1. Field of the Invention
The invention relates to the field of methods for making remote identification devices, such as tags for garments.
2. Description of the Related Art
Tags and labels have long been attached to garments intended for retail purpose, to provide information on price, size, and/or features to the consumer, as well as for antitheft purposes. More recently, such tags and labels have begun to incorporate radio frequency identification (RFID) devices therein, to enable detection of the garments at a distance (such as for inventory and antitheft purposes), and/or to allow information regarding the garment, such as price) to be read at a distance. Some examples of RFID tags and labels appear in U.S. Pat. Nos. 6,107,920, 6,206,292, and 6,262,692, all of which are hereby incorporated by reference in their entireties.
Currently, one way of making garment tags incorporating remotely-detectable security devices (such as RFID devices) is to preprint indicia onto card stock. A security device such as an RFID device is then attached to the card stock. The flat stock to sent to a local distribution house that prints the product specific indicia onto the card stock, and then folds the card to produce a tag. Note that the security device is under the preprinted indicia so as to prevent damage during the second printing step.
Improvements in the above methods and devices would be desirable.
The current invention involves improved methods of making remotely-readable or remotely-detectable devices such as tags for garments, which tags include RFID devices.
According to one aspect of the invention, a paper stock is preprinted with desired repeated (generic) information, and a security device (such as an RFID chip and antenna) is attached to a roll of paper labels on the paper stock. The preprinted repeated or generic information could be any sort of information that is the same from tag to tag, such as a store logo, decorative designs, and/or information signaling the presence of the security device. In a subsequent printing operation, which may be preformed in a different location, with a different printer, and/or at a different time, other information may be printed on another part of the paper labels. This other information may include information corresponding to a particular garment to which the tag is to be attached, such as size, color, or style of the garment. The information may be human readable an/or computer readable. The other information may also include an identifier regarding the particular security device that is part of the tag, for example a serial number corresponding to the particular RFID device. After the printing of the individualized information the final printed label could be folded over a plain card stock and adhered to the card stock to make a final tag.
According to another embodiment of the invention, a pair of facestock streams are laminated together to form the tag. One of the facestock streams is a preprinted paper stock or cardstock, with generic information printed thereon, with a security device (such as an RFID device) attached. The other facestock may be a paper roll upon which the individualized information (see above) for each of the tags is printed. After printing the individualized information the two facestock streams may be attached together, perhaps at the exit of the printer for printing the individualized information. Good side-to-side print registration may be obtained by use of this method. The individualized information may be electronically inspected, prior to the joining of the two facestocks, to verify print quality and/or content. Attachment of preprinted indicia and RFID devices to areas with individualized information that failed inspection could be aborted, in order to avoid wasting RFID devices by attaching them to individualized printed portions that are somehow defective.
According to still another aspect of the invention, a tag is preprinted with generic information, and is subsequently printed with individualized information, including information regarding an RFID device to be attached to the tag either before or after the second printing. The information regarding the RFID device may include a machine-readable or human-readable identifier associated with the RFID device, such as a serial number. The printer for printing the individualized information may be coupled to a reader for interrogating the RFID devices in order to supply at least some of the information for printing the individualized information. Alternatively or in addition, the printer may be coupled to a data storage device, such as computer-readable media, that stores information for printing the individualized information. For instance, the data may include serial numbers of RFID devices listed in the order in which they are supplied to the printer. These RFID devices may be supplied to the printer in a roll format. If the RFID devices are attached following the printing of the individualized information, an inspection of the individualized information may be performed before the attaching, with no RFID device attached for individualized information portions that fail the inspection. A pressure sensitive adhesive (PSA) may be used for attachment of the RFID devices or other security devices.
According to a further aspect of the invention, a number of layers, including a thermal-transfer-printable layer, a preprinted layer, RFID device layer (for example on a suitable polymer such as PET), and an optional cardstock layer, are laminated together onto a carrier material. The laminated layers are then cut into individual tags that are still coupled to the carrier material. A thermal transfer printer is then used to print individualized information into the thermal-transfer-printable layer. Following the thermal transfer printing, the completed tags are separated from the carrier material by peeling them off the carrier material.
According to another aspect of the invention, a method of making an RFID tag includes the steps of: preparing a paper roll material, the preparing including: printing first information on a first face of the roll material; and attaching a plurality of RFID devices to an opposite face of the roll material; after the preparing, printing second information on the first face of the roll material; and folding portions of the paper roll material around portions of cardstock, with the first and second information on respective opposite faces of the resulting tag.
According to yet another aspect of the invention, a method of making an RFID tag includes the steps of: preparing a pair of printable facestocks, one of the facestocks having an RFID device attached thereto; and adhesively joining the facestocks together.
According to still another aspect of the invention, a method of making an RFID tag includes the steps of: obtaining device information from an RFID device; printing individualized information on a facestock, wherein the individualized information is at least in part a function of the device information obtained from the RFID device; and attaching the RFID device to the facestock.
According to a further aspect of the invention, a method of making an RFID tag includes the steps of: laminating plural layers to a carrier material, the plural layers including a plurality of RFID devices and a printable facestock; die cutting the plural layers to produce plural tags on the carrier material; and separating the tags from the carrier material.
To the accomplishment of the foregoing and related ends, the invention comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative embodiments of the invention. These embodiments are indicative, however, of but a few of the various ways in which the principles of the invention may be employed. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
In the annexed drawings, which are not necessarily to scale:
In the various below-described methods of making tags, improvements are made over previous methods in terms of more efficient storage, elimination of process steps, reduction of waste materials, and/or reduction of cost of production.
In step 12, preprinting is performed to print generic information 42 on a first face of tag portions 44 of a paper roll 22. The paper roll 22 may utilize 10-16 pt. paper, for example. The preprinting is performed by a printer 24, using any of a variety of suitable, well-known printing techniques, such as flexo printing. The generic information 42 may include any of a variety of information that is to be included on each of the tags 40, and does not need to be customized or varied for each individual tag. Examples of the generic information 42 include logos, decorative elements, and notices, instructions, or warnings about the presence of an RFID device in the tag 40.
The printing operation may be combined with coating a second face of the portions 44 (on an opposite side of the portions from the first face) with an adhesive layer 46. The adhesive layer 46 may be any of a variety of suitable adhesives, such as well-known pressure sensitive adhesives (PSAs).
In step 14 an RFID device 48 is attached to the second face of the portion 44 by an attachment device 26, being secured to the portion 44 by the adhesive layer 46. The RFID device 48 is secured on the second face at a location underneath where the generic information 42 is printed on the first face. This is done to avoid locating the RFID device 48 at a location underneath a blank area 50 where individualized information will be printed in a later step. By avoiding printing over an area where the RFID device-is mounted, the risk of damage to the RFID device may be reduced.
The RFID device 48 includes an RFID chip 54 coupled to an antenna 56. The operative parts of the RFID device 48 may be mounted on a suitable substrate 58, such as a suitable polymer substrate. The RFID device 48 is configured for at least remote detection by a suitable reader. It will be appreciated that the RFID device 48 may be any a variety of remotely detectable devices of varying complexity. The RFID device 48 may store additional information, such as a serial number or other identifier that may be associated with product characteristics. In addition, the RFID device 48 may have the additional capability of having information remotely stored upon it, allowing a reader/writer to interact with the RFID device 48 to store information in the RFID device 48. In addition to the components shown for the RFID device 48, it will be appreciated that the RFID device 48 may have additional suitable components, such as batteries or other energy storage devices.
Following preprinting of the generic information 12, and attachment of the RFID devices 48, the roll 22 may be re-wound and stored at a location 28 until completion of the tags 40 is desired. The location 28 may be a suitable location such as a warehouse or other storage facility, where the paper roll 22 of the partially-completed tags 40 is kept. There are cost advantages to partially fabricating the tags 40 in large runs at a central location, and completing the tags 40 at another location and/or at another time, for example at a place and time when the actual completed tags 40 are to be affixed to merchandise.
It will be appreciated that a paper roll 22 of the partially-completed tags 40 is less costly to transport and store than a roll of partially-completed tags on a heavier material, such as cardstock. In addition, should there be a need to scrap partially-completed tags, it will be appreciated that discarding partially-completed tags on a relatively-inexpensive paper roll represents less of a loss than discarding partially-completed tags on relatively-expensive cardstock.
When completion of the tags is desired, the paper roll 22 is removed from the storage location 28. In step 16, individualized information 60 is printed in the blank area 50 of the first (front) face of the paper roll portion 44, using a second printer 30. The individualized information may include information corresponding to a particular garment or other object to which the tag is to be attached. Examples include the size, color, or style of the garment. The information may be human readable an/or computer readable. For example, the individualized information may be in the form of alphanumeric characters, symbols, bar codes, etc. The other information may also include an identifier regarding the particular security device that is part of the tag, for example a serial number corresponding to the particular RFID device.
Although the preprinting step 12 of the generic information 42, and the printing step 16 of the individualized information 60, are shown as involving different print operations with different printers at different locations and at different times, alternatively the print operations may be performed at the same time, at the same location, and/or with the same printer.
After the printing of the individualized information 60, the paper roll 22 may be folded over card stock 64, in step 17. The folding step 17 may be performed by machine or by hand at a folding station 32. The adhesive layer 46 on the back side of the portions 44 of the paper roll 22 serves to adhere the portions 44 to both faces of the cardstock 64.
In step 18 the completed tags 40 are separated from the paper roll 22 and from each other, at a cutting station 34. A die cutter, cutting wheel, laser cutting device, or other suitable cutting device may be used to singulate the tags 40, while the tags are still coupled to the carrier material. The cutting may also include placing a hole or notch 70 in the tag 40, for example to aid in attaching the tag 40 to an object such as a garment. The completed tags 40 may then be attached to individual garments or other objects to be tracked.
Many of the operations described above are shown as part of one or more roll-to-roll processes. It will be appreciated that such operations may be performed in other than roll-to-roll processes.
In addition, it will be appreciated that the order of the above operations may be altered somewhat from that shown. For instance, it may be possible to separate the individual paper tag portions 44 from the paper roll 22 before attaching the tag portions 44 to individual pieces of cardstock, or to a continuous feed of cardstock.
It will be appreciated that many variations are possible regarding the above method. For example, the RFID device 48 may be located so that it is visible in the finished tag 40, rather than being embedded in the middle of the tag 40.
The above method presents many advantages over methods that involve preprinting on cardstock. It is easier to print on paper than on cardstock. Since paper is a lighter, less bulky, and cheaper material than cardstock, the cost of transporting and storing partially-completed tags is reduced. Further, the cost invested in partially-completed tags is smaller, resulting in less of an investment in inventory of partially-completed tags, and resulting in less of a loss if partially-completed tags are discarded.
In step 112, a pair of facestock streams 142 and 144 are prepared. The first facestock stream 142 has generic information 146 printed thereon, and the second facestock stream 144 has individualized information 148 printed thereon. The printings of the facestock streams 142 and 144 may occur in separate printers 122 and 124, which may be printings at separate times, and in separate locations. RFID devices 150 are attached to the first facestock stream 142, for example being adhesively attached by an attachment mechanism 126 to an underside of the first facestock stream 142, for example using a PSA, such as described above in the method 10. The facestock streams 142 and 144 may be made of suitable paper and/or cardstock.
In step 114 the individualized information 148 is electronically inspected at an inspection station 130. The individualized information 148 may be electronically inspected to verify print quality and/or content. Some mechanism may be provided to avoid attaching the facestreams 142 and 144 together in instances where the individualized information 148 fails to pass inspection. It will be appreciated that the inspection is optional, and may be omitted if desired.
In step 116 the facestreams 142 and 144 are joined together, for example by laminating the facestreams 142 and 144 together between a pair of rollers 132. It will be appreciated that many alternatives exist for joining together the facestreams 142 and 144 (or portions thereof), some of which do not involve roll-to-roll methods. If a printed unit failed inspection, the unit could be diverted from the lamination pathway by various methods such as temporary diversion of the web pathway.
Finally, in step 118 a cutter 134 is used to separate the completed tags 140 from one another. The finished tags 140 may then be attached to garments or other objects.
The method 110 allows good side-to-side print registration to be obtained. The method 110 also advantageously avoids extra scoring of the card stock to yield a clean fold, which is a feature of at least some current methods. Also, it avoids problems that might occur when the fold is not perfect and yields poor side-to-side registration.
The method 210 and the system 220 allow interrogation to of the RFID devices to provide correct information for the printing of the individualized information. Other steps of the method 210 have been omitted, for example steps involving printing of generic information, inspecting the printed information, folding, laminating, and/or cutting.
It will be appreciated that many alternatives exist for using a reader to interrogate RFID devices to provide information for correct printing of individualized information. One alternative arrangement is shown in
Another alternative to provide the printer 226 or 226′ with information on the RFID devices from another source, such as from an earlier interrogation of the devices at another location, or from information obtained during manufacture and/or programming of the RFID devices. Such information may be provided to the printer 226 or 266′ by any of a variety of suitable devices, such as by a computer readable medium such as a hard drive, data link, or optical disk.
In step 312 various layers are laminated onto a carrier material 322. The layers include a preprinted graphic layer 342, an RFID inlay layer 344, an optional cardstock layer 346, and a printable facestock 348. The graphic layer 342 may be printed paper or cardstock layer having generic information printed thereupon. Examples of suitable materials for the graphic layer 342 include FASSON 60# Matte Litho Spec. 12906/12913 and FASSON 60# Semi Gloss Spec. 15335/18658. The RFID inlayer layer 344 is a web containing RFID devices, for example on a 2 mil PET layer. The printable facestock 348 may be made of a material that is printable by a thermal printing process. An example of a suitable material for the facestock is FASSON TT1C. The layers 342-348 may be coupled together by a suitable adhesive, such as layers of suitable adhesive placed between the various layers 342-348. Examples of suitable adhesives include FASSON 2501 and FASSON C2500. All of the FASSON products mentioned herein are available from Avery Dennison Corporation. A non-tacky adhesive may be used to secure the laminate of the layers 342-348 to the carrier material 322. The carrier material could be any suitable web stock (i.e., paper, polymer film, foil, etc). A pair of rollers 324 may be used to laminate the layers 342-348 together, and to the carrier material 322.
In step 314 a cutter 326 is used to die cut material around the individual tags 340, while leaving the tags 340 affixed to the carrier material 322, as illustrated in
Finally, in step 318, the individual finished tags 340 are peeled from the carrier material 322 by use of a peeler 330. The peeler 330 may be a sharp-edged plate or other suitable device. The tags 340 may then be attached to garments or other objects.
It will be appreciated that concepts or features that have been described with regard to one of the methods may be employable in other of the methods. That is, features of the various methods may be advantageously combined with one another. For instance, usable with any of the above methods is the concept of method 210 of interrogating RFID devices to provide information for printing individualized information. Many other combinations of advantageous features of the various methods are possible, and are intended to be embraced by this description.
Although the invention has been shown and described with respect to a certain embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
This application claims priority under 35 USC 119 to U.S. Provisional Application No. 60/710,263, filed Aug. 22, 2005, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4876535 | Ballmer et al. | Oct 1989 | A |
5153983 | Oyama | Oct 1992 | A |
5430441 | Bickley et al. | Jul 1995 | A |
5545291 | Smith et al. | Aug 1996 | A |
5557085 | Tyren et al. | Sep 1996 | A |
5564888 | Doan | Oct 1996 | A |
5621199 | Calari et al. | Apr 1997 | A |
5781110 | Habeger, Jr. et al. | Jul 1998 | A |
5783856 | Smith et al. | Jul 1998 | A |
5824186 | Smith et al. | Oct 1998 | A |
5854480 | Noto | Dec 1998 | A |
5880695 | Brown et al. | Mar 1999 | A |
5904545 | Smith et al. | May 1999 | A |
5983363 | Tuttle et al. | Nov 1999 | A |
6001211 | Hiroyuki | Dec 1999 | A |
6052093 | Yao et al. | Apr 2000 | A |
6078259 | Brady et al. | Jun 2000 | A |
6100804 | Brady et al. | Aug 2000 | A |
6107920 | Eberhardt et al. | Aug 2000 | A |
6121880 | Scott et al. | Sep 2000 | A |
6122492 | Sears | Sep 2000 | A |
6130612 | Castellano et al. | Oct 2000 | A |
6145901 | Rich | Nov 2000 | A |
6147605 | Vega et al. | Nov 2000 | A |
6172609 | Lu et al. | Jan 2001 | B1 |
6181287 | Beigel | Jan 2001 | B1 |
6204764 | Maloney | Mar 2001 | B1 |
6206292 | Robertz et al. | Mar 2001 | B1 |
6219543 | Myers et al. | Apr 2001 | B1 |
6236316 | Eberhardt et al. | May 2001 | B1 |
6246326 | Wiklof et al. | Jun 2001 | B1 |
6262692 | Babb | Jul 2001 | B1 |
6265977 | Vega et al. | Jul 2001 | B1 |
6274508 | Jacobsen et al. | Aug 2001 | B1 |
6280544 | Fox et al. | Aug 2001 | B1 |
6281038 | Jacobsen et al. | Aug 2001 | B1 |
6291896 | Smith | Sep 2001 | B1 |
6316278 | Jacobsen et al. | Nov 2001 | B1 |
6380729 | Smith | Apr 2002 | B1 |
6392544 | Collins et al. | May 2002 | B1 |
6404339 | Eberhardt | Jun 2002 | B1 |
6407665 | Maloney | Jun 2002 | B2 |
6415978 | McAllister | Jul 2002 | B1 |
6417025 | Gengel | Jul 2002 | B1 |
6446208 | Gujar et al. | Sep 2002 | B1 |
6451154 | Grabau et al. | Sep 2002 | B1 |
6480086 | Kluge et al. | Nov 2002 | B1 |
6487681 | Tuttle et al. | Nov 2002 | B1 |
6542114 | Eagleson et al. | Apr 2003 | B1 |
6545605 | Van Horn et al. | Apr 2003 | B2 |
6600420 | Goff et al. | Jul 2003 | B2 |
6611199 | Geiszler et al. | Aug 2003 | B1 |
6624362 | Muller | Sep 2003 | B2 |
6645327 | Austin et al. | Nov 2003 | B2 |
6665193 | Chung et al. | Dec 2003 | B1 |
6677852 | Landt | Jan 2004 | B1 |
6683254 | Gunnels | Jan 2004 | B1 |
6836215 | Laurash et al. | Dec 2004 | B1 |
6899476 | Barrus et al. | May 2005 | B1 |
20010006368 | Maloney | Jul 2001 | A1 |
20010053675 | Plettner | Dec 2001 | A1 |
20010054755 | Kirkham | Dec 2001 | A1 |
20020035701 | Casebolt et al. | Mar 2002 | A1 |
20020038267 | Can et al. | Mar 2002 | A1 |
20020145520 | Maloney | Oct 2002 | A1 |
20030062119 | Hohberger et al. | Apr 2003 | A1 |
20040041262 | Okamoto et al. | Mar 2004 | A1 |
20040100413 | Waldner | May 2004 | A1 |
20040160233 | Forster | Aug 2004 | A1 |
20040178267 | Tsirline et al. | Sep 2004 | A1 |
20040188010 | Chaoui | Sep 2004 | A1 |
20040238098 | Bleckmann et al. | Dec 2004 | A1 |
20050189066 | Look et al. | Sep 2005 | A1 |
20050274800 | Chapman et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
101 20 625 | Apr 2001 | DE |
1039543 | Mar 2000 | EP |
0 996 084 | Apr 2000 | EP |
0996084 | Apr 2000 | EP |
0896706 | Jun 2000 | EP |
1 130 542 | Sep 2001 | EP |
1086444 | Feb 2003 | EP |
1 517 285 | Mar 2005 | EP |
2 760 209 | Apr 1998 | FR |
2004187159 | Jul 2004 | JP |
2004206479 | Jul 2004 | JP |
2004206512 | Jul 2004 | JP |
WO 8200541 | Feb 1982 | WO |
WO 9305489 | Mar 1993 | WO |
WO 0016277 | Mar 2000 | WO |
WO 0016280 | Mar 2000 | WO |
WO 0041148 | Jul 2000 | WO |
WO 0045353 | Aug 2000 | WO |
WO 0049648 | Aug 2000 | WO |
WO 0125817 | Apr 2001 | WO |
WO 0173864 | Apr 2001 | WO |
WO 0150547 | Jul 2001 | WO |
WO 0167412 | Sep 2001 | WO |
WO 0171686 | Sep 2001 | WO |
WO 0175832 | Oct 2001 | WO |
WO 0180174 | Oct 2001 | WO |
WO 0225825 | Mar 2002 | WO |
WO 02097723 | Dec 2002 | WO |
WO 03056509 | Jul 2003 | WO |
WO 03068874 | Aug 2003 | WO |
WO 2004030148 | Sep 2003 | WO |
WO 2004044384 | May 2004 | WO |
WO 2004046762 | Jun 2004 | WO |
WO 2004053721 | Jun 2004 | WO |
WO 2004072892 | Aug 2004 | WO |
WO 2005009750 | Feb 2005 | WO |
WO 2005013179 | Feb 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20070039687 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
60710263 | Aug 2005 | US |