This invention relates to locally layered reactive composite materials, and, in particular, to a method of making such composite materials using mechanical deformation. It also concerns the resulting products and their applications.
Reactive composite materials (“RCMs”) are useful in a wide variety of applications requiring the generation of intense, controlled amounts of heat in a localized region. Reactive composite materials typically comprise two or more phases of materials, spaced in a controlled fashion throughout the composite in uniform or non-uniform layers, islands, or particles that, upon appropriate excitation, undergo an exothermic chemical reaction that spreads through the composite material generating heat and light. Important applications include: (a) reactive multilayer joining; (b) hermetic sealing; (c) structural elements that are capable of releasing energy; and (d) initiating secondary reactions, as in flares, detonators and propellant-based devices. This application describes methods of making a type of RCM that will be referred to as a locally layered RCM.
RCMs may be produced via vapor deposition, mechanical deformation, or electrodeposition. Some methods of making and using RCMs are disclosed in the U.S. Pat. No. 6,736,942 entitled “Freestanding Reactive Multilayer Foils” (“the '942 patent”); incorporated herein by reference, as well as in the U.S. Pat. No. 6,534,194 entitled “Method of Making Reactive Multilayer Foil and Resulting Product” (“the '194 patent”); incorporated herein by reference.
Self-propagating reactions in RCMs are driven by a reduction in chemical bond energy. Upon the application of a suitable stimulus to ignite, a local bond exchange between constituents of the RCM produces heat that is conducted through the RCM to drive the reaction. Recent developments in RCM technology have shown that it is possible to carefully control the ignition threshold and the heat and velocity of the reaction. For instance, it has been demonstrated that the velocities, heats, and/or temperatures of the reactions in an RCM can be controlled by varying the thicknesses of the alternating layers or sizes of the reactant regions, and that the heats of reaction can be controlled by modifying the RCM composition or by low-temperature annealing of the RCM after fabrication.
In addition to vapor deposition, efforts were previously made to develop freestanding reactive multilayer materials by cold rolling. Nickel-Aluminum multilayer reactive foils were formed by cold-rolling bi-layer sheets of Ni and Al, followed by repeated manual folding and repeated cold rolling. After the first bi-layer strip was rolled to half its original thickness, it was folded once to regain its original thickness and to double the number of layers. This process was repeated many times.
This fabrication of the rolled foils was time consuming and difficult. The rolling passes required lubricating oil, and the surfaces of the rolled materials were cleaned after every pass. In addition, the manual folding of sheet stock does not easily lend itself to large-scale production. Starting with a stack of metallic sheets and then rolling and folding a few times would simplify the process. However, when many metal layers are rolled at once, these layers tend to delaminate, causing degradation of the resulting foil. Such separation also permits undesirable oxidation of interlayer surfaces and impedes unification of the layers by cold welding.
Moreover repeated rolling passes tended to distort the layered structures in ways not then predictable, producing necking, elongation or rupture in individual layers, changing the relative thicknesses of the layers, decreasing the ductility of the resulting foil and, significantly, preventing the fabrication of a foil with prescribed reaction velocity and heat generating characteristics.
A high degree of control of reaction velocity and heat generation can now be achieved in uniformly layered foils made by physical vapor deposition. However, because physical vapor deposition builds foils atom by atom or molecule by molecule, it is not well-suited to the formation of thick layers and thick foils.
Accordingly there is a need for improved methods of fabricating reactive composite materials and the resulting products, especially those with selectable or controllable reaction properties.
Briefly stated, the present disclosure provides new reactive composite materials and a variety of new ways of making these reactive composite materials, as well as methods for controlling the properties and characteristics of the materials that are pertinent to numerous new or improved applications. In one embodiment, the method for making the reactive composite materials utilizes mechanical deformation to produce materials with controlled, predictable characteristics useful in a variety of applications, where process parameters are well correlated with the micro-structural properties of the resulting product, and wherein the resulting RCM product has a selectable propagation velocity, together with a phenomenological model that captures the dependence of the reaction velocity on the non-uniform layering of the same materials. Another aspect of the present disclosure provides a suitable approach to overcome manufacturing embrittlement of the resulting RCM, and thus enable large-scale, cost-effective mechanical formation of multilayer structures.
In accordance with the present disclosure, reactive composite materials are fabricated by a series of mechanical deformation steps. In the first deformation step, an assembly of reactive layers and/or particles is plastically deformed to reduce its cross sectional area by one-half or more. This initial deformation substantially eliminates the tendency of deformed layers to delaminate and eliminates the necessity of using specially cleaned metal layers. Portions of the deformed sheets are stacked or bent into a new assembly, and the new assembly is then deformed. The steps of assembly and deformation are repeated a sufficient number of times that the resulting materials are only locally layered but have relatively uniform reaction velocity and heat generating characteristics predictable by stochastic models derived herein. The resulting product is a controllable, locally layered reactive composite material (LLRCM) that can be fabricated quickly and is useful in a wide variety of applications.
The foregoing features, and advantages set forth in the present disclosure as well as presently preferred embodiments will become more apparent from the reading of the following description in connection with the accompanying drawings.
In the accompanying drawings which form part of the specification:
a and 2b provide a schematic illustration of the mechanical formation processes (a) process comprising rolling, cutting and stacking steps, and (b) process comprising rolling and stacking steps;
Corresponding reference numerals indicate corresponding parts throughout the several figures of the drawings. It is to be understood that the drawings are for illustrating the concepts set forth in the present disclosure and are not to scale.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings.
The following detailed description illustrates the invention by way of example and not by way of limitation. The description enables one skilled in the art to make and use the present disclosure, and describes several embodiments, adaptations, variations, alternatives, and uses of the present disclosure, including what is presently believed to be the best mode of carrying out the present disclosure. This description is divided into two parts: Part I describes reactive composite materials and their fabrication in accordance with the invention; and Part II describes the beneficial features and characteristics of the resulting products in relation to fabrication parameters.
I. Methods of Fabricating Reactive Composite Materials
Recent developments in reactive multilayer technology have shown that it is possible to carefully control both the heat of the reaction as well as the reaction velocity. For instance, it has been demonstrated that the velocities, heats, and temperatures of the reactions can be controlled in uniformly layered RCMs by varying the thicknesses of the alternating layers. It has also been shown that the heats of reaction can be controlled by modifying the multilayer composition, or by low-temperature annealing of the reactive multilayers after their fabrication.
The same chemical reactions used in RCMs may be produced using powders. When reactive powders are used, a mixture of discrete particles of metals or compounds that will react exothermically in a self-propagating reaction to form a final compound or an alloy is utilized. Such processes have existed since self-propagating powders were developed in the early 1960s, spawning what is known as self-propagating, high-temperature synthesis (SHS). However, unlike reactive multilayers, particle mixtures are discontinuous, and consequently, the reaction behavior of reactive powder mixtures is heavily influenced by powder morphology and mixing technique, making reproducible results difficult to obtain.
In both RCMs and SHS, the reaction is driven by a reduction in bond energy. Two major classes of chemical reaction have been utilized: (a) formation reactions and (b) reduction-oxidation or thermite reactions. In formation reactions, a compound AB is formed as a result of mixing of two chemicals A and B, and during the reaction A-A and B—B bonds are exchanged for AB bonds. Well-known systems include aluminide, carbide, boride and silicide formation reactions. Thermite reactions typically involve interactions between a metal oxide and a metallic element, selected such that during the reaction the original metal oxide is reduced while the metallic element is oxidized. Well known examples include interactions between iron oxide and aluminum, and copper oxide and aluminum. Multiple reactions may be incorporated into one RCM.
Alternative methods for fabricating RCMs include vapor deposition, electrochemical deposition and mechanical processing. Compared with vapor deposition and electrochemical deposition, mechanical processing such as shown in
In the mechanical formation approach, a stack of foils alternating between at least two materials A and B, with large negative heats of mixing is initially assembled as shown in
Mechanically-formed multilayers, such as shown in
Additionally, the thicknesses of individual layers decrease with higher degree of deformation. The rate of layer refinement is primarily controlled by the deformation (yielding and fracturing) of the harder elemental material. During early stages of rolling, the deformation of the hard phase occurs primarily due to fracture rather than elongation. The soft phase transmits the load to the hard phase and fills up the space between fractured hard phase filaments. With further rolling, higher stresses are needed to fracture the hard phase; consequently the hard phase starts to elongate, resulting in thinner layers. Although it has been observed that the rates of layer refinement vary in different materials systems, little is known about the effect of material parameters (e.g. hardness ratio between elemental phases) on this variation. As further discussed below, another aspect of this invention is to provide criteria for process selection as function of material parameters. This is of practical significance since the layer refinement rate determines the production rate of rolling.
Mechanically formed multilayers such as shown in
The flow stress increases and the ductility decreases in rolled foils as the layer thicknesses become smaller. Both structure refinement and work hardening contribute to the increased flow stress as rolling proceeds. After a large degree of plastic deformation, the ductility of the starting materials is exhausted and the foil becomes brittle. This embrittlement generally leads to severe limitations on large-scale or mass production of multilayer structures.
The volume fraction of the intermixed zone is a key property of the multilayer structure; this is because intermixing directly affects the amount of heat that is released by the self-propagating reaction (see:
Referring to the drawings,
The next step (Block B of
After the deformation, as shown in Block D of
The deformed sheet can also be optionally annealed, as in an inert atmosphere, to modulate the heat generating characteristics of the ultimate finished product or to improve the rolling characteristics of the multilayer piece (Block E of
The next step, shown in Block F of
Alternatively, the initial configuration can be obtained by stacking foils or sheets that are individually coated with a powder or particle layer comprising a second material that reacts exothermically with constituents of the foils or sheets. An example illustrating this second initial configuration consists of aluminum foil coated with a fine layer of copper oxide particles, shown schematically in
In one embodiment, the initial stack is formed using commercially available metal or alloy foils, in as-received condition without additional cleaning and/or heat treatment. This is a useful advantage since cleaning steps and heat treatment involve considerable processing time and cost.
In another embodiment of this invention, the initial stack (Block A in
In another embodiment, the initial stack is processed by cold rolling in order to reduce the bilayer thickness (
Deformation uniformity is enhanced and edge defects are reduced by carefully aligning individual foils or layers when preparing the stack. It is necessary that foils in the stack be adhered in one single rolling step to avoid further aligning and stacking of the un-bonded stack. Misalignment may cause delamination in rolled foil.
There are two types of cracking in rolled foils. Edge cracking, which is commonly encountered in most rolling processes, starts in the early stages of rolling. As discussed above, cracked edges may be trimmed away every several steps to impede the propagation of cracks from edge to center. For materials requiring many rolling steps and several edge-trimmings, a wider starting sample is needed to produce more finished material. In particular, a starting stack geometry with width/thickness ratio larger than about 200:1 is required in order to minimize material loss due to edge cracking. Another type of cracking may begin to develop in the bulk of the hardened and fragile specimen after a high degree of deformation. For example, after a total of 28 rolling passes in a Ni/Al multilayer, microscale cracking occurs in the bulk of the sample. These microcracks not only make foil cutting and stacking difficult, but also cause the reaction properties of the foil to deteriorate. Low temperature annealing plus large thickness reduction in a single rolling step may reduce and heal these microcracks.
In another embodiment of the invention, edge cracking is effectively controlled by trimming or shearing cracked edges following several rolling steps. Edge cracking is also controlled by maintaining a relatively low rolling speed during rolling steps. Generally speaking, a strain rate of 10−2 to 1 s−1 is sufficient for cracking control. Note that optimal rolling speeds vary depending on material system. For instance, for very ductile mutlilayers, a relatively high rolling speed can be employed to enhance productivity without causing extensive cracking. Large rolling step deformation and slow rolling speed are helpful in obtaining solid bonding and preventing delaminating and spring-back. In particular, a rolling step deformation higher than 50% is adequate for most multilayer systems.
As an example, the rolling process outlined above is applied to fabrication of Ni/Al LLRCMs. As shown in
In another example of the rolling process outlined above, a Pd/Al LLRCM is manufactured. A stack containing alternating layers of palladium and aluminum foils is prepared. Both foils are 25 μm thick. There are five Al layers and six Pd layers in the stack, giving an atomic ratio of 1:1. The Pd foil is in annealed condition and the Al foil is full-hard 5052 Al. The stack is 6″ wide and 4″ long. The stack is rolled on a 4-Hi rolling mill with work roll diameter of 1.5″ and face width of 10″. The rolling speed for the first pass is 2.5 in/min. The mill gauge is set to achieve 50% deformation for each pass. After initial bonding, the bonded foil is cut in half perpendicular to the rolling direction. The two pieces are then stacked together and subjected to another rolling pass. This stacking/rolling cycle is repeated up to 20 times. The resulting foils, upon ignition, demonstrate self propagating reaction with reaction heat of 1400 J/g and reaction velocity of 2-35 m/s, depending on the number of cycles performed.
In another embodiment of this invention, the rolling process is used to fabricate LLRCMs that alternate between aluminum and copper oxide. Two initial stack configurations have been successfully evaluated. In the first, the initial stack comprises layers of aluminum foil alternating with layers of copper oxide powder (see
Rolling steps can be performed on laboratory-scale mills or large-scale production mills, as long as the mills can provide enough load to deform the stack or multilayer, and can run steadily at relatively low speeds. Generally, a 4-Hi mill with a power of 7 HP and a separating pressure of 690 MPa is capable of rolling most reactive systems at reasonable rates and with acceptable multilayer quality. The rollers are kept clean, free of oil, grease and other possible contaminants during rolling. The combination of dirt-free rolling environment and careful handling of the multilayers using gloves enables a metallurgical bond to form between initially unbonded layers, stacks, and/or previously-rolled multilayers. For most metal-based foils like Ni/Al and Pd/Al, lubricating oil need not be applied, and limited roller cleaning is required. However, for foils comprising powders or particles, e.g. multilayers combining dense aluminum foils with layers of copper oxide particles, the rollers need to be cleaned every several passes since particles may stick to, and consequently damage, the rollers.
It should be evident for someone skilled in the art how to extend the processing methods above, particularly to include sheath rolling, warm rolling, swaging, extrusion, hot pressing, and/or annealing.
In another embodiment, the cold rolling mechanical deformation process is applied to fabricate LLRCMs comprising aluminum and nickel oxide (NiO). In one instance, the initial stack comprises layers of aluminum foil alternating with layers of NiO powder. In the second, the initial stack comprises layers of aluminum foil alternating with layers of nickel foil that have been annealed at high temperature in air to produce NiO films at the bottom and top surfaces. In the second case, the oxide layers are broken into tiny particles after about 11 rolling passes (
In another embodiment of the invention, locally layered reactive composite wires or rods are fabricated by mechanical deformation.
An alternative approach to wire or rod fabrication is illustrated in
Structures made by mechanical deformation differ from those made by physical vapor deposition (PVD structures) in a number of respects relating to layer length, microstructure, internal geometry and variations in thickness. PVD structures tend to comprise very long layers of essentially uniform thickness that are parallel to the foil surface. Such structures are referred to herein as uniformly layered. While reactive composite materials made by mechanical formation may be uniformly layered (e.g.
An additional distinction between PVD structures and LLRCM structures made by mechanical formation concerns the orientation of the layers with respect to the foil surface. In PVD structures, the individual layers are essentially flat and parallel to the foil surface. In contrast, most layers in cold rolled LLRCMs are inclined with respect to the foil surface, with inclination angles ranging between 5 and 30 degrees. The inclination can be attributed to 1) necking of the harder of the two phases and subsequent elongation of the necked area and 2) deformation by shear along shear bands that are about 30 degrees above and below the plane of the rolling direction (
Texture of the material can be also be used as a distinguishing feature among different as-rolled LLRCMs made by mechanical formation, and between as-rolled LLRCMs and as-deposited PVD materials. X-ray diffraction traces for cold rolled Ni/Al LLRCMs at different stages of deformation are plotted in
In distinguishing LLRCMs from reactive powder compacts, two differences are observed. First, LLRCMs include non-powder layers, i.e. foils. These layers are necessary to carry the powders through the deformation processes. Typical powder concentrations in initial stacks do not exceed 20% by volume, in order to permit the layers to bond together. Secondly, cold-pressed powder compacts typically contain a minimum of 15% porosity by volume. Mechanically formed LLRCMs, in contrast contain negligible porosity and may be considered “continuous” materials. The distribution of reactants in mechanically formed LLRCMs, as presented here, is typically random and non-uniform, but with distinct anisotropy due to the directional nature of the deformation used to create these RCMs. In this application, “locally-layered” describes the reactant distributions produced by the mechanical formation methods described herein, whether the reactants are initially foils, sheets, or powders, and regardless of which of the four specific types of structures discussed above are observed.
II. Features of the Resulting Products and Control Thereof
The refinement of the multilayer reactive composite material produced using the methods of the present disclosure can be observed experimentally using scanning electron microscopy (SEM). SEM observations may be conducted following individual rolling passes to observe how the bilayer thickness reduces locally due to the deformation.
In one embodiment, the evolution of the microstructure in mechanically rolled foils can be measured using optical and SEM micrographs. A linear intercept method can then be applied along lines perpendicular to the rolling direction in order to determine the distribution of bilayers within the rolled multilayer. By this method, the individual bilayer thickness can be directly determined by measuring the distance between the outside boundaries of two adjacent elemental layers. Variation in bilayer thickness can be treated as a frequency distribution. About 200 bilayer measurements are necessary to produce a reasonable statistical sample. As an example, the frequency distributions of bilayer thickness for rolled Pd/Al foil are shown in
where (δi) is the thickness of the bilayer (i) and (N) is the number of measured bilayers. Under ideal conditions, the bilayer thickness would reduce uniformly across the material, and the thickness reduction would be essentially 2N after N rolling passes. This ideal scenario is seldom achieved in practice, since the deformation of the individual layers is not uniform. Accordingly, the material becomes characterized by a bilayer distribution, and the “mean” or “effective” refinement rate is appreciably smaller than that of the ideal scenario. For instance, the mean bilayer thickness of Pd/Al foil is measured to be 340 nm after 16 rolling passes (
The bilayer distribution may be used to characterize distributed particulate structures and island structures as well as long and short non-uniformly layered structures by using the anisotropy due to the present mechanical formation method. The bilayer thickness is measured in the same manner as above. Placing the intercept line normal to the rolling direction on a cross-section produces a suitably accurate distribution of reactant region dimensions, given enough measurements.
In another embodiment of this invention, it is observed that two factors contribute to the non-uniformity in bilayer distribution: misalignment during stacking and mismatch of deformation properties between different layers. When misalignment occurs when two pieces of Ni/Al foil are stacked for rolling, the misaligned region, with thickness of half of the aligned (overlapped) region, undergoes little deformation during the rolling step and thus the layers in that region are not refined. Mismatched deformation properties affect the bilayer distribution throughout the entire material. In the case of nickel and aluminum, since the softer aluminum phase bears the majority of deformation, only slight thinning in the nickel phase takes place during rolling.
In another embodiment, the mechanical rolling process is used to fabricate foils having high ductility. Unlike sputter-deposited multilayers which tend to be brittle (and consequently susceptible to cracking and/or unwanted ignition during mechanical processing such as shearing, stamping, and punching), mechanically-rolled multilayers are fairly ductile and may be readily punched, sectioned, cut, sheared or stamped with little risk of brittle fracture or unwanted ignition. For example, washer-shaped components with excellent edge quality can be punched from rolled Ni/Al reactive foils (see:
In another embodiment, a reactive multilayer material that has a selectable reaction velocity can be produced using mechanical rolling. As further described below, properties of the self-propagating reactions in the present mechanically-rolled multilayers, including reaction heat and velocity, are functions of the microstructural properties of the multilayer resulting from the rolling process. In turn, the latter may be modified or controlled by varying process parameters. Thus, a multilayer with selectable propagation velocity can be obtained. This is an advantage of the present invention, since control of reaction velocity has previously only been demonstrated for multilayer structures having a uniform bilayer thickness.
In another embodiment of this invention, heat of reaction in rolled RCMs is characterized as a function of number of rolling passes, using differential scanning calorimetry (DSC). Plotted in
In another embodiment of this invention, the reaction velocity of rolled LLRCMs is determined as a function of the number of rolling passes. As an example, measured velocity for Pd/Al foils is plotted against the number of passes in
In another embodiment of this invention, LLRCM composition can be managed to control reaction properties. It is not necessary that the atomic ratio of reactants be stoichiometric for some applications. A change in composition can influence reaction properties by (i) including extra inert material that will serve as heat sink during reaction and (ii) forming different reaction products with different heats of reaction. For example, two stacks of Pd/Al foils, with Pd:Al atomic ratios of 1:1 and 2:3, were cold rolled using identical procedures. It was found that the reaction in the aluminum-rich foil released less heat per volume material and propagated at lower speed. According to the aluminum-palladium phase diagram, an atomic ratio of 1:1 produces one intermetallic compound, PdAl, while an atomic ratio of 2:3 produces a different compound, Pd2Al3, with lower heat of formation. There are several ways to adjust overall composition in order to achieve desired reaction property: (i) varying foil thickness and/or foil numbers in initial stacks, (ii) adding extra reactant or inert foils in stacks after certain pass numbers, and (iii) cladding extra materials to the surface of reactive foils during final rolling.
In another embodiment of this invention, rolling deformation can be managed to control reaction properties. LLRCMs become reactive after certain numbers of rolling passes as a result of structure refinement. Additional rolling may be applied to further reduce the bilayer thickness for ease of ignition and enhanced kinetics. For a particular material system, a model describing the relationship between rolling deformation, local layer structure and reaction kinetics can be established based on experiment to predict reaction properties in LLRCMs rolled different amounts. With this model, one can design a rolling procedure to fabricate a desired LLRCM by producing the deformation required to achieve the desired structure and properties.
In another embodiment of this invention, the microstructure in rolled LLRCMs can be modified by post-rolling annealing to control reaction properties. When an LLRCM's reaction heat and velocity are too large, low temperature annealing can be carried out to increase intermixing in the microstructure. Annealing is also helpful to enhance stability by increasing ignition energy thresholds. By selecting an appropriate annealing time and temperature, a quantitative change in properties can be obtained accurately.
In another embodiment of this invention, material properties, e.g. hardness matching, can also be utilized to control reaction properties. For example, 7 rolling passes are required to achieve self-propagating reaction in a Ni/Al LLRCM with a starting Ni:Al hardness ratio of 1:1 (using full-hard aluminum alloy 5052 and annealed pure nickel) compared with 18 rolling passes to obtain similar reaction properties in another Ni/Al LLRCM with initial hardness ratio of 2.5:1 (using as-rolled pure aluminum and annealed pure nickel). In another example,
In another embodiment of this invention, LLRCM geometry, e.g. thickness, can also be utilized to control reaction properties. For example, heat generation per unit surface area may be controlled by varying the final LLRCM thickness via rolling. Since heat release is a function of volume, a thinner LLRCM will release less heat per unit area.
We now discuss how the self-propagating reactions in rolled reactive composite materials can be mathematically modeled and discuss the further embodiments of the invention that this modeling permits. The properties of self-propagating reactions in rolled LLRCMs are determined using a transient multi-dimensional computational model. The model below is a generalized version of a known model which is only suitable for dealing with multilayer materials having uniform layering, i.e. situations in which the chemical composition profile across the foil is essentially independent of lateral or axial position. As discussed earlier, most mechanically-formed multilayers disclosed herein are characterized by non-uniform layering, so that application of existing models is unsuitable for the purpose of predicting their properties. To overcome this hurdle, this invention introduces a stochastic computational model that is developed to describe the non-uniform layering produced by the formation process outlined above.
The presently-developed stochastic model is based on the following assumptions: (1) atomic mixing can be described as a Fickian process using a single, temperature-dependent, binary diffusion coefficient, D; (2) the thermal conductivity of the foil is independent of temperature and composition; and (3) the reaction is described by a fast, diffusion-limited process. Furthermore, since thermal diffusivity is several orders of magnitude larger than atomic diffusivity, temperature variations across the layers can be ignored, so that the temperature distribution varies only with axial position (x) and time. It should be evident for someone skilled in the art how to relax the present assumptions, e.g. to account for the temperature dependence of thermal conductivity, or to incorporate more elaborate models of atomic mixing.
Atomic mixing within a single bilayer is described in terms of the following evolution equation for a conserved scalar, C:
When adjacent layers comprise two reactive materials, generically denoted A and B, respectively, the conserved scalar field may be defined such that C=1 for material A, C=−1 for material B, and C=0 for the product of the reaction or the mixed phase as the case may be. For instance, for Ni/Al multilayers with 1:1 ratio of reactants, C=1 for pure Al, C=−1 for pure Ni, and C=0 for pure NiAl.
The atomic diffusivity, D, is assumed to be independent of composition and to follow an Arrhenius dependence on temperature, according to:
where Do is the Arrhenius pre-exponent, E is the activation energy and R is the universal gas constant. The values of E and Do used in the embodiments below are obtained from best fits to experimental data. In particular, for the Ni/Al system, we use E=137 kJ/mol and Do=2.18×10−6 m2/s; for the Pd/Al system, the requisite values were not readily available and were thus determined directly from present measurements.
As discussed above, experimental observations reveal that the rolling process described herein results in non-uniform local layering within the material, which may be described in terms of a bilayer distribution. This distinguishes these new materials from previously characterized vapor-deposited multilayers which have essentially uniform layering.
In one embodiment of this invention, the non-uniform layering of the material is accounted for using the measured probability density function (PDF) of the bilayers. To this end, the measured PDF is discretized into a finite number of bins, resulting in a finite array of bilayers, δi, i=1, . . . , N, and weights, ξi, i=1, . . . , N, where N is the total number of bins. By definition:
The total number of bins and the span of the bins (
In another embodiment of this invention, the development of the computational model takes advantage of experimental observations that the reaction front propagates in a uniform fashion across the material, which indicates that the temperature profile in neighboring bilayers is essentially flat. We take advantage of these observations by solving Eq. (3) within N bilayers having bilayer widths δi, i=1, . . . , N, respectively. In the model results below, the solution is based on discretizing Eq. (3) within each of the bilayers using a regular grid, and numerically integrating the resulting system of discrete equations. It should be evident for someone skilled in the art how to apply various other discretization schemes, such as finite-element, finite-volume, spectral, and spectral-element approximations.
Based on the observations above, the evolution of the concentration fields within the N bilayers is coupled with the section-averaged energy equation:
where H is the section-averaged enthalpy, the overbar denotes averaging over the cross section,
is the mean thermal conductivity, kA and kB are the thermal conductivities of materials A and B, respectively,
ρA and ρB are the densities of materials A and B, while MA and MB denote the corresponding atomic weights.
Experimental data indicates that the variation of the heat of reaction, Q, with composition, C, can be closely approximated as:
Q(C)=ΔHfC2 (9)
where ΔHf is the heat of reaction. Thus, the averaged reaction source term can be expressed as:
where y is the direction normal to the layers,
cpA and cpB respectively denote the heat capacities of materials A and B. Note that when melting is ignored, ΔTf represents the difference between the adiabatic flame temperature, Tfo, and the ambient temperature, To.
Incorporation of melting effects results in a complex relationship between H and T, involving the heats of fusion of the reactants and products. Without loss of generality, we may assume that TmA, the melting temperature of material A, is smaller than TmB, the melting temperature of material B, which in turn is smaller than TmC, the melting temperature of the reaction products or of the mixed phase. With this convention, the relationship between H and T may be expressed as:
where hfA, hfC, and hfC are the heats of fusion (per unit mole) of materials A, B, and C,
β≡α/(1+γ) (14)
ΔHfA≡ρAhfA/MA (15)
ΔHfB≡ρBhfB/MB (16)
ΔHfC≡
H
1
=ρc
p(TmA−To) (19)
H
2
=H
1
+βΔH
f
A (20)
H
3
=H
2+
H
4
=H
3
+βγΔH
f
B (22)
H
5
=H
5+
H
6
=H
5+(1−α)ΔHfC (24)
Note that the “enthalpy” levels H2, . . . , H6 are dependent on the local composition, and are consequently variable during the computations. For instance, in the limiting case α=0, the product is absent and the temperature is only affected by melting of the reactants. Conversely, for α=1 mixing is complete and the temperature only depends on the heat of fusion of the product.
In another embodiment of this invention, the physical model may be implemented in its 2D, axisymmetric or 3D forms. For brevity, we outline the 2D and axisymmetric variants, as it should be clear from these variants for someone skilled in the art how to apply the model in its 3D form. In the 2D formulation, a coordinate system (x, y) is used such that x points along the direction of reaction propagation, while y points in the direction normal to the layers. In the axisymmetric formulation, the equations are solved in a cylindrical (r, y) coordinate system, with r and y respectively normal to the surface of the reaction front and the layers of the foil. The axisymmetric and 2D models share the same physical formulation outlined above. The primary difference concerns expressions of the gradient diffusion terms, ∇·(k∇T) and ∇·(D∇C). In the 2D case, these are expressed as:
while in the axisymmetric case we have:
Other aspects of the formulation remain essentially the same.
Note that in the 2D model, the self-propagating reaction front is essentially flat, and moves away from the plane of ignition. On the other hand, in the axisymmetric case the reaction front propagates radially, away from the ignition source.
In one embodiment of this invention, a FORTRAN code is used to implement the models outlined above. These models may be effectively implemented on a variety of computer platforms, such as Windows, Unix or Linux systems, including personal computers, laptops, workstations or mainframes. It should be evident for someone skilled in the art how to implement this on any computing platform providing memory and processor, using either low- or high-level computing languages.
In another embodiment of this invention, initiation of the reaction with the reactive multilayer material is modeled by simulating an ignition stimulus. A variety of means can be utilized for this purpose, including initializing the computations using a thermal pulse, or accounting for internal dissipation due to Ohmic heating. It should be evident for someone skilled in the art how to apply the present stochastic model, to determine ignition thresholds for the presently-introduced locally-layered structures.
In another embodiment of this invention, DSC measurements may be used to estimate the intermixing between otherwise chemically distinct layers. In situations where the layering is uniform, intermixing may be described in terms of a premix width, w. Using the measured heat of reaction from DSC ΔHrx, the premix width, w, may be estimated from:
where ΔHth is the theoretical value in the absence of any intermixing. While Eq. (26) was obtained for multilayers with uniform δ, it may still be applied to the present structure if one treats the ratio 2 wi/δi as constant for all the bilayers, i.e. for i=1, . . . , N. We refer to this estimate as Model 2. An alternative approach would be based on considering that w is uniform for all the layers; in this case, w may be estimated from:
We refer to this approach as Model 1. As discussed below and as shown in
In another embodiment of this invention, the stochastic model described above is applied to determine reaction properties in rolled Pd/Al LLRCMs. Following the description above, application of the stochastic model requires specification of several physical parameters, including the density, heat capacity, thermal conductivity, and heat of fusion of the reactants and products. Available values from the literature are used for this purpose. Specifically, for the Pd/Al system, we use:
ρAl=2700 kgm−3; ρPd=12020 kgm−3; CpPdAl=521 Jkg−1 K−1; kAl=204 Wm−1K−1;
kPd=71.8 Wm−1K−1; ΔTf=2647.4K; awAl=2698 gmol−1;
MAl=26.98 gmol−1; MPd=106.42 gmol−1; HfAl=10.7 kJmol−1; HfPd=16.74 kJmol−1;
HfPdAl=334 kJmol−1; TmAl=933.47K; TmPd=1825; TmPdAl=1918K
In addition to these thermophysical properties, one must also specify values for the pre-exponent, Do, as well as the activation energy, E. The latter is estimated based on DSC results, which yield E=195.604 Jmol−1. In order to estimate Do, we rely on experimental measurements of the velocity of the self-propagating reaction. As illustrated in
In another embodiment of this invention, the stochastic model is applied to predict the unsteady evolution of the reaction front. The reaction front position is identified by tracking the instantaneous spatial location of the peak source term appearing on the right-hand side of Equation 5, and is illustrated in
In another embodiment, the instantaneous reaction front speed is estimated as the local rate of change of the reaction front position, as illustrated in
In another embodiment of this invention, the stochastic model is applied to determine the dependence of the reaction velocity in rolled Pd/Al LLRCMs on the number of rolling passes. The results of the computations are shown in
In another embodiment of this invention, the stochastic model is applied to determine the dependence of the reaction velocity in rolled Pd/Al LLRCMs on the weighted mean bilayer thickness. Plotted in
In accordance with this invention, mechanically formed LLRCMs have a controlled and selectable self-propagating velocity. Furthermore, in accordance with the embodiments above, the behavior of this selectable self-propagating velocity may be described in terms of a single parameter, namely the weighted mean bilayer thickness. This constitutes a key advantage since, as described earlier, the non-uniform local layering within these materials is characterized by a probability distribution function of bilayer thickness. In other words, the layering may be specified in terms of a functional dependence that involves at least two independent parameters, e.g. a mean value and a standard deviation, variance, or coefficient of variation. Our new-found ability to express the reaction velocity in terms of a single parameter provides a major advantage in various applications where control of heat release rates is needed, including reactive multilayer joining, soldering, brazing, and sealing, as well as use of reactive multilayers as heaters, igniters, or light emitters.
In another embodiment of this invention, the suitability of using the weighted mean bilayer thickness as a means to characterize LLRCMs is further examined through the application of a simplified model based on assuming the bilayer distribution is concentrated at the weighted mean bilayer thickness. In other words, the stochastic computations are run using a single bin that corresponds to the weighted mean bilayer thickness. In the simplified computations, the reaction heat and the thermophysical properties of the reactants and products correspond to those used in the original model above, and the premix width is estimated using Equation (28). The predictions of the simplified model are shown in
In another embodiment of this invention, the stochastic model is used to determine the effect of annealing on rolled Pd/Al LLRCMs. Predictions are obtained for Pd/Al LLRCMs that were annealed in a furnace for 24 hours at 125° C. The effect of annealing is accounted for in the computations based on the measured reaction heats. As discussed earlier, annealing promotes diffusion and thus intermixing between reactant layers, which consequently reduces the reaction heat within the LLRCM. By measuring the reaction heats using DSC after annealing, new estimates of the intermixing are obtained and then input into the stochastic computations. Plotted in
In another embodiment of this invention, the stochastic model is used to estimate the effect of the premix width on the reaction velocity in rolled Pd/Al LLRCMs. Plotted in
In accordance with this invention, locally layered heterogeneous materials are designed that have a selectable self-propagation velocity. In particular, the experimental characterizations and predicted results for the presently-introduced materials can be combined to construct a mathematical correlation that expresses the dependence of the velocity of the self-propagating reaction front on the structure of the material. Specifically, the experimental characterizations and model predictions indicate that the velocity of self-propagating reaction fronts in the present locally-layered RCMs increases as the weighted mean bilayer thickness decreases, and is reduced as the heat of reaction decreases due to intermixing between reactants. This indicates that the self-propagating velocity can be captured using a mathematical correlation of the form:
where K is a dimensional constant (m2/s), δ is a dimensional variable (m) that refers to either the numerical mean or the weighted mean bilayer thickness (respectively δαv or δw), ΔHrx is the actual heat of reaction, and ΔHth is the theoretical heat of reaction that would be obtained using the initial composition assuming no intermixing, and p is an exponent. A more general form of Eq. (30) can also be constructed in order to account for the details of the bilayer distribution, specifically according to:
where COV is the coefficient of variation of the PDF describing the bilayer distribution, and q is a second exponent. (The COV is defined as the ratio of the standard deviation to the mean of a given bilayer distribution. It provides a measure of the spread of the PDF. A higher COV value indicates a broader distribution of data. When the PDF is not directly measured, a simplified measure of the spread can be obtained by estimating the ratio R of the largest measured bilayer to the smallest measured bilayer. Thus the condition COV >0.1 may be approximated by the condition that R>1.8.) The above correlations can effectively describe a wide range of material compositions, including systems based on formation or thermite reactions, with K ranging between 10−6 and 2×10−4 m2/s, δ ranging between 50×10−9 m and 50×10−6 m, p ranging between 1 and 4, and q ranging between 1 and 2. To illustrate this claim,
In accordance with this invention, the rolling process described above can be applied to form composite structures comprising two or more locally-layered RCMs of the type specified above. Such composite structures may comprise two or more locally-layered RCMs having different bilayer distributions, two or more locally-layered RCMs having different compositions, composite structures comprising two or more sputtered deposited RCMs that are laminated by rolling, and composite structures comprising at least one locally-layered RCM and at least one sputter deposited RCM. As discussed in U.S. Pat. No. 6,863,992, herein incorporated by reference, advantages of such composite structures include velocity control and cost reduction. For instance, a CuO/Al RCM made by the process of
The rolling process described above may also be used to clad an RCM with one or more adhesion layers comprising solder or braze material on one or more surfaces of the RCM. This is a useful advantage in reactive soldering or brazing operations, in which an RCM acts as a local heat source to melt or soften a solder or braze and consequently bond two components that sandwich the RCM. Setup is easier and wetting and thus bonding are more efficient if the solder or braze materials are adhered to the RCM. The cladding process may be used with either mechanically-formed LLRCMs or vapor-deposited RCMs. Cladding of reactive multilayers via rolling may provide substantial cost savings over existing methods, based on vapor deposition of the adhesion layer onto the RCM or vapor depositing the RCM onto the adhesion layer.
It can now be seen that in one aspect the invention is an ignitable, locally layered reactive composite material structure comprising alternating, non-uniform layers of two or more materials that react exothermically along a self-propagating front with a predictable front velocity. Advantageously, the alternating, non-uniform layers can be characterized by a bilayer probability density function whose numerical or weighted mean is within the range from 50 nanometers to 50 micrometers. The predictable front velocity depends on the properties of materials and the bilayer probability density function.
In another aspect, the invention is a method of fabricating a locally-layered ignitable structure comprising the steps of (a) providing an assembly of alternating layers of materials that can exothermically react, (b) performing a deformation of the assembly to reduce its cross section, (c) providing an assembly of two or more layers obtained as a result of the preceding deformation; and (d) repeating steps (b) and (c) a sufficient number of times to produce a non-uniform, locally layered material having a predictable uniform reaction velocity. In an advantageous embodiment layers of a first material can be coated with particles of a second material that can react exothermically with the first.
As various changes could be made in the above constructions without departing from the scope of the disclosure, it is intended that all matter contained in the above description or shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
The present application is related to, and claims priority from, U.S. Provisional Patent Application Ser. No. 61/020,542 filed on Jan. 11, 2008, and which is herein incorporated by reference.
The United States Government has certain rights in this invention pursuant to Award 70NANB3H3045 supported by NIST.
Number | Date | Country | |
---|---|---|---|
61020542 | Jan 2008 | US |