively displacing or inverting the base projection portion 42 of the container blank 32 with respect to the standing ring 40 until the base projection portion 42 is positioned above the standing ring 40 in order to complete formation of a container 10.


Mold assembly 70 includes a first mold portion 72 that is shaped to define an upper portion of the main body 36 of the container blank 32. A second mold portion 74 is shaped to define the rest of the main body 36, while a third mold portion 76 is shaped to form portions of the container blank bottom 38 including the base projection portion 42. Actuator 80 is supported by a pedestal 84 that is received within the mold housing 82.



FIG. 7 is a flow chart depicting a preferred method for making a container according to one aspect of the invention.


In order to form a container blank 32, a heated plastic preform is positioned within the mold assembly 70 and the mold assembly is locked. The preform is then subjected to a pre-blow process in order to prevent the preform from collapsing on itself and is then longitudinally stretched using a stretch rod in otherwise conventional fashion in order to initiate the well-known reheat stretch blow molding process.


High pressure (typically on the order of 520-600 psi) is then applied to the interior of the preform with the mold surface 78 in the downward position in order to cause the plastic material from the preform to stretch and conform to the mold surfaces that are defined by the various above-described mold portions 72, 74, 76, 78. This forms the container blank 32.


After the container blank 32 has been formed, the actuator 80 will be instructed by a control system to displace the fourth movable mold portion 78 upwardly with respect to the mold portions 72, 74, 76 in order to upwardly displace and invert the base projection portion into its final position above the standing ring of the container. Effectively, the base projection portion 42 is inverted in order to form the deep inset base of the container that is depicted in FIG. 1, 4 or 5. This step is advantageously initiated while the high pressure is still being maintained within the container blank 32, before the pressurized gas is exhausted from the mold assembly.


Preferably, the level of pressurization within the container blank relative to ambient pressure at the time that the fourth movable mold portion 78 is moved upwardly is at least 50% of the maximum pressurization that occurs within the mold during the formation of the container blank 32.


The pressurization within the container blank relative to ambient pressure at the time that the fourth movable mold portion 78 is preferably at least 260 psi, relative to external ambient pressure. This will prevent crushing of the container sidewalls during the upward movement of the fourth movable mold portion 78.


In addition, the upward movement of the fourth movable mold portion 78 is preferably performed before substantial cooling of the base projection portion has occurred, and while the plastic material retains a substantial amount of stretchability and flexibility. Preferably, the upward movement of the fourth movable mold portion 78 takes places within about 10 seconds after the container blank 32 is formed.


As FIG. 7 shows, the stretch rod is retracted and the exhaust process is initiated while the fourth movable mold portion 78 is still in the upper position. The fourth movable mold portion 78 is then lowered, the mold is opened, and the container 10 is removed from the mold.


It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.

Claims
  • 1. A method of making a plastic container having a deep inset base comprising steps of: molding a plastic preform into an intermediate plastic container blank having a container bottom comprising a standing ring and a base projection portion formed beneath standing ring with the container blank in an upright position, the base projection portion having a lowermost end wider than an opposite end thereof, said opposite end being proximate to said standing ring, so that a substantially straight sidewall of the base projection portion is angled outwardly toward said lowermost end with respect to a longitudinal axis of the container blank, wherein a maximum diameter of the base projection portion is within a range of about 80% to about 110% of a maximum diameter of a remainder of the container blank; andrelatively displacing the base projection portion upwardly with respect to the standing ring so as to convert the base projection portion into a central push-up area positioned inside the container bottom, the substantially straight sidewall of the base projection portion thereby forming an upstanding container bottom sidewall portion having an angle of about 0° with respect to said longitudinal axis.
  • 2. A method of making a plastic container according to claim 1, wherein said upstanding container bottom sidewall portion has a height that is within a range of about 0.35 inch to about 1.2 inch.
  • 3. A method of making a plastic container according to claim 1, wherein said upstanding container bottom sidewall portion defines a continuous, inwardly facing annular ring.
  • 4. A method of making a plastic container according to claim 1, wherein said upstanding container bottom sidewall portion has an average wall thickness that is within a range of about 0.018 inch to about 0.011 inch.
  • 5. A method of making a plastic container according to claim 4, wherein said average wall thickness is about 0.014 inch.
  • 6. A method of making a plastic container according to claim 1, wherein said maximum diameter of the base projection portion is about 95% of said maximum diameter of the remaining container blank.
  • 7. A method of making a plastic container according to claim 1, wherein said substantially straight sidewall is symmetrically shaped about a circumference of the base projection portion so as to define a substantially straight annular wall.
  • 8. A method of making a plastic container according to claim 1, wherein said substantially straight sidewall has a length that is within a range of about 75% to about 115% of a height of said upstanding sidewall portion.
  • 9. A method of making a plastic container according to claim 1, wherein said relative displacement stretches plastic material of said base projection portion.
  • 10. A method of making a plastic container according to claim 1, wherein said molding comprises applying pressurization to said preform within a mold assembly, and wherein said relative displacement is initiated while the intermediate container blank remains pressurized relative to ambient pressure.
  • 11. A method of making a plastic container according to claim 10, wherein said relative displacement stretches plastic material of said base projection portion.
  • 12. A method of making a plastic container according to claim 10, wherein said remaining pressure is at least 50% of a maximum pressurization that occurs during said molding.
  • 13. A method of making a plastic container according to claim 10, wherein said remaining pressure is at least 260 psi.
US Referenced Citations (261)
Number Name Date Kind
1499239 Malmquist Jun 1924 A
2142257 Saeta Jan 1937 A
D110624 Mekeel, Jr. Jul 1938 S
2124959 Vogel Jul 1938 A
2378324 Ray at al. Jun 1945 A
2880902 Owsen Apr 1959 A
2960248 Kuhlman Nov 1960 A
2971671 Shakman Feb 1961 A
2982440 Harrison May 1961 A
3043461 Glassco Jul 1962 A
3081002 Tauschinski at al. Mar 1963 A
3090478 Stanley May 1963 A
3142371 Rice et al. Jul 1964 A
3174655 Hurschman Mar 1965 A
3198861 Marvel Aug 1965 A
3301293 Santelli Jan 1967 A
3325031 Singier Jun 1967 A
3397724 Bolen at al. Aug 1968 A
3409167 Blanchard Nov 1968 A
3417893 Lieberman Dec 1968 A
3426939 Young Feb 1969 A
3468443 Marcus Sep 1969 A
3483908 Donovan Dec 1969 A
3485355 Stewart Dec 1969 A
3693828 Kneusel et al. Sep 1972 A
3704140 Petit et al. Nov 1972 A
3727783 Carmichael Apr 1973 A
3819789 Parker Jun 1974 A
3904069 Toukmanian Sep 1975 A
3918920 Barber Nov 1975 A
3935955 Das Feb 1976 A
3941237 MacGregor, Jr. Mar 1976 A
3942673 Lyu et al. Mar 1976 A
3949033 Uhlig Apr 1976 A
3956441 Uhlig May 1976 A
4035455 Rosenkranz et al. Jul 1977 A
4036926 Chang Jul 1977 A
4037752 Dulmaine et al. Jul 1977 A
4117062 Uhlig Sep 1978 A
4123217 Fischer et al. Oct 1978 A
4125632 Vosti et al. Nov 1978 A
4134510 Chang Jan 1979 A
4158624 Ford et al. Jun 1979 A
4170622 Uhlig Oct 1979 A
4170662 Weiss et al. Oct 1979 A
4174782 Obsomer Nov 1979 A
4177239 Gittner et al. Dec 1979 A
4219137 Hutchens Aug 1980 A
4231483 Dechenne et al. Nov 1980 A
4247012 Alberghini Jan 1981 A
4301933 Yoshino et al. Nov 1981 A
4318489 Snyder et al. Mar 1982 A
4318882 Agrawal et al. Mar 1982 A
4338765 Ohmori et al. Jul 1982 A
4355728 Ota et al. Oct 1982 A
4377191 Yamaguchi Mar 1983 A
4378328 Przytulla et al. Mar 1983 A
4381061 Cerny et al. Apr 1983 A
D269158 Gaunt et al. May 1983 S
4386701 Galer Jun 1983 A
4436216 Chang Mar 1984 A
4444308 MacEwen Apr 1984 A
4450878 Takada et al. May 1984 A
4465199 Aoki Aug 1984 A
4497855 Agrawal et al. Feb 1985 A
4525401 Pocock et al. Jun 1985 A
4542029 Caner et al. Sep 1985 A
4585158 Wardlaw, III Apr 1986 A
4610366 Estes et al. Sep 1986 A
4628669 Herron et al. Dec 1986 A
4642968 McHenry et al. Feb 1987 A
4645078 Reyner Feb 1987 A
4667454 McHenry et al. May 1987 A
4684025 Copland et al. Aug 1987 A
4685273 Caner et al. Aug 1987 A
D292378 Brandt et al. Oct 1987 S
4723661 Hoppmann et al. Feb 1988 A
4724855 Jackson et al. Feb 1988 A
4725464 Collette Feb 1988 A
4747507 Fitzgerald et al. May 1988 A
4749092 Sugiura et al. Jun 1988 A
4769206 Reymann et al. Sep 1988 A
4773458 Touzani Sep 1988 A
4785949 Krishnakumar et al. Nov 1988 A
4785950 Miller et al. Nov 1988 A
4807424 Robinson et al. Feb 1989 A
4813556 Lawrence Mar 1989 A
4831050 Cassidy et al. May 1989 A
4836398 Leftault, Jr. et al. Jun 1989 A
4840289 Fait et al. Jun 1989 A
4850493 Howard, Jr. Jul 1989 A
4850494 Howard, Jr. Jul 1989 A
4865206 Behm et al. Sep 1989 A
4867323 Powers Sep 1989 A
4880129 McHenry et al. Nov 1989 A
4887730 Touzani Dec 1989 A
4892205 Powers et al. Jan 1990 A
4896205 Weber Jan 1990 A
4921147 Poirier May 1990 A
4927679 Beck May 1990 A
4962863 Wendling et al. Oct 1990 A
4967538 Leftault et al. Nov 1990 A
4978015 Walker Dec 1990 A
4997692 Yoshino Mar 1991 A
5004109 Bartley et al. Apr 1991 A
5005716 Eberle Apr 1991 A
5014868 Wittig et al. May 1991 A
5020691 Nye Jun 1991 A
5024340 Alberghini et al. Jun 1991 A
5033254 Zenger Jul 1991 A
5060453 Alberghini et al. Oct 1991 A
5067622 Garver et al. Nov 1991 A
5090180 Sorensen Feb 1992 A
5092474 Leigner Mar 1992 A
5122327 Spina et al. Jun 1992 A
5133468 Brunson et al. Jul 1992 A
5141121 Brown et al. Aug 1992 A
5178290 Ota et al. Jan 1993 A
5199587 Ota et al. Apr 1993 A
5199588 Hayashi Apr 1993 A
5201438 Norwood Apr 1993 A
5217737 Gygax et al. Jun 1993 A
5234126 Jonas et al. Aug 1993 A
5244106 Takacs Sep 1993 A
5251424 Zenger et al. Oct 1993 A
5255889 Collette et al. Oct 1993 A
5261544 Weaver, Jr. Nov 1993 A
5279433 Krishnakumar et al. Jan 1994 A
5281387 Collette et al. Jan 1994 A
5310043 Alcorn May 1994 A
5333761 Davis et al. Aug 1994 A
5341946 Valliencourt et al. Aug 1994 A
5392937 Prevot et al. Feb 1995 A
5411699 Collette et al. May 1995 A
5454481 Hsu Oct 1995 A
5472105 Krishnakumar et al. Dec 1995 A
5472181 Lowell Dec 1995 A
RE35140 Powers, Jr. Jan 1996 E
5484052 Pawloski et al. Jan 1996 A
5503283 Semersky Apr 1996 A
5543107 Malik et al. Aug 1996 A
5593063 Claydon et al. Jan 1997 A
5598941 Semersky et al. Feb 1997 A
5632397 Fandeux et al. May 1997 A
5642826 Melrose Jul 1997 A
5672730 Cottman Sep 1997 A
5687874 Omori et al. Nov 1997 A
5690244 Darr Nov 1997 A
5704504 Bueno Jan 1998 A
5713480 Petre et al. Feb 1998 A
5730314 Wiemann et al. Mar 1998 A
5730914 Ruppmann, Sr. Mar 1998 A
5735420 Nakamaki et al. Apr 1998 A
5737827 Kuse et al. Apr 1998 A
5758802 Wallays Jun 1998 A
5762221 Tobias et al. Jun 1998 A
5780130 Hansen et al. Jul 1998 A
5785197 Slat Jul 1998 A
5819507 Kaneko et al. Oct 1998 A
5829614 Collette et al. Nov 1998 A
5860556 Robbins, III Jan 1999 A
5887739 Prevot et al. Mar 1999 A
5888598 Brewster et al. Mar 1999 A
5897090 Smith et al. Apr 1999 A
5906286 Matsuno et al. May 1999 A
5908128 Krishnakumar et al. Jun 1999 A
D415030 Searle et al. Oct 1999 S
5971184 Krishnakumar et al. Oct 1999 A
5976653 Collette et al. Nov 1999 A
5989661 Krishnakumar et al. Nov 1999 A
RE36639 Okhai Apr 2000 E
6051295 Schloss et al. Apr 2000 A
6063325 Nahill et al. May 2000 A
6065624 Steinke May 2000 A
6068110 Kumakiri et al. May 2000 A
6074596 Jacquet Jun 2000 A
6077554 Wiemann et al. Jun 2000 A
6105815 Mazda Aug 2000 A
6113377 Clark Sep 2000 A
6176382 Bazlur Rashid Jan 2001 B1
6213325 Cheng et al. Apr 2001 B1
6217818 Collette et al. Apr 2001 B1
6228317 Smith et al. May 2001 B1
6230912 Rashid May 2001 B1
6248413 Barel et al. Jun 2001 B1
6277321 Vailliencourt et al. Aug 2001 B1
6298638 Bettle Oct 2001 B1
6375025 Mooney Apr 2002 B1
6390316 Mooney May 2002 B1
6413466 Boyd et al. Jul 2002 B1
6439413 Prevot et al. Aug 2002 B1
6467639 Mooney Oct 2002 B2
6485669 Boyd et al. Nov 2002 B1
6502369 Andison et al. Jan 2003 B1
6514451 Boyd et al. Feb 2003 B1
6585124 Boyd et al. Jul 2003 B2
6595380 Silvers Jul 2003 B2
6612451 Tobias et al. Sep 2003 B2
6662960 Hong et al. Dec 2003 B2
6676883 Hutchinson et al. Jan 2004 B2
6749780 Tobias Jun 2004 B2
6763968 Boyd et al. Jul 2004 B1
6769561 Futral et al. Aug 2004 B2
6779673 Melrose et al. Aug 2004 B2
6923334 Melrose et al. Aug 2005 B2
6942116 Lisch et al. Sep 2005 B2
6983858 Slat et al. Jan 2006 B2
7051073 Dutta May 2006 B1
7051889 Boukobza May 2006 B2
D522368 Darr et al. Jun 2006 S
7073675 Trude Jul 2006 B2
7077279 Melrose Jul 2006 B2
7080747 Lane et al. Jul 2006 B2
7137520 Melrose Nov 2006 B1
7150372 Lisch et al. Dec 2006 B2
7159374 Abercrombie, III et al. Jan 2007 B2
7350657 Eaton et al. Apr 2008 B2
7543713 Trude et al. Jun 2009 B2
7735304 Kelley et al. Jun 2010 B2
7799264 Trude Sep 2010 B2
7900425 Bysick et al. Mar 2011 B2
20010035391 Young et al. Nov 2001 A1
20020074336 Silvers Jun 2002 A1
20020096486 Bourque et al. Jul 2002 A1
20020153343 Tobias Oct 2002 A1
20020158038 Heisel et al. Oct 2002 A1
20030015491 Melrose et al. Jan 2003 A1
20030186006 Schmidt et al. Oct 2003 A1
20030196926 Tobias et al. Oct 2003 A1
20030217947 Ishikawa et al. Nov 2003 A1
20040000533 Kamineni et al. Jan 2004 A1
20040016716 Melrose et al. Jan 2004 A1
20040074864 Melrose et al. Apr 2004 A1
20040149677 Slat et al. Aug 2004 A1
20040173565 Semersky et al. Sep 2004 A1
20040211746 Trude Oct 2004 A1
20040232103 Lisch et al. Nov 2004 A1
20050211662 Eaton et al. Sep 2005 A1
20050218108 Bangi et al. Oct 2005 A1
20060006133 Lisch et al. Jan 2006 A1
20060138074 Melrose Jun 2006 A1
20060231985 Kelley Oct 2006 A1
20060243698 Melrose Nov 2006 A1
20060255005 Melrose et al. Nov 2006 A1
20060261031 Melrose Nov 2006 A1
20070017892 Melrose Jan 2007 A1
20070045312 Abercrombie, III et al. Mar 2007 A1
20070051073 Kelley et al. Mar 2007 A1
20070084821 Bysick et al. Apr 2007 A1
20070125742 Simpson, Jr. et al. Jun 2007 A1
20070125743 Pritchett, Jr. et al. Jun 2007 A1
20070181403 Sheets et al. Aug 2007 A1
20070199915 Denner et al. Aug 2007 A1
20070199916 Denner et al. Aug 2007 A1
20070215571 Trude Sep 2007 A1
20070235905 Trude et al. Oct 2007 A1
20080047964 Denner et al. Feb 2008 A1
20080156847 Hawk et al. Jul 2008 A1
20090202766 Beuerle et al. Aug 2009 A1
20090293436 Miyazaki et al. Dec 2009 A1
20110210133 Melrose et al. Sep 2011 A1
Foreign Referenced Citations (78)
Number Date Country
2002257159 Apr 2003 AU
2077717 Mar 1993 CA
1761753 Jan 1972 DE
P2102319.8 Aug 1972 DE
3215866 Nov 1983 DE
225155 Jun 1987 EP
346518 Dec 1989 EP
0551788 Jul 1993 EP
0666222 Feb 1994 EP
0521624 Dec 1996 EP
0609348 Feb 1997 EP
0916406 May 1999 EP
0957030 Nov 1999 EP
1063076 Dec 2000 EP
1063076 Dec 2000 EP
1571499 Jun 1969 FR
2607109 May 1988 FR
781103 Aug 1957 GB
1113988 May 1968 GB
2050919 Jan 1981 GB
2372977 Sep 2002 GB
48-31050 Sep 1973 JP
49-28628 Jul 1974 JP
54-72181 Jun 1979 JP
56-72730 Jun 1981 JP
54-070185 Jan 1982 JP
57-210829 Jan 1982 JP
57-37827 Feb 1982 JP
57-0177730 Feb 1982 JP
63-189224 Aug 1988 JP
57-126310 Feb 1989 JP
3-43342 Feb 1991 JP
03-076625 Apr 1991 JP
5-193694 Aug 1993 JP
6-336238 Dec 1994 JP
07-300121 Nov 1995 JP
8-253220 Oct 1996 JP
09 001639 Jan 1997 JP
09-039934 Feb 1997 JP
9-110045 Apr 1997 JP
10-167226 Jun 1998 JP
10-181734 Jul 1998 JP
10-230919 Sep 1998 JP
3056271 Nov 1998 JP
2000-229615 Aug 2000 JP
2002-127237 May 2002 JP
2004-026307 Jan 2004 JP
2006-501109 Jan 2006 JP
2007-216981 Aug 2007 JP
2008 189721 Aug 2008 JP
240448 Jun 1995 NZ
296014 Oct 1998 NZ
335565 Oct 1999 NZ
506684 Sep 2001 NZ
512423 Sep 2001 NZ
521694 Oct 2003 NZ
WO 9309031 May 1993 WO
WO 9312975 Jul 1993 WO
9406617 Mar 1994 WO
WO 9405555 Mar 1994 WO
WO 9703885 Feb 1997 WO
WO 9714617 Apr 1997 WO
WO 9734808 Sep 1997 WO
WO 9921770 May 1999 WO
WO 0038902 Jul 2000 WO
WO 0051895 Sep 2000 WO
WO 0140081 Jun 2001 WO
WO 0202418 Jan 2002 WO
WO 0218213 Mar 2002 WO
WO 02085755 Oct 2002 WO
WO 2004028910 Apr 2004 WO
WO 2004106176 Sep 2004 WO
WO 2004106175 Dec 2004 WO
WO 2005012091 Feb 2005 WO
WO 2005087628 Sep 2005 WO
WO 2006113428 Oct 2006 WO
WO 2007047574 Apr 2007 WO
WO 2007127337 Nov 2007 WO
Non-Patent Literature Citations (7)
Entry
International Search Report dated Apr. 21, 2010 from corresponding PCT/US2009/066191 filed Dec. 1, 2009.
International Search Report for PCT/US06/40361 dated Feb. 26, 2007.
IPRP (including Written Opinion) for PCT/US2006/040361 dated Apr. 16, 2008.
International Search Report for PCT/US2004/016405 dated Feb. 15, 2005.
IPRP (including Written Opinion) for PCT/US2004/016405 dated Nov. 25, 2005.
“Application and Development of PET Plastic Bottle,” Publication of Tsinghad Tongfang Optical Disc Co. Ltd., Issue 4, 2000, p. 41. (No English language translation available).
Manas Chanda & Salil K. Roy, Plastics Technology Handbook, Fourth Edition, 2007 CRC Press, Taylor & Francis Group, pp. 2-34-2-37.
Related Publications (1)
Number Date Country
20100140838 A1 Jun 2010 US