Method of making regenerated cellulose microfibers and absorbent products incorporating same

Information

  • Patent Grant
  • 8177938
  • Patent Number
    8,177,938
  • Date Filed
    Wednesday, January 9, 2008
    16 years ago
  • Date Issued
    Tuesday, May 15, 2012
    12 years ago
Abstract
A method of making regenerated cellulose microfibers includes forming segmented fibers with multiple longitudinally-extending segments of slightly different composition such that there is defined splittable interfaces between juxtaposed segments of the fibers which are then split into microfibers at yields of greater than 50%. Fibers so produced may be incorporated into absorbent sheet with other papermaking fibers to provide strength, softness, bulk and absorbency to tissue, towel, and personal care products.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This non-provisional application is based upon U.S. Provisional Patent Application Ser. No. 60/881,310, of the same title, filed Jan. 19, 2007; U.S. Provisional Patent Application Ser. No. 60/881,393, entitled “Absorbent Cellulosic Products With Regenerated Cellulose Formed In-Situ”, filed Jan. 19, 2007; U.S. Provisional Patent Application Ser. No. 60/994,344, entitled “Absorbent Sheet Incorporating Regenerated Cellulose Microfiber”, filed Sep. 19, 2007; and U.S. Provisional Patent Application Ser. No. 60/994,483, entitled “High Efficiency Disposable Cellulosic Wiper”, filed Sep. 19, 2007. The priorities of U.S. Provisional Patent Application Ser. Nos. 60/881,310; 60/881,393; 60/994,344 and 60/994,483 are hereby claimed and the disclosures thereof are incorporated into this application by reference.


TECHNICAL FIELD

The present invention relates generally to making microfibers of regenerated cellulose and products incorporating such fibers. Microfibers of the invention are made by splitting larger fibers of regenerated cellulose in high yield to make microfibers suitable for incorporating into absorbent products, such as tissue. One preferred process utilizes ionic liquid/cellulose dopes. Products incorporating conventional papermaking fibers and microfibers of the invention exhibit high wet/dry CD tensile ratios.


BACKGROUND

Cellulose microfibers are described in U.S. Pat. No. 6,511,746 to Collier et al. In the '746 patent there is described a process for manufacturing cellulose microfibers from dissolved cellulose by extruding the dissolved cellulose (lyocell-type) through a converging die. The fibers are reported to have a diameter on the order of 10 μm with constituent structures of smaller diameters. See Col. 15-16. Note also, U.S. Pat. No. 6,235,392 to Luo et al. which describes melt blown Lyocell microfiber.


Lyocell is made by dissolving nearly pure cellulose in N-methyl-morpholine oxide (NMMO) and reforming fibers by injecting a concentrated cellulose/NMMO solution into a water bath through spinnerets. The water dilutes the NMMO as the nascent fiber is drawn through the bath, and the cellulose crystallizes into fibers. The fiber formation process first produces extremely fine fibrils which then align themselves along the axis of the fiber as the NMMO is removed. The strength of the bonds between fibrils has some distribution around a mean such that mechanical action may completely disintegrate some fibers while leaving others mostly intact. In most textile applications, fibrillation is not desired, and there are patents on ways to minimize fibrillation. In other applications such as filter media, it is desired to retain large fibers with fibrils still attached. In co-pending application U.S. Patent Application Ser. No. 60/850,467 (Case 20134), the lyocell is fibrillated to the point where fibrils are separated into distinct microfibers. FIG. 1 shows an example of fibrillated lyocell.


In the process of generating microfibers via fibrillated lyocell, a number of inefficiencies arise. First, lyocell has a tendency to fibrillate, but the manufacturer employs all means possible to minimize this tendency. Thus, an extended period of low intensity refining is necessary to gently tease the fibers apart. Too much mechanical action will grind and shorten the fibers rather than fibrillate them. Too little mechanical action will reduce the yield of microfibers. Current practice yields about half microfiber and half fibrillated fibers. It may be possible to separate the fractions with screening, but this adds cost. The larger fractions may or may not be readily splittable in any event.


A second inefficiency results from the morphology of the microfiber. Microfibers have extremely low coarseness and are very short. The benefits of microfiber such as bulk, softness, absorbency, wet strength, opacity, and the ability to reduce basis weight are documented in U.S. Patent Application Ser. No. 60/850,467, referred to above. Despite the many benefits of microfibers, it is believed that the tactile benefit and other properties could be improved by increasing the exceptionally low coarseness somewhat and increasing the average length of microfibers in accordance with the present invention.


A third inefficiency arising from conventional lyocell fiber manufacture relates to cost. Wood pulp is purified to alpha cellulose for current practice in order to produce high quality textile fibers. High purity cellulose adds cost. It may be possible and even desirable to use ordinary bleached Kraft pulp for some portion of the raw material. A 6 mm length can be cut on the production line, but shorter lengths require an offline process that adds still more cost. Fibrillation then produces microfibers while leaving some relatively unimpacted fibers. The microfibers so-produced have very low coarseness, but shorter than desired. The lightly impacted fibers are reasonably long, but coarseness is too high. The microfiber is the main desired product of fibrillation, yet the yield of microfiber from fibrillation is perhaps 50%, at best, using conventional techniques.


SUMMARY OF INVENTION

The invention relates, in part, to a modified method of producing underivatized cellulose fiber that provides a specific, “ideal” fiber length and coarseness for producing soft, yet strong, tissue and towel products. The method uses spinnerets capable of generating segmented fibers and cellulose dopes of slightly different composition to introduce fiber defects between segments of splittable fibers. Upon fibrillation, the fibers will preferentially break where the defects are introduced, resulting in the microfibers of the invention. The advantages of the invention over prior art relate, in part, to better yield of microfibers, up to 100% yield of microfiber based on the larger fiber split into microfiber. It is also possible to use lower cost raw materials, such as unpurified Kraft pulp or even recycle pulp, since impurities may enhance the ability of the splittable fibers to split into microfibers.


In one embodiment, there are formed lyocell fibers with dissimilar cellulose/NMMO solutions in a way that introduces designed defects into the fibers. The lyocell solutions can be made dissimilar in a number of ways, including but not limited to concentration, cellulose purity, or added chemicals. FIG. 2 provides an illustration of the concept. A bicomponent spinneret is used to extrude two slightly dissimilar solutions. The segments made from NMMO/alpha cellulose will be better formed and more resistant to fibrillation. The segments made from wood pulp will have defects from residual hemicellulose and will tend to fibrillate easier than high purity segments. Numerous other differences in composition between adjacent segments may be used to promote splitting; for example, cellulose dopes with different degrees of polymerization of cellulose in the dope may be used in different fiber segments. Likewise, compositional differences may be introduced by using cellulose with differing pectin or other monosaccharide or polysaccharide content may be used. The final product after fibrillation may have a high number of relatively long, low-coarseness segments as well as microfibers.


In another embodiment, cellulose/ionic liquid solutions are similarly employed.


There is provided in one aspect of the invention a method of making microfibers of regenerated cellulose. The method involves: (a) preparing a first cellulosic dope having a first composition; (b) preparing a second cellulosic dope having a second composition which differs from the first composition of the first cellulosic dope; followed by (c) spinning, that is, extruding the first and second cellulosic dopes through suitable spinnerets into composite fibers each having a length and a segmented cross-section comprising a plurality of segments across the cross-section of the nascent fiber, the segments also extending along the length of the fiber and the nascent fibers include at least one longitudinally-extending segment formed from the first cellulosic dope juxtaposed with at least one longitudinally-extending segment formed from the second cellulosic dope. The nascent fibers are regenerated into splittable composite regenerated cellulose fibers each having a plurality of regenerated cellulose segments across the cross-section of the regenerated fiber. The segments also extend along the length of the fiber and include at least a first longitudinally-extending regenerated cellulose segment formed from the first cellulosic dope juxtaposed with at least a second longitudinally-extending regenerated cellulose segment formed from the second cellulosic dope, wherein the first longitudinally-extending regenerated cellulose segment is joined to the second longitudinally-extending regenerated cellulose segment along a splittable interface. Hollow segmented fibers are believed particularly suitable. The composite regenerated cellulose fibers are split into microfibers of smaller cross-section along the splittable interface between segments. The geometry of the nascent fibers is regulated, the first and second cellulosic dope compositions are selected and the steps of regenerating and splitting the fibers are controlled, such that the composite regenerated cellulose fibers are split into microfibers with a coarseness between 0.05 mg/100 m and 10 mg/100 m with a microfiber yield of more than 50% based on larger splittable regenerated cellulose composite fibers subjected to splitting. Preferably, the composite regenerated cellulose fibers are split into microfibers with a coarseness between 0.1 mg/100 m and 6 mg/100 m with a microfiber yield of more than 50% based on the larger splittable regenerated cellulose microfibers subjected to splitting. In some cases, the microfibers have a coarseness of less than 1 mg/100 m, less than 0.5 mg/100 m or less than 0.25 mg/100 m based on the product attribute desired.


So also, the composite regenerated cellulose fibers are split into microfibers with a length weighted average length between 0.1 mm and 10 mm, such as between 0.2 mm and 6 mm. Microfiber yields of more than 60%, more than 70% or more than 80% are readily achieved.


The first cellulosic dope may include dissolved cellulose at a first concentration when the second cellulosic dope comprises dissolved cellulose at a second concentration different from the first concentration of cellulose in the first cellulosic dope. In still other cases, the first cellulosic dope comprises dissolved cellulose of a first purity and the second cellulosic dope comprises dissolved cellulose of a second purity different from the first purity of the cellulose dissolved in the first dope. For example, one of the cellulosic dopes may include purified alpha cellulose and the second cellulosic dope may include dissolved Kraft pulp. In still other embodiments, one of the cellulosic dopes may include dissolved high yield pulp. In still yet other cases the first cellulosic dope has a constituent not present in the second cellulosic dope, such as a filler or lubricant. Alternatively, the first cellulosic dope has cellulose with a degree of polymerization which is different from that of cellulose in the cellulosic dope of the second composition.


Any suitable number of segments may be formed in the regenerated splittable composite regenerated cellulose fibers. For example, there may be two segments formed from the first cellulosic dope juxtaposed with two segments formed from the second cellulosic dope. Four, eight, or sixteen segments of each cellulosic dope may likewise be selected in the various embodiments of the present invention.


In one preferred embodiment at least one of the first and second cellulosic dopes includes cellulose dissolved in a solvent comprising N-methyl morpholine-N oxide (NMMO). In some cases both cellulosic dopes include cellulose dissolved in N-methyl morpholine-N oxide (NMMO).


In still other embodiments, at least one of the first and second cellulosic dopes includes cellulose dissolved in a solvent composition including an ionic liquid. In still other embodiments the first and second cellulosic dopes include cellulose dissolved in a solvent composition including an ionic liquid. A preferred ionic liquid is an imidazolium salt, such as 1-allyl-3-methylimidazolium chloride or other dialkylimidazolium salt. In some preferred embodiments, the first and second cellulosic dopes include the same ionic liquid.


Microfibers prepared in accordance with the present invention may be used to form absorbent sheet, such as tissue or towel products when mixed with other pulp-derived papermaking fibers. The pulp-derived papermaking fiber may be selected from Kraft hardwood fiber, Kraft softwood fiber, high yield fiber, recycled fibers and mixtures thereof.


Typical products have a basis weight of from about 5 lbs/3000 ft2 ream to about 50 lbs/3000 ft2 ream. In many cases the product will have a basis weight of from about 7.5 lbs/3000 ft2 ream to about 35 lbs/3000 ft2 ream. In some embodiments, sheet products may include from about 1 weight percent to about 30 weight percent of regenerated cellulose microfibers prepared in accordance with the invention. In other embodiments, high efficiency disposable cellulosic wipers include: (a) from about 90% by weight to about 25% by weight pulp-derived papermaking fiber having a characteristic scattering coefficient of less than 50 m2/kg; and (b) from about 10% to about 75% by weight fibrillated regenerated cellulosic microfiber having a characteristic CSF value of less than 175 ml, the microfiber being selected and present in amounts such that the wiper exhibits a scattering coefficient of greater than 50 m2/kg. Various ratios of pulp derived papermaking fiber to cellulose microfiber may be employed. For example the wiper may include from about 80 weight percent to a 30 weight percent pulp derived papermaking fiber and from about 20 weight percent to about 70 weight percent cellulose microfiber. Suitable ratios also include from about 70 percent by weight papermaking fiber to about 35 percent by weight pulp derived papermaking fiber and from about 30 percent by weight to about 65 percent by weight cellulose microfiber. Likewise, 60 percent to 40 percent by weight pulp derived papermaking fiber may be used with 40 percent by weight to about 60 percent by weight cellulose microfiber. The microfiber is further characterized in some cases in that the fiber is 40 percent by weight finer than 14 mesh. In other cases the microfiber may be characterized in that at least 50, 60, 70 or 80 percent by weight of the fibrillated regenerated cellulose microfiber is finer than 14 mesh. So also, the microfiber may have a number average diameter of less than about 2 microns, suitably between about 0.1 and about 2 microns. Thus the regenerated cellulose microfiber may have a fiber count of greater than 50 million fibers/gram or greater than 400 million fibers/gram. A suitable regenerated cellulose microfiber has a weight average diameter of less than 2 microns, a weight average length of less than 500 microns, and a fiber count of greater than 400 million fibers/gram such as a weight average diameter of less than 1 micron, a weight average length of less than 400 microns and a fiber count of greater than 2 billion fibers/gram. In still other cases the regenerated cellulose microfiber has a weight average diameter of less than 0.5 microns, a weight average length of less than 300 microns and a fiber count of greater than 10 billion fibers/gram. In another embodiment, the fibrillated regenerated cellulose microfiber has a weight average diameter of less than 0.25 microns, a weight average length of less than 200 microns and a fiber count of greater than 50 billion fibers/gram. Alternatively the fibrillated regenerated cellulose microfiber may have a fiber count of greater than 200 billion fibers/gram and/or a coarseness value of less than about 0.5 mg/100 m. A coarseness value for the regenerated cellulose microfiber may be from about 0.001 mg/100 m to about 0.2 mg/100 m. Preferably the sheet exhibits a wet/dry tensile ratio of greater than 30%, such as a wet/dry CD tensile ratio of between about 35% and about 60%. A wet/dry CD tensile ratio of at least about 40% or at least about 45% is preferred in many cases.


Further details and aspects of the present invention are described in more detail below.





BRIEF DESCRIPTION OF DRAWINGS

The invention is described with reference to the drawings, wherein:



FIG. 1 is a photomicrograph 100× of 14 mesh refined lyocell fiber;



FIG. 2 is a schematic diagram of a cross section of a splittable regenerated cellulose fiber of the invention;



FIG. 3 is a schematic view along the length of the fiber of FIG. 2;



FIG. 4 is a schematic view of regenerated cellulose microfibers made from splittable regenerated cellulose fiber of FIGS. 2 and 3; and



FIG. 5 is a schematic diagram of a cross section of a hollow splittable regenerated cellulose fiber of the invention.





DETAILED DESCRIPTION

The invention is described in detail below with reference to several embodiments. Such discussion is for purposes of illustration only.


Terminology used herein is given its ordinary meaning consistent with the exemplary definitions set forth immediately below; mg refers to milligrams and m2 refers to square meters, mBar means milliBar ( 1/1000 Bar) and so forth. Unless otherwise specified, % means weight percent.


Unless otherwise specified, “basis weight”, BWT, bwt and so forth refers to the weight of a 3000 square foot ream of product.


The term “cellulosic”, “cellulosic sheet” and the like is meant to include any product incorporating papermaking fiber having cellulose as a major constituent. “Papermaking fibers” include virgin pulps or recycle (secondary) cellulosic fibers or fiber mixes comprising cellulosic fibers. Fibers suitable for making the webs when mixed with microfibers of this invention include: nonwood fibers, such as cotton fibers or cotton derivatives, abaca, kenaf, sabai grass, flax, esparto grass, straw, jute hemp, bagasse, milkweed floss fibers, and pineapple leaf fibers; and wood fibers such as those obtained from deciduous and coniferous trees, including softwood fibers, such as northern and southern softwood Kraft fibers; hardwood fibers, such as eucalyptus, maple, birch, aspen, or the like. Papermaking fibers used in connection with the furnish blends of this invention are typically naturally occurring pulp-derived fibers (as opposed to reconstituted fibers such as lyocell or rayon) which are liberated from their source material by any one of a number of pulping processes familiar to one experienced in the art including sulfate, sulfite, polysulfide, soda pulping, etc. The pulp can be bleached if desired by chemical means including the use of chlorine, chlorine dioxide, oxygen, alkaline peroxide and so forth. Naturally occurring pulp-derived fibers are referred to herein simply as “pulp-derived” papermaking fibers. The products of the present invention may comprise a blend of conventional fibers (whether derived from virgin pulp or recycle sources) and high coarseness lignin-rich tubular fibers, such as bleached chemical thermomechanical pulp (BCTMP). Pulp-derived fibers thus also include high yield fibers such as BCTMP as well as thermomechanical pulp (TMP), chemithermomechanical pulp (CTMP) and alkaline peroxide mechanical pulp (APMP). “Furnishes” and like terminology refers to aqueous compositions including microfibers of this invention, papermaking fibers, optionally wet strength resins, debonders and the like for making paper products. The papermaking fibers are in many embodiments Kraft fibers, described below.


Kraft softwood fiber is low yield fiber made by the well known Kraft (sulfate) pulping process from coniferous material and includes northern and southern softwood Kraft fiber, Douglas fir Kraft fiber and so forth. Kraft softwood fibers generally have a lignin content of less than 5 percent by weight, a length weighted average fiber length of greater than 2 mm, as well as an arithmetic average fiber length of greater than 0.6 mm.


Kraft hardwood fiber is made by the Kraft process from hardwood sources, i.e., eucalyptus, and also has generally a lignin content of less than 5 percent by weight. Kraft hardwood fibers are shorter than softwood fibers, typically having a length weighted average fiber length of less than 1 mm and an arithmetic average length of less than 0.5 mm or less than 0.4 mm.


“Cellulosic dope” means a viscous solution of dissolved cellulose. Preferably, the cellulose is underivatized to ease processing. “Underivatized” cellulose refers to cellulose which has not been substantially derivatized, for example, esterified or xanthated as occurs in a cellulose acetate process or a viscose process. “Connatural” saccharide content refers to the content of saccharide units in the cellulosic dope other than D-glucose saccharide building blocks, based on the total saccharide content of the dope. For example, a cellulosic dope having 99.5% alpha-cellulose and 0.5% hemicellulose made up of xylose units and other non-glucose units on a dry basis, has a connatural saccharide content of 0.5%.


Fiber length and coarseness can be measured using a fiber-measuring instrument such as the Kajaani FS-200 analyzer available from Valmet Automation of Norcross, Ga. or an OPTEST FQA. For fiber length measurements, a dilute suspension of the fibers (approximately 0.5 to 0.6 percent) whose length is to be measured may be prepared in a sample beaker and the instrument operated according to the procedures recommended by the manufacturer. The report range for fiber lengths is set at an instrument's minimum value of, for example, 0.07 mm and a maximum value of, for example, 7.2 mm; fibers having lengths outside of the selected range are excluded. Three calculated average fiber lengths may be reported. The arithmetic average length is the sum of the product of the number of fibers measured and the length of the fiber divided by the sum of the number of fibers measured. The length-weighted average fiber length is defined as the sum of the product of the number of fibers measured and the length of each fiber squared divided by the sum of the product of the number of fibers measured and the length the fiber. The weight-weighted average fiber length is defined as the sum of the product of the number of fibers measured and the length of the fiber cubed divided by the sum of the product of the number of fibers and the length of the fiber squared. For microfibers, it is sometimes necessary to use other optical techniques or simply calculate fiber parameters based on geometry and starting material configuration. For example, if a sample of larger fibers having 16 segments was uniformly split in 100% yield by visual observation, the microfiber diameter and coarseness is approximately 1/16 that of the starting material.


Fiber coarseness is the weight of fibers in a sample per a given length and is usually reported as mg/100 meters. Coarseness, C, is expressed in mg/100 m as follows:






C
=


10
5

×

sampleweight




all





fibers





n
i



L
i









“Denier” is a measure of fiber or filament coarseness and is in units of g/9000 m unless otherwise indicated.


Freezing point depressions of compositions are determined by calculating the melting point by rule of mixtures and subtracting the observed melting point of the composition.


“Fiber” means an elongated fibrous structure, typically having an aspect (length/diameter) ratio of 3 or more.


“Microfiber” means fibers having a coarseness of 10 mg/100 m or less.


“Microfiber yield” is expressed in percent based on material subjected to splitting. For example, a 100 gram sample of splittable fibers having a coarseness of 200 yielding 85 grams of microfiber having a coarseness of 5 has a microfiber yield of 85%. Microfiber yield may refer to a specific product coarseness or length as well. For example, a microfiber yield of 85% based on coarseness where only 75% of the microfibers were of the desired length would be a yield of (85%) (0.75) or 63.75% of microfibers of the desired coarseness and length.


Dry tensile strengths (MD and CD), stretch, ratios thereof, modulus, break modulus, stress and strain are measured with a standard Instron test device or other suitable elongation tensile tester which may be configured in various ways, typically using 3 or 1 inch wide strips of tissue or towel, conditioned in an atmosphere of 23°±1° C. (73.4°±1° F.) at 50% relative humidity for 2 hours. The tensile test is run at a crosshead speed of 2 in/min. Tensile strength is sometimes referred to simply as “tensile” and is reported in breaking length (km), g/3″ or g/in.


The wet tensile of the tissue of the present invention is measured using a three-inch wide strip of tissue that is folded into a loop, clamped in a special fixture termed a Finch Cup, then immersed in water. The Finch Cup, which is available from the Thwing-Albert Instrument Company of Philadelphia, Pa., is mounted onto a tensile tester equipped with a 2.0 pound load cell with the flange of the Finch Cup clamped by the tester's lower jaw and the ends of tissue loop clamped into the upper jaw of the tensile tester. The sample is immersed in water that has been adjusted to a pH of 7.0±0.1 and the tensile is tested after a 5 second immersion time. Values are divided by two, as appropriate, to account for the loop.


Wet/dry tensile ratios are expressed in percent by multiplying the ratio by 100. For towel products, the wet/dry CD tensile ratio is the most relevant. Throughout this specification and claims which follow “wet/dry ratio” or like terminology refers to the wet/dry CD tensile ratio unless clearly specified otherwise. For handsheets, MD and CD values are approximately equivalent.


Regenerated cellulose fiber-forming techniques are well known in the art. Composite filaments of cellulose are disclosed in U.S. Pat. No. 2,428,046 to Sisson et al. In this patent, there is described a method of spinning a fiber from two different cellulosic dopes through a spinneret in order to provide composite fibers of regenerated cellulose. See FIGS. 8 and 9 of the '046 patent. Note also, U.S. Pat. No. 2,440,761 also to Sisson et al. Further details with respect to co-extrusion of cellulosic dopes to form structures are found in the following United States patents: U.S. Pat. No. 3,175,339 to McDowell; U.S. Pat. No. 4,267,047 to Henne et al.; and U.S. Pat. No. 4,802,942 to Takemura et al. The disclosures of U.S. Pat. Nos. 2,428,046; 2,440,761; 3,175,339; 4,267,047; and 4,802,942 are incorporated herein by reference.


Segmented fiber preparation for making splittable fibers is known in connection with thermoplastic fibers, where fibers having segments formed of different polymers. See, for example U.S. Pat. No. 5,759,926 to Pike et al., as well as U.S. Pat. No. 5,895,710 to Sasse et al. and United States Patent Application Publication No. 2003/0203695 (U.S. patent application Ser. No. 10/135,650) of Polanco et al., the disclosures of which are incorporated herein by reference.


The splittable fibers produced and utilized in accordance with this invention may have a segmented pie shape, an island in the sea configuration, a side-by-side configuration and so forth. See U.S. Pat. No. 4,735,849 to Murakami et al., FIGS. 6A-6D, as well as United States Patent Application Publication No. 2002/0168912 (Ser. No. 09/852,888), FIGS. 2-9. The disclosures of U.S. Pat. No. 4,735,849 and Publication No. US 2002/0168912 are incorporated herein by reference in their entireties.


In connection with the present invention, the regenerated cellulose splittable fibers may have a denier of around 2, which equates to a coarseness of 22 mg/100 m, similar to southern softwood Kraft fibers. Each wedge of a 16-segment fiber would have a coarseness of 1.4 mg/100 m, and a 32-segment fiber would have wedges with a coarseness of 0.7 mg/100 m. For comparison, eucalyptus fibers employed for the softest tissue grades have a coarseness around 6 mg/100 m.


The solvent composition for dissolving cellulose and preparing underivatized cellulose dopes suitably includes tertiary amine oxides such as N-methylmorpholine-N-oxide (NMMO) and similar compounds enumerated in U.S. Pat. No. 4,246,221 to McCorsley, the disclosure of which is incorporated herein by reference. Cellulose dopes may contain non-solvents for cellulose such as water, alkanols or other solvents as will be appreciated from the discussion which follows.


Suitable cellulosic dopes are enumerated in Table 1, below.









TABLE 1







EXAMPLES OF TERTIARY AMINE N-OXIDE SOLVENTS











Tertiary Amine N-oxide
% water
% cellulose







N-methylmorpholine
up to 22
up to 38



N-oxide



N,N-dimethyl-ethanol-
up to 12.5
up to 31



amine N-oxide



N,N-
up to 21
up to 44



dimethylcyclohexylamine



N-oxide



N-methylhomopiperidine
5.5-20 
 1-22



N-oxide



N,N,N-triethylamine
 7-29
 5-15



N-oxide



2(2-hydroxypropoxy)-
 5-10
  2-7.5



N-ethyl-N,N,-dimethyl-



amide N-oxide



N-methylpiperidine
up to 17.5
  5-17.5



N-oxide



N,N-
5.5-17 
 1-20



dimethylbenzylamine



N-oxide











See, also, U.S. Pat. No. 3,508,945 to Johnson, the disclosure of which is incorporated herein by reference.


Throughout the specification and claims, where referring to one composition as differing from another, it is meant that the two compositions differ in concentration, or differ in chemical composition, or differ in connatural saccharide content, or differ in degree of polymerization, or differ in two or more of these features. It is not necessary that the cellulosic dopes have a different chemical make-up because a difference in molecular weights (i.e., average degree of polymerization) of the dissolved cellulose of the two dopes may suffice to facilitate formation of a splittable interface between fiber segments. Likewise, complex saccharides other than alpha-cellulose present in different amounts can provide the necessary differences between cellulosic dopes.


Cellulose is a naturally-occurring polymer of D-glucose with a 1,4β linkage with a typical degree of polymerization of anywhere from about 2,000-15,000; most commonly from about 10,000-14,000 according to many reported values; however, the degree of polymerization of cellulose may be reduced when extracted from its source. The change in degree of polymerization may be different depending upon the severity of the extraction procedure.


Purified cellulose (β-linked poly(glucopyranose)) compositions are referred to as alpha cellulose. Wood pulp generally contains higher levels of hemicellulose than alpha cellulose preparations as noted above. Hemicelluloses extracted from different plants are rarely identical and include different molecular types with different degrees of polymerization. In many cases, hemicellulose includes predominantly D-xylose building blocks, and may include arabinose units, galactose units and so forth. Optionally present in the cellulose preparation are complex polysaccharides such as arabinoxylan and/or arabinogalactan at significant levels. Thus, one way of preparing cellulose dopes with different compositions is to employ cellulose sources having different levels of particular saccharides other than D-glucose repeat units; for example, by using natural cellulose from different sources.


Details with respect to preparation of cellulosic dopes including cellulose dissolved in suitable ionic liquids and cellulose regeneration therefrom are found in U.S. patent application Ser. No. 10/256,521; Publication No. US 2003/0157351 of Swatloski et al. entitled “Dissolution and Processing of Cellulose Using Ionic Liquids”, the disclosure of which is incorporated herein by reference. Here again, suitable levels of non-solvents for cellulose may be included. There is described generally in this patent application a process for dissolving cellulose in an ionic liquid without derivatization and regenerating the cellulose in a range of structural forms. It is reported that the cellulose solubility and the solution properties can be controlled by the selection of ionic liquid constituents with small cations and halide or pseudohalide anions favoring solution. Preferred ionic liquids for dissolving cellulose include those with cyclic cations such as the following cations: imidazolium; pyridinum; pyridazinium; pyrimidinium; pyrazinium; pyrazolium; oxazolium; 1,2,3-triazolium; 1,2,4-triazolium; thiazolium; piperidinium; pyrrolidinium; quinolinium; and isoquinolinium.


Processing techniques for ionic liquids/cellulose dopes are also discussed in U.S. Pat. No. 6,808,557 to Holbrey et al., entitled “Cellulose Matrix Encapsulation and Method”, the disclosure of which is incorporated herein by reference. Note also, U.S. patent application Ser. No. 11/087,496; Publication No. 2005/0288484 of Holbrey et al., entitled “Polymer Dissolution and Blend Formation in Ionic Liquids”, as well as U.S. patent application Ser. No. 10/394,989; Publication No. 2004/0038031 of Holbrey et al., entitled “Cellulose Matrix Encapsulation and Method”, the disclosures of which are incorporated herein by reference. With respect to ionic fluids in general the following documents provide further detail: U.S. patent application Ser. No. 11/406,620, Publication No. 2006/0241287 of Hecht et al., entitled “Extracting Biopolymers From a Biomass Using Ionic Liquids”; U.S. patent application Ser. No. 11/472,724, Publication No. 2006/0240727 of Price et al., entitled “Ionic Liquid Based Products and Method of Using The Same”; U.S. patent application Ser. No. 11/472,729; Publication No. 2006/0240728 of Price et al., entitled “Ionic Liquid Based Products and Method of Using the Same”; U.S. patent application Ser. No. 11/263,391, Publication No. 2006/0090271 of Price et al., entitled “Processes For Modifying Textiles Using Ionic Liquids”; and U.S. patent application Ser. No. 11/375,963 of Amano et al. (Publication No. 2006/0207722), the disclosures of which are incorporated herein by reference. Some ionic liquids and quasi-ionic liquids which may be suitable are disclosed by Konig et al., Chem. Commun. 2005, 1170-1172, the disclosure of which is incorporated herein by reference.


“Ionic liquid”, refers to a molten composition including an ionic compound that is preferably a stable liquid at temperatures of less than 100° C. at ambient pressure. Typically, such liquids have very low vapor pressure at 100° C., less than 75 mbar or so and preferably less than 50 mBar or 25 in Bar at 100° C. Most suitable liquids will have a vapor pressure of less than 10 mBar at 100° C. and often the vapor pressure is so low it is negligible and is not easily measurable since it is less than 1 mBar at 100° C.


Suitable commercially available ionic liquids are Basionic™ ionic liquid products available from BASF (Florham Park, N.J.) and are listed in Table 2 below.









TABLE 2







Exemplary Ionic Liquids











Basionic ™




IL Abbreviation
Grade
Product name
CAS Number










STANDARD










EMIM Cl
ST 80
1-Ethyl-3-methylimidazolium
65039-09-0




chloride


EMIM
ST 35
1-Ethyl-3-methylimidazolium
145022-45-3


CH3SO3

methanesulfonate


BMIM Cl
ST 70
1-Butyl-3-methylimidazolium
79917-90-1




chloride


BMIM
ST 78
1-Butyl-3-methylimidazolium
342789-81-5


CH3SO3

methanesulfonate


MTBS
ST 62
Methyl-tri-n-butylammonium
13106-24-6




methylsulfate


MMMPZ
ST 33
1,2,4-Trimethylpyrazolium


MeOSO3

methylsulfate


EMMIM
ST 67
1-Ethyl-2,3-di-methylimidazolium
516474-08-01


EtOSO3

ethylsulfate


MMMIM
ST 99
1,2,3-Trimethyl-imidazolium
65086-12-6


MeOSO3

methylsulfate







ACIDIC










HMIM Cl
AC 75
Methylimidazolium chloride
35487-17-3


HMIM HSO4
AC 39
Methylimidazolium hydrogensulfate
681281-87-8


EMIM HSO4
AC 25
1-Ethyl-3-methylimidazolium
412009-61-1




hydrogensulfate


EMIM AlCl4
AC 09
1-Ethyl-3-methylimidazolium
80432-05-9




tetrachloroaluminate


BMIM
AC 28
1-Butyl-3-methylimidazolium
262297-13-2


HSO4</

hydrogensulfate


BMIM AlCl4
AC 01
1-Butyl-3-methylimidazolium
80432-09-3




tetrachloroaluminate







BASIC










EMIM Acetat
BC 01
1-Ethyl-3-methylimidazolium acetate
143314-17-4


BMIM Acetat
BC 02
1-Butyl-3-methylimidazolium acetate
284049-75-8







LIQUID AT RT










EMIM
LQ 01
1-Ethyl-3-methylimidazolium
342573-75-5


EtOSO3

ethylsulfate


BMIM
LQ 02
1-Butyl-3-methylimidazolium
401788-98-5


MeOSO3

methylsulfate







LOW VISCOSITY










EMIM SCN
VS 01
1-Ethyl-3-methylimidazolium
331717-63-6




thiocyanate


BMIM SCN
VS 02
1-Butyl-3-methylimidazolium
344790-87-0




thiocyanate







FUNCTIONALIZED










COL Acetate
FS 85
Choline acetate
14586-35-7


COL
FS 65
Choline salicylate
2016-36-6


Salicylate


MTEOA
FS 01
Tris-(2-hydroxyethyl)-
29463-06-7


MeOSO3

methylammonium methylsulfate









Cellulose dopes including ionic liquids having dissolved therein about 5% by weight underivatized cellulose are commercially available from Aldrich. These compositions utilize alkyl-methylimidazolium acetate as the solvent. It has been found that choline-based ionic liquids are not particularly suitable for dissolving cellulose.


In accordance with the invention, ionic liquids are used to dissolve cellulose. 1-allyl-3-methylimidazolium chloride for example, may be employed. The cellulose in an ionic liquid solution is precipitated by diluting the solution with water. It is this characteristic that is used to create novel fiber structures of the present invention.


There is shown in FIGS. 2 and 3 a splittable composite regenerated cellulose fiber 10 having a plurality of regenerated cellulose segments 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 across a cross-section 50 of the regenerated fiber. The segments also extend along the entire (or substantially the entire) length 52 of the fiber and include at least a first longitudinally-extending regenerated cellulose segment 12 formed from a first cellulosic dope juxtaposed with at least a second longitudinally-extending regenerated cellulose segment 14 formed from a second cellulosic dope, wherein the first longitudinally-extending regenerated cellulose segment is joined to the second longitudinally-extending regenerated cellulose segment along a splittable interface 13. To this end, the first and second cellulosic dopes are selected such that fiber 10 is readily splittable into its constituent segments. In the embodiment shown in FIGS. 1 and 2, segments 12, 16, 20, 24, 28, 32, 36 and 40 are formed from a first cellulosic dope having a first composition and segments 14, 18, 22, 26, 30, 34, 38 and 42 are formed from a second cellulosic dope having a second composition. Segments of different composition are thus splittably joined at interfaces 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 and 43.


Following formation, fibers or regenerated cellulose such as fiber 10 are split at interfaces 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41 and 43 by refining or any other suitable technique into microfibers such as microfibers 70, 72, 74 and 76 and so forth as shown schematically in FIG. 4. Fibers 70, 72, 74 and 76 may have a length 80 which is similar to, or, more typically, shorter than length 52 of the large fibers from which they are made; however, the diameters 82, 84, 86, 88 of fibers 70-76 correspond to the segment cross sections, such as segments 12-42 from which the microfibers were split.


Length 80 of the microfibers may be substantially smaller, on average, than the length of the larger fibers from which they are made, if so desired. A length weighted average length of from about 20% to about 50% of the larger fibers may be achieved. Generally, the microfibers are split from larger fibers into microfibers having a length distribution and a coarseness distribution influenced by segment geometry and composition of the larger splittable fibers from which they are made.


There is shown in FIG. 5 a splittable composite regenerated cellulose hollow fiber 110 in cross section provided with a cylindrically shaped, annular shell 100 extending along its length about a hollow core 102. Shell 100 has a plurality of regenerated cellulose segments 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, 134, 136, 138, 140, 142 around annular shell 100 as shown. The segments also optionally extend along the entire (or substantially the entire) length of the fiber and include at least a first longitudinally-extending regenerated cellulose segment 112 formed from a first cellulosic dope juxtaposed with at least a second longitudinally-extending regenerated cellulose segment 114 formed from a second cellulosic dope, wherein the first longitudinally-extending regenerated cellulose segment is joined to the second longitudinally-extending regenerated cellulose segment along a splittable interface 113. To this end, the first and second cellulosic dopes are selected such that fiber 110 is readily splittable into its constituent segments as was described above in connection with composite fiber 10. In the embodiment shown in FIG. 5, segments 112, 116, 120, 124, 128, 132, 136 and 140 are formed from a first cellulosic dope having a first composition and segments 114, 118, 122, 126, 130, 134, 138 and 142 are formed from a second cellulosic dope having a second composition. Segments of different composition are thus splittably joined at interfaces 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141 and 143. Following formation, fiber 110 is split into microfibers along these interfaces corresponding to the various segments around shell 100 as described above in connection with splittable fiber 10 to produce microfibers as shown in FIG. 4.


Microfibers shown schematically in FIG. 4 are mixed with pulp-derived papermaking fibers in an aqueous furnish and formed into absorbent sheet. Methods of making paper tissue, towel, and the like are well known, including various features such as Yankee drying, throughdrying, fabric creping, dry creping, wet creping and so forth. Conventional wet pressing/dry creping processes (CWP) have certain advantages over conventional through-air drying processes including: (1) lower energy costs associated with the mechanical removal of water rather than transpiration drying with hot air; and (2) higher production speeds which are more readily achieved with processes which utilize wet pressing to form a web. On the other hand, through-air drying processing has been widely adopted for new capital investment, particularly for the production of soft, bulky, premium quality tissue and towel products.


Throughdried, creped products and processes (TAD) are disclosed in the following patents: U.S. Pat. No. 3,994,771 to Morgan, Jr. et al.; U.S. Pat. No. 4,102,737 to Morton; and U.S. Pat. No. 4,529,480 to Trokhan. The processes described in these patents comprise, very generally, forming a web on a foraminous support, thermally pre-drying the web, applying the web to a Yankee dryer with a nip defined, in part, by an impression fabric, and creping the product from the Yankee dryer. A relatively permeable web is typically required, making it difficult to employ recycle furnish at levels which may be desired. Transfer to the Yankee typically takes place at web consistencies of from about 60% to about 70%. See also, U.S. Pat. No. 6,187,137 to Druecke et al. which includes disclosure of peeling a web from a Yankee dryer. Uncreped, throughdried products are described in U.S. Pat. No. 5,607,551 to Farrington, Jr. et al., the disclosure of which is incorporated herein by reference.


Some newer processes including fabric-creping and the use of creping adhesives are described in the following co-pending applications: U.S. patent application Ser. No. 11/804,246, filed May 16, 2007, entitled “Fabric Creped Absorbent Sheet with Variable Local Basis Weight”; U.S. patent application Ser. No. 11/678,669, entitled “Method of Controlling Adhesive Build-Up on a Yankee Dryer”; U.S. patent application Ser. No. 11/451,112 (Publication No. 2006/0289133), filed Jun. 12, 2006, entitled “Fabric-Creped Sheet for Dispensers”; U.S. Ser. No. 11/451,111, filed Jun. 12, 2006 (Publication No. 2006/0289134), entitled “Method of Making Fabric-creped Sheet for Dispensers”; U.S. patent application Ser. No. 11/402,609 (Publication No. 2006/0237154), filed Apr. 12, 2006, entitled “Multi-Ply Paper Towel With Absorbent Core”; U.S. patent application Ser. No. 11/151,761, filed Jun. 14, 2005 (Publication No. 2005/0279471), entitled “High Solids Fabric-crepe Process for Producing Absorbent Sheet with In-Fabric Drying”; U.S. application Ser. No. 11/108,458, filed Apr. 18, 2005 (Publication No. 2005/0241787), entitled “Fabric-Crepe and In Fabric Drying Process for Producing Absorbent Sheet”; U.S. application Ser. No. 11/108,375, filed Apr. 18, 2005 (Publication No. 2005/0217814), entitled “Fabric-crepe/Draw Process for Producing Absorbent Sheet”; U.S. application Ser. No. 11/104,014, filed Apr. 12, 2005 (Publication No. 2005/0241786), entitled “Wet-Pressed Tissue and Towel Products With Elevated CD Stretch and Low Tensile Ratios Made With a High Solids Fabric-Crepe Process”; U.S. application Ser. No. 10/679,862 (Publication No. 2004/0238135), filed Oct. 6, 2003, entitled “Fabric-crepe Process for Making Absorbent Sheet”; U.S. Provisional Patent Application Ser. No. 60/903,789, filed Feb. 27, 2007, entitled “Fabric Crepe Process With Prolonged Production Cycle”. The applications referred to immediately above are particularly relevant to the selection of machinery, materials, processing conditions and so forth as to fabric creped products of the present invention and the disclosures of these applications are incorporated herein by reference.


While the invention has been described in detail, modifications within the spirit and scope of the invention will be readily apparent to those of skill in the art. In view of the foregoing discussion, relevant knowledge in the art and references including co-pending applications discussed above in connection with the Background and Detailed Description, the disclosures of which are all incorporated herein by reference, further description is deemed unnecessary.

Claims
  • 1. A method of making microfibers of regenerated cellulose comprising: a) preparing a first cellulosic dope having a first composition;b) preparing a second cellulosic dope having a second composition which differs from the first composition of the first cellulosic dope;c) spinning the first and second cellulosic dopes into composite nascent fibers each having a length and a segmented cross-section comprising a plurality of segments across the cross-section of the nascent fiber, the segments also extending along the length of the fiber and the nascent fibers including at least one longitudinally-extending segment formed from the first cellulosic dope juxtaposed with at least one longitudinally-extending segment formed from the second cellulosic dope;d) regenerating the nascent fibers to splittable composite regenerated cellulose fibers each having a plurality of regenerated cellulose segments across the cross section of the regenerated fiber, the segments also extending along the length of the fiber and including at least a first longitudinally-extending regenerated cellulose segment formed from the first cellulosic dope juxtaposed with at least a second longitudinally-extending regenerated cellulose segment formed from the second cellulosic dope, wherein the first longitudinally-extending regenerated cellulose segment is joined to the second longitudinally-extending regenerated cellulose segment along a splittable interface; ande) splitting the composite regenerated cellulose fibers into microfibers of smaller cross-section along the splittable interface between segments,wherein the geometry of the nascent fibers is regulated, the first and second cellulosic dope compositions are cellulosic dopes without other fiber-forming components, and are selected, and the steps of regenerating and splitting the fibers are controlled, such that the composite regenerated cellulose fibers are split into micro fibers with a coarseness between 0.05 mg/100 m and 10 mg/100 m with a microfiber yield of more than 50% based on larger splittable regenerated cellulose composite fibers subjected to step (e) and said microfibers have a length weighted average length of from about 20% to about 50% of said larger splittable regenerated cellulose composite fibers.
  • 2. The method according to claim 1, wherein the composite regenerated cellulose fibers are split into microfibers with coarseness between 0.1 mg/100 m and 6 mg/100 m with a microfiber yield of more than 50% based on larger splittable regenerated cellulose composite fibers subjected to step (e).
  • 3. The method according to claim 2, wherein the composite regenerated cellulose fibers are split into microfibers with coarseness less than 1 mg/100 m with a microfiber yield of more than 50% based on larger splittable regenerated cellulose composite fibers subjected to step (e).
  • 4. The method according to claim 2, wherein the composite regenerated cellulose fibers are split into microfibers with coarseness less than 0.5 mg/100 m with a microfiber yield of more than 50% based on larger splittable regenerated cellulose composite fibers subjected to step (e).
  • 5. The method according to claim 2, wherein the composite regenerated cellulose fibers are split into microfibers with coarseness less than 0.25 mg/100 m with a microfiber yield of more than 50% based on larger splittable regenerated cellulose composite fibers subjected to step (e).
  • 6. The method according to claim 1, wherein the composite regenerated cellulose fibers are split into microfibers with a length weighted average length between 0.1 mm and 10 mm.
  • 7. The method according to claim 1, wherein the composite regenerated cellulose fibers are split into microfibers with a length weighted average length between 0.2 mm and 6 mm.
  • 8. The method according to claim 1, wherein the geometry of the nascent fibers is regulated, the first and second cellulosic dope compositions are selected, and the steps of regenerating and splitting the fibers are controlled, such that the composite regenerated cellulose fibers are split into microfibers with a coarseness between 0.05 mg/100 m and 10 mg/100 m with a microfiber yield of more than 60% based on larger splittable regenerated cellulose composite fibers subjected to step (e).
  • 9. The method according to claim 1, wherein the geometry of the nascent fibers is regulated, the first and second cellulosic dope compositions are selected, and the steps of regenerating and splitting the fibers are controlled, such that the composite regenerated cellulose fibers are split into microfibers with a coarseness between 0.05 mg/100 m and 10 mg/100 m with a microfiber yield of more than 70% based on larger splittable regenerated cellulose composite fibers subjected to step (e).
  • 10. The method according to claim 1, wherein the geometry of the nascent fibers is regulated, the first and second cellulosic dope compositions are selected, and the steps of regenerating and splitting the fibers are controlled, such that the composite regenerated cellulose fibers are split into microfibers with a coarseness between 0.05 mg/100 m and 10 mg/100 m with a microfiber yield of more than 80% based on larger splittable regenerated cellulose composite fibers subjected to step (e).
  • 11. The method according to claim 1, wherein the first cellulosic dope comprises dissolved cellulose at a first concentration and the second cellulosic dope comprises dissolved cellulose at a second concentration different from the first concentration of cellulose in the first cellulosic dope.
  • 12. The method according to claim 1, wherein the first cellulosic dope comprises dissolved cellulose of a first purity and the second cellulosic dope comprises dissolved cellulose of a second purity different from the first purity of the cellulose dissolved in the first dope.
  • 13. The method according to claim 12, wherein at least one of the cellulosic dopes comprises purified alpha-cellulose and at least one of the cellulosic dopes comprises dissolved Kraft pulp.
  • 14. The method according to claim 12, wherein at least one of the cellulosic dopes comprises dissolved high yield pulp.
  • 15. The method according to claim 1, wherein the first cellulosic dope contains dissolved cellulose having a first average degree of polymerization different from a second average degree of polymerization of dissolved cellulose in the second cellulosic dope.
  • 16. The method according to claim 1, wherein the first cellulosic dope has a connatural saccharide content different from the connatural saccharide content of the second cellulosic dope.
  • 17. The method according to claim 1, wherein the first cellulosic dope has a constituent not present in the second cellulosic dope.
  • 18. The method according to claim 1, wherein the splittable composite regenerated cellulose fibers have at least 2 longitudinally-extending regenerated cellulose segments formed from the first cellulosic dope alternately juxtaposed with at least 2 longitudinally-extending regenerated cellulose segments formed from the second cellulosic dope such that juxtaposed segments formed from the cellulosic dopes of different compositions are joined along splittable interfaces therebetween.
  • 19. The method according to claim 1, wherein the splittable composite regenerated cellulose fibers have at least 4 longitudinally-extending regenerated cellulose segments formed from the first cellulosic dope alternately juxtaposed with at least 4 longitudinally-extending regenerated cellulose segments formed from the second cellulosic dope such that juxtaposed segments formed from the cellulosic dopes of different compositions are joined along splittable interfaces therebetween.
  • 20. The method according to claim 1, wherein the splittable composite regenerated cellulose fibers have at least 8 longitudinally-extending regenerated cellulose segments formed from the first cellulosic dope alternately juxtaposed with at least 8 longitudinally-extending regenerated cellulose segments formed from the second cellulosic dope such that juxtaposed segments formed from the cellulosic dopes of different compositions are joined along splittable interfaces therebetween.
  • 21. The method according to claim 1, wherein the splittable composite regenerated cellulose fibers have at least 16 longitudinally-extending regenerated cellulose segments formed from the first cellulosic dope alternately juxtaposed with at least 16 longitudinally-extending regenerated cellulose segments formed from the second cellulosic dope such that juxtaposed segments formed from the cellulosic dopes of different compositions are joined along splittable interfaces therebetween.
  • 22. The method according to claim 1, wherein the splittable fiber is a hollow segmented fiber.
  • 23. The method according to claim 1, wherein at least one of the first and second cellulosic dopes comprise cellulose dissolved in a solvent comprising N-methyl morpholine-N oxide (NMMO).
  • 24. The method according to claim 1, wherein the first and second cellulosic dopes comprise cellulose dissolved in a solvent comprising N-methyl morpholine-N oxide (NMMO).
  • 25. The method according to claim 1, wherein at least one of the first and second cellulosic dopes comprise cellulose dissolved in a solvent comprising an ionic liquid.
  • 26. The method according to claim 1, wherein the first and second cellulosic dopes comprise cellulose dissolved in a solvent comprising an ionic liquid.
  • 27. The method according to claim 1, wherein at least one of the first and second cellulosic dopes comprise cellulose dissolved in a solvent comprising an ionic liquid, wherein the ionic liquid comprises an imidazolium salt.
  • 28. The method according to claim 27, wherein the first and second cellulosic dopes comprise cellulose dissolved in a solvent comprising an ionic liquid, wherein the ionic liquid comprises a dialkylimidazolium salt.
  • 29. A method of making microfibers of regenerated cellulose comprising: a) preparing a first cellulosic dope comprising cellulose dissolved in a solvent including an ionic liquid, the first cellulosic dope having a first composition;b) preparing a second cellulosic dope comprising cellulose dissolved in a solvent including an ionic liquid, the second cellulosic dope having a second composition which differs from the first composition of the first cellulosic dope;c) spinning the first and second cellulosic dopes into composite nascent fibers each having a length and a segmented cross-section comprising a plurality of segments across the cross-section of the nascent fiber, the segments also extending along the length of the fiber and the nascent fibers including at least one longitudinally-extending segment formed from the first cellulosic dope juxtaposed with at least one longitudinally-extending segment formed from the second cellulosic dope;d) regenerating the nascent fibers to splittable composite regenerated cellulose fibers each having a plurality of regenerated cellulose segments across the cross section of the regenerated fiber, the segments also extending along the length of the fiber and including at least a first longitudinally-extending regenerated cellulose segment formed from the first cellulosic dope juxtaposed with at least a second longitudinally-extending regenerated cellulose segment formed from the second cellulosic dope, wherein the first longitudinally-extending regenerated cellulose segment is joined to the second longitudinally-extending regenerated cellulose segment along a splittable interface; ande) splitting the composite regenerated cellulose fibers into microfibers of smaller cross-section along the splittable interface between segments and having a length weighted average length of from about 20% to about 50% of said larger splittable regenerated cellulose composite fibers,wherein said first cellulosic dope and second cellulosic dope are cellulosic dopes without other fiber-forming components.
  • 30. The method according to claim 29, wherein at least one of the cellulose dopes comprises an ionic liquid which includes an imidazolium salt.
  • 31. The method according to claim 30, wherein the imidazolium salt is 1-allyl-3-methylimidazolium chloride.
  • 32. The method according to claim 29, wherein the first and second cellulosic dope each comprise the same ionic liquid.
  • 33. The method according to claim 29, wherein the geometry of the nascent fibers is regulated, the first and second cellulosic dope compositions are selected, and the steps of regenerating and splitting the fibers are controlled, such that the composite regenerated cellulose fibers are split into microfibers with a microfiber yield of more than 50% based on larger splittable regenerated cellulose composite fibers subjected to step (e).
  • 34. The method according to claim 29, wherein the splittable fiber is a hollow segmented fiber.
  • 35. The method according to claim 29, wherein the first cellulosic dope contains dissolved cellulose having a first average degree of polymerization different from a second average degree of polymerization of dissolved cellulose in the second cellulosic dope.
  • 36. The method according to claim 29, wherein the first cellulosic dope has a connatural saccharide content different from the connatural saccharide content of the second cellulosic dope.
  • 37. A method of making a wet-laid absorbent sheet comprising: (a) preparing regenerated cellulose micro fibers fibers by way of: i) preparing a first cellulosic dope having a first composition;ii) preparing a second cellulosic dope having a second composition which differs from the first composition of the first cellulosic dope;iii) spinning the first and second cellulosic dopes into composite nascent fibers each having a length and a segmented cross-section comprising a plurality of segments across the cross-section of the nascent fiber, the segments also extending along the length of the fiber and the nascent fibers including at least one longitudinally-extending segment formed from the first cellulosic dope juxtaposed with at least one longitudinally-extending segment formed from the second cellulosic dope;iv) regenerating the nascent fibers to splittable composite regenerated cellulose fibers each having a plurality of regenerated cellulose segments across the cross section of the regenerated fiber, the segments also extending along the length of the fiber and including at least a first longitudinally-extending regenerated cellulose segment formed from the first cellulosic dope juxtaposed with at least a second longitudinally-extending regenerated cellulose segment formed from the second cellulosic dope, wherein the first longitudinally-extending regenerated cellulose segment is joined to the second longitudinally-extending regenerated cellulose segment along a splittable interface; andv) splitting the composite regenerated cellulose fibers into microfibers of smaller cross-section along the splittable interface between segments, wherein the geometry of the nascent fibers is regulated, the first and second cellulosic dope compositions are selected, and the steps of regenerating and splitting the fibers are controlled, such that the composite regenerated cellulose fibers are split into microfibers with a coarseness between 0.05 mg/100 m and 10 mg/100 m with a microfiber yield of at least 50% based on larger splittable regenerated cellulose composite fibers subjected to step (a)(v), and having a length weighted average length of from about 20% to about 50% of said larger splittable regenerated cellulose composite fibers;(b) preparing an aqueous furnish incorporating the regenerated cellulose microfibers made by step (a) as well as pulp-derived papermaking fibers;(c) depositing the aqueous furnish on a foraminous support to form a nascent web and at least partially dewatering the nascent web; and(d) drying the web to provide absorbent sheet,wherein said first cellulosic dope and second cellulosic dope are cellulosic dopes without other fiber-forming components and micro fibers.
  • 38. The method according to claim 37, wherein the aqueous furnish comprises a pulp derived fiber selected from Kraft hardwood fiber, Kraft softwood fiber, high yield fiber, recycle fiber and mixtures thereof.
  • 39. The method according to claim 37, wherein the sheet has a basis weight of from about 5 lbs/3000 ft2 ream to about 50 lbs/3000 ft2 ream.
  • 40. The method according to claim 37, wherein the sheet has a basis weight of from about 7.5 lbs/3000 ft2 to about 35 lbs/3000 ft2 ream.
  • 41. The method according to claim 37, wherein the sheet comprises from about 1 wt % to about 30 wt. % of regenerated cellulose microfibers prepared by step (a).
  • 42. The method according to claim 37, wherein the sheet comprises from about 10 wt. % to about 75 wt. % of regenerated cellulose microfiber prepared by step (a).
  • 43. The method according to claim 37, wherein the sheet comprises from about 20 wt. % to about 70 wt. % of regenerated cellulose microfiber prepared by step (a).
  • 44. The method according to claim 37, wherein the sheet comprises from about 30 wt. % to about 65 wt. % of regenerated cellulose microfiber prepared by step (a).
  • 45. The method according to claim 37, wherein the sheet comprises from about 40 wt. % to about 60 wt. % of regenerated cellulose microfiber prepared by step (a).
  • 46. The method according to claim 37, wherein the sheet exhibits a wet/dry CD tensile ratio greater than 30%.
  • 47. The method according to claim 37, wherein the sheet exhibits a wet/dry CD tensile ratio of between about 35% and about 60%.
  • 48. The method according to claim 37, wherein the sheet exhibits a wet/dry CD tensile ratio of at least about 40%.
  • 49. The method according to claim 37, wherein the sheet exhibits a wet/dry CD tensile ratio of at least about 45%.
US Referenced Citations (208)
Number Name Date Kind
2428046 Sisson et al. Sep 1947 A
2440761 Sisson et al. May 1948 A
3009822 Drelich et al. Nov 1961 A
3175339 McDowell Mar 1965 A
3209402 Riley et al. Oct 1965 A
3337671 Drisch et al. Aug 1967 A
3382140 Henderson et al. May 1968 A
3508941 Johnson Apr 1970 A
3508945 Haemer et al. Apr 1970 A
3785918 Kawai et al. Jan 1974 A
3994771 Morgan, Jr. et al. Nov 1976 A
4036679 Back et al. Jul 1977 A
4100324 Anderson et al. Jul 1978 A
4102737 Morton Jul 1978 A
4145532 Franks et al. Mar 1979 A
4246221 McCorsley, III Jan 1981 A
4267047 Henne et al. May 1981 A
4374702 Turbak et al. Feb 1983 A
4426228 Brandner et al. Jan 1984 A
4481076 Herrick Nov 1984 A
4481077 Herrick Nov 1984 A
4483743 Turbak et al. Nov 1984 A
4529480 Trokhan Jul 1985 A
4735849 Murakami et al. Apr 1988 A
4802942 Takemura et al. Feb 1989 A
4908097 Box Mar 1990 A
4931201 Julemont Jun 1990 A
4987632 Rowe et al. Jan 1991 A
5039431 Johnson et al. Aug 1991 A
5124197 Bernardin et al. Jun 1992 A
5227024 Gomez Jul 1993 A
5269470 Ishikawa et al. Dec 1993 A
5320710 Reeves et al. Jun 1994 A
5354524 Sellars et al. Oct 1994 A
5385640 Weibel et al. Jan 1995 A
5562739 Urben Oct 1996 A
5580356 Taylor Dec 1996 A
5582681 Back et al. Dec 1996 A
5607551 Farrington, Jr. et al. Mar 1997 A
H1672 Hermans et al. Aug 1997 H
5688468 Lu Nov 1997 A
5725821 Gannon et al. Mar 1998 A
5759210 Potter et al. Jun 1998 A
5759926 Pike et al. Jun 1998 A
5779737 Potter et al. Jul 1998 A
5858021 Sun et al. Jan 1999 A
5863652 Matsumura et al. Jan 1999 A
5895710 Sasse et al. Apr 1999 A
5935880 Wang et al. Aug 1999 A
5964983 Dinand et al. Oct 1999 A
6042769 Gannon et al. Mar 2000 A
6117545 Cavaille et al. Sep 2000 A
6153136 Collier et al. Nov 2000 A
6183596 Matsuda et al. Feb 2001 B1
6187137 Druecke et al. Feb 2001 B1
6214163 Matsuda et al. Apr 2001 B1
6221487 Luo et al. Apr 2001 B1
6235392 Luo et al. May 2001 B1
6258210 Takeuchi et al. Jul 2001 B1
6258304 Bahia Jul 2001 B1
6267898 Fukuda et al. Jul 2001 B1
6287419 Takeuchi et al. Sep 2001 B1
6344109 Gross Feb 2002 B1
6471727 Luo et al. Oct 2002 B2
6491788 Sealey et al. Dec 2002 B2
6511746 Collier et al. Jan 2003 B1
6544912 Tanio et al. Apr 2003 B1
6573204 Philipp et al. Jun 2003 B1
6596033 Luo et al. Jul 2003 B1
6602386 Takeuchi et al. Aug 2003 B1
6624100 Pike Sep 2003 B1
6645618 Hobbs et al. Nov 2003 B2
6692827 Luo et al. Feb 2004 B2
6706237 Luo et al. Mar 2004 B2
6706876 Luo et al. Mar 2004 B2
6746976 Urankar et al. Jun 2004 B1
6749718 Takai et al. Jun 2004 B2
6767634 Krishnaswamy Jul 2004 B2
6773648 Luo et al. Aug 2004 B2
6808557 Holbrey et al. Oct 2004 B2
6824599 Swatloski et al. Nov 2004 B2
6833187 Luo et al. Dec 2004 B2
6835311 Koslow Dec 2004 B2
6814038 Horenziak et al. Jan 2005 B2
6849329 Perez et al. Feb 2005 B2
6861023 Sealey et al. Mar 2005 B2
6872311 Koslow Mar 2005 B2
6890649 Hobbs et al. May 2005 B2
6899790 Lee May 2005 B2
6951895 Qin et al. Oct 2005 B1
7037405 Hguyen et al. May 2006 B2
7067444 Luo et al. Jun 2006 B2
7083704 Sealey, II et al. Aug 2006 B2
7094317 Lundberg et al. Aug 2006 B2
7097737 Luo et al. Aug 2006 B2
7195694 Von Drach et al. Mar 2007 B2
7241711 Takai et al. Jul 2007 B2
7250382 Takai et al. Jul 2007 B2
7258764 Mauler Aug 2007 B2
7276166 Koslow Oct 2007 B2
7296691 Koslow Nov 2007 B2
7381294 Suzuki et al. Jun 2008 B2
7399378 Edwards et al. Jul 2008 B2
7442278 Murray et al. Oct 2008 B2
7494563 Edwards et al. Feb 2009 B2
7503998 Murray et al. Mar 2009 B2
7566014 Koslow Jul 2009 B2
7585388 Yeh et al. Sep 2009 B2
7585389 Yeh et al. Sep 2009 B2
7588660 Edwards et al. Sep 2009 B2
7588831 Akiyama et al. Sep 2009 B2
7605096 Tomarchio et al. Oct 2009 B2
7608164 Chou et al. Oct 2009 B2
7655112 Koslow Feb 2010 B2
7662257 Edwards et al. Feb 2010 B2
7700764 Heijnesson-Hulten Apr 2010 B2
7718036 Sumnicht et al. May 2010 B2
7789995 Super et al. Sep 2010 B2
7820008 Edwards et al. Oct 2010 B2
7850823 Chou et al. Dec 2010 B2
7951264 Sumnicht May 2011 B2
7951266 Kokko et al. May 2011 B2
7985321 Sumnicht et al. Jul 2011 B2
20010028955 Luo et al. Oct 2001 A1
20020031966 Tomarchio et al. Mar 2002 A1
20020036070 Luo et al. Mar 2002 A1
20020037407 Luo et al. Mar 2002 A1
20020041961 Sealey et al. Apr 2002 A1
20020060382 Luo et al. May 2002 A1
20020064654 Luo et al. May 2002 A1
20020074009 Zhao et al. Jun 2002 A1
20020074097 Gross et al. Jun 2002 A1
20020076556 Luo et al. Jun 2002 A1
20020081428 Luo et al. Jun 2002 A1
20020088572 Sealey et al. Jul 2002 A1
20020088575 Lonsy et al. Jul 2002 A1
20020096294 Nicholass et al. Jul 2002 A1
20020160186 Luo et al. Oct 2002 A1
20020168912 Bond et al. Nov 2002 A1
20030024669 Kokko Feb 2003 A1
20030025252 Sealey et al. Feb 2003 A1
20030056916 Horenziak et al. Mar 2003 A1
20030065059 Krishnaswamy Apr 2003 A1
20030099821 Takai et al. May 2003 A1
20030100240 Takai et al. May 2003 A1
20030135181 Chen et al. Jul 2003 A1
20030144640 Nguyen Jul 2003 A1
20030157351 Swatloski et al. Aug 2003 A1
20030159786 Runge et al. Aug 2003 A1
20030168401 Koslow Sep 2003 A1
20030177909 Koslow Sep 2003 A1
20030178166 Takeuchi et al. Sep 2003 A1
20030203695 Polanco et al. Oct 2003 A1
20040038031 Holbrey et al. Feb 2004 A1
20040045687 Shannon et al. Mar 2004 A1
20040123962 Shannon et al. Jul 2004 A1
20040144510 Mauler Jul 2004 A1
20040178142 Koslow Sep 2004 A1
20040203306 Grafe et al. Oct 2004 A1
20040206463 Luo et al. Oct 2004 A1
20040207110 Luo et al. Oct 2004 A1
20040209078 Luo et al. Oct 2004 A1
20040226671 Nguyen et al. Nov 2004 A1
20040238135 Edwards et al. Dec 2004 A1
20050011827 Koslow Jan 2005 A1
20050051487 Koslow Mar 2005 A1
20050074542 Lundberg et al. Apr 2005 A1
20050148264 Varona et al. Jul 2005 A1
20050176326 Bond et al. Aug 2005 A1
20050217814 Super et al. Oct 2005 A1
20050241786 Edwards et al. Nov 2005 A1
20050241787 Murray et al. Nov 2005 A1
20050274469 Lundberg et al. Dec 2005 A1
20050279471 Murray et al. Dec 2005 A1
20050288484 Holbrey et al. Dec 2005 A1
20060019571 Lange et al. Jan 2006 A1
20060090271 Price et al. May 2006 A1
20060141881 Bergsten et al. Jun 2006 A1
20060207722 Amano et al. Sep 2006 A1
20060237154 Edwards et al. Oct 2006 A1
20060240727 Price et al. Oct 2006 A1
20060240728 Price et al. Oct 2006 A1
20060241287 Hecht et al. Oct 2006 A1
20060289132 Heijnesson-Hulten Dec 2006 A1
20060289133 Yeh et al. Dec 2006 A1
20060289134 Yeh et al. Dec 2006 A1
20070131366 Underhill et al. Jun 2007 A1
20070224419 Sumnicht et al. Sep 2007 A1
20080054107 Koslow et al. Mar 2008 A1
20080057307 Koslow et al. Mar 2008 A1
20080083519 Kokko et al. Apr 2008 A1
20080105394 Kokko May 2008 A1
20080135193 Kokko Jun 2008 A1
20080173418 Sumnicht et al. Jul 2008 A1
20080173419 Sumnicht et al. Jul 2008 A1
20090020139 Sumnicht et al. Jan 2009 A1
20090020248 Sumnicht et al. Jan 2009 A1
20090065164 Goto et al. Mar 2009 A1
20090120598 Edwards et al. May 2009 A1
20090120599 Nguyen May 2009 A1
20090151881 Nguyen Jun 2009 A1
20090308551 Kokko et al. Dec 2009 A1
20100065235 Fike et al. Mar 2010 A1
20100212850 Sumnicht et al. Aug 2010 A1
20100272938 Mitchell et al. Oct 2010 A1
20100282423 Super et al. Nov 2010 A1
20100288456 Westland et al. Nov 2010 A1
20110011545 Edwards et al. Jan 2011 A1
Foreign Referenced Citations (16)
Number Date Country
2004904 Dec 2008 EP
978953 Jan 1965 GB
2412083 Sep 2005 GB
2127343 Mar 1999 RU
2144101 Jan 2000 RU
2183648 Jun 2002 RU
2328255 Jul 2008 RU
9535399 Dec 1995 WO
WO 9803710 Jan 1998 WO
9807914 Feb 1998 WO
20051010273 Feb 2005 WO
2007109259 Sep 2007 WO
2009038730 Mar 2009 WO
2009038735 Mar 2009 WO
2010033536 Mar 2010 WO
2010065367 Jun 2010 WO
Related Publications (1)
Number Date Country
20080173419 A1 Jul 2008 US
Provisional Applications (4)
Number Date Country
60881310 Jan 2007 US
60881393 Jan 2007 US
60994344 Sep 2007 US
60994483 Sep 2007 US