Method of making steel couplers for joining concrete reinforcing bars

Information

  • Patent Grant
  • 6571452
  • Patent Number
    6,571,452
  • Date Filed
    Tuesday, November 21, 2000
    24 years ago
  • Date Issued
    Tuesday, June 3, 2003
    21 years ago
Abstract
A section of heat treated solid steel rod receives a phosphate solution treatment and is inserted into a blind cavity of a first die member within a cold forging press. A punch is forced axially into the rod section in successive steps to cold-forge a first bore and a tubular first end portion of a coupler body. A second end portion of the coupler body is also cold-forged in successive steps after treatments and is either reduced in diameter to receive external threads or is formed with a second bore. Each of the first and second bores receives an end portion of a concrete reinforcing bar after which the tubular end portion of body is compressed or swaged inwardly to secure the body to the reinforcing bar. The second bore may also be machined with internal threads for receiving the external threads on another coupler.
Description




BACKGROUND OF THE INVENTION




In the production of tubular steel couplers for joining opposing end portions of two concrete reinforcing rods, commonly referred to as “rebars”, for example, of the general type disclosed in U.S. Pat. Nos. 3,415,552, 3,551,999 and also U.S. Pat. No. 5,664,902 which issued to the assignee of the present invention, it is common to purchase seamless steel tubing and cut the tubing into sections. The opposite end portions of the tubing sections may be formed with internal threads, for example, as disclosed in U.S. Pat. No. 3,415,552, or the opposite end portions of a tubing section may be compressed or swaged radially inwardly onto the corresponding opposing end portions of the reinforcing bars, for example, as disclosed in U.S. Pat. No. 3,551,999. While the steel tubing usually has a generally cylindrical inner and outer surfaces, the inner surface may be machined with internal threads or with internal axially spaced circumferential teeth, as shown in the aforementioned patents. The cylindrical tubing may also be formed between dies to produce a tubular coupling body having non-cylindrical outer and/or inner surfaces, for example, as disclosed in above mentioned U.S. Pat. No. 5,664,902.




Since the cost of producing seamless steel tubing is substantially more than the cost of producing solid steel cylindrical bars or rods, tubular rebar coupler bodies have also been produced by machining sections of solid steel bar stock, preferably on a computer controlled lathe or machining center. A bore is first drilled within each solid rod section and then internal threads are machined within the bore. It is also known to machine one end portion of a solid coupler body to form an end portion of reduced diameter and on which external threads are then machined.




The end portion of the coupler body having the drilled bore is secured to an end portion of a concrete reinforcing bar by compressing or swaging the end portion radially with a mechanical or hydraulic press so that the coupler body positively grips the concrete reinforcing bar and provides the bar with an externally threaded end portion. The machined external and internal threads may be generally cylindrical or tapered, depending on the application of the rebar coupler. The primary disadvantage of machining solid steel bar stock or rod is the production of waste or scrap material which adds significantly to the cost of producing the rebar couplers.




SUMMARY OF THE INVENTION




The present invention is directed to an improved method of producing or making steel couplers for joining opposing end portions of concrete reinforcing bars or rebars and which significantly reduces the cost of producing couplers with tubular end portions. In accordance with the invention, a section of solid steel rod is placed within the cavity of a first die member with an end surface of the rod section facing or opposing a bottom end surface of the cavity. A male die or punch is forced axially downwardly or into the solid rod section to form or cold-forge a bore within an end portion of the rod section and to extrude the steel axially in a reverse direction to form a first tubular end portion of a coupler body.




In order to form an internally threaded bore within an opposite end portion of the coupler body, the rod section with a bore in one end portion is placed within another die member defining a second cavity with an inwardly or upwardly projecting punch. The punch projecting downwardly from the moveable die is forced into the bore to cold-forge or extrude the steel into the annular cavity surrounding the bottom die punch and to form a second bore and again to cause a reverse flow of the steel to extend the length of the first bore and the first tubular portion of the coupler body. After the coupler body is removed from the second die member, the bore within the second end portion is internally threaded.




A tubular coupler body having a tubular end portion and a reduced opposite end portion with external threads is formed by inserting a solid rod section into a die cavity having a reduced inner end portion. When the punch on the moveable die is forced axially into the solid rod section to form the first bore and tubular body end portion, the steel extrudes partially into the smaller portion of the cavity. A second step of the cold forging operation completes the reduced diameter solid end portion which is externally threaded.




A coupler body having opposite tubular end portions with an internal radial wall is also formed in accordance with the invention by inserting a solid rod section into a cylindrical cavity of a first die member and forcing a punch with a ram of a hydraulic press into the solid rod section to form partially a first tubular end portion defining a bore. The rod section is then inverted and placed within a cavity of a second die member having a punch projecting inwardly into the first bore. The ram punch is then forced into the solid end portion of the rod section to form or cold-forge the second tubular end portion of the coupler body and to define an integral center wall separating the bores within the opposite end portions of the coupler body. After opposing end portions of two concrete reinforcing bars or rebars are inserted into the bores of the coupler body, the opposite tubular end portions of the body are compressed or swaged inwardly to form positive connections with the rebars.











Other features and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.




BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a side elevational view of male and female rebar couplers constructed in accordance with the invention and with portions broken away to show attachment to corresponding rebar end portions;





FIG. 2

is a part section view of the couplers shown in

FIG. 1

before attachment to the rebar end portions;





FIGS. 3-6

illustrate diagrammatically the cold-forging steps for making the female coupler body shown in

FIG. 2

;





FIGS. 7-10

illustrate diagrammatically the cold-forging steps for making the male coupler body shown in

FIG. 2

;





FIG. 11

is an elevational view, in part section, of a tubular rebar coupler also constructed in accordance with the invention and attached to opposing rebar end portions;





FIGS. 12-15

illustrate the cold-forging steps for making a tubular coupler body as shown in FIG.


16


and used to make the coupler shown in

FIG. 11

; and





FIG. 16

is an axial section of the tubular coupler body produced by the method steps shown in FIGS.


12


-


15


.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




A steel female coupler


22


(

FIG. 1

) and a steel male coupler


24


are each made or produced in accordance with the present invention for rigidly connecting or coupling the opposing end portions of two concrete reinforcing bars


30


, commonly referred to as rebars. Commonly, each of the rebars


30


has longitudinally spaced and circumferentially extending ribs


32


and also a pair of longitudinally extending and diametrically opposite ribs


34


which intersect the ribs


32


. As shown in

FIG. 1

, the steel couplers


22


and


24


are compressed or swaged radially inwardly by dies on a conventional swaging press (not shown) so that each coupler is positively secured to the corresponding reinforcing bar


30


. The compressing or swaging operation of each coupler results in producing axially spaced circumferential ribs


36


which cooperate with the ribs


32


and


34


to lock the couplers and rebars to the surrounding concrete.





FIG. 2

shows each of the steel couplers


22


and


24


before receiving and being swaged onto the end portions of the rebars


30


. In accordance with the present invention, the coupler


22


is produced from a cylindrical section


40


(

FIG. 3

) of a solid steel rod, preferably Grade


1018


, but other steel Grades may be used, depending upon the mechanical properties required from the couplers. As diagrammatically illustrated, the steel rod section


40


is inserted into a cylindrical cavity


42


of a cylindrical steel die member


44


with the bottom end of the rod section


40


facing or seated on an end surface


46


of the cavity


42


. A retaining ring or plate


48


tightly surrounds the die member


44


for reinforcement. The die member


44


and plate


48


are secured to the bed of a cold-forging press (not shown) which has a vertical moveable ram to which is attached a tooling or die member


52


supporting a cylindrical die or punch


54


.




As shown in

FIG. 4

, the punch


54


is pressed downwardly into the cylindrical solid rod section


40


to cold-forge or form a bore


58


within a partially formed coupler body


60


. During the forming of the bore


58


, the steel is extruded axially in a reverse flow direction within the cavity


42


around the punch


54


to form a tubular portion


62


. Prior to inserting the cylindrical rod section


40


into the cavity


42


, the rod section is heat treated for about two hours at about 750° C. and is then slowly cooled to a temperature of about 500° C. over a period of about eight hours. After the rod section returns to room temperature, it is treated with a phosphate solution which is rinsed with water, and the rod section is allowed to air dry.




After partially forming the coupler body


60


by the cold-forging operation shown in

FIG. 4

, the coupler body is again heat treated and treated with a phosphate solution, as described above, and is then placed within a cylindrical cavity


64


of another cylindrical die member


65


. The die member


65


is retained within a counterbore of a base plate


67


by a set of screws


69


, and a generally cylindrical protrusion or slightly tapered punch


71


is formed as a part of the base plate


67


and projects upwardly within the counterbore and into the cavity


64


.




During the cold-forging step shown in

FIG. 6

, the punch


54


is pressed downwardly within the cavity


64


to produce forward or downward extrusion of the steel into the annular cavity surrounding the punch


71


and reverse or upward extrusion within the cavity


64


around the punch


54


to form a coupler body


75


with an upper tubular end portion


77


defining a cylindrical bore


78


. The coupler body


75


also has an opposite tubular end portion


81


defining a slightly tapered bore


82


, and the bores


78


and


82


are separated by an internal integral radial wall


84


. After the coupler body


75


is removed from the die member


65


, it is machined to remove the internal wall


84


and to form internal threads


88


to complete the female coupler


22


shown in FIG.


2


.





FIGS. 7-10

illustrate the steps for cold-forging a cylindrical solid steel rod section


90


to produce the male coupler body


24


shown in FIG.


2


. The rod section


90


is preferably of the same material as the rod section


40


and is preferably 3% to 7% greater in length. After the rod section


90


is heat treated and treated with a phosphate solution in the same manner as described above for the rod section


40


, the rod section


90


is inserted into a cavity


92


of a lower die member


94


confined within a bore of a base ring or plate


98


. The cavity


92


includes an extension


101


which is slightly tapered.




During the first cold-forging step or operation, the punch


54


is forced by the upper die member


52


into the solid rod section


90


causing forward or downward extrusion of the steel partially into the cavity extension


101


and reverse or upward extrusion of the steel into the cavity


92


surrounding the punch


54


, as shown in

FIG. 8

, to form a partially forged preform or coupler body


105


. The partially forged preform or coupler body


105


is again processed through the heat treatment and phosphate operations, as described above, and is returned to another die cavity


92


within a die member


94


confined within a base plate


107


. The punch


54


is again pressed into a partially formed bore


106


to cause forward extrusion of the partially formed coupler body


105


into the cavity extension


101


of the die member


94


to form a solid end portion


106


. The punch also causes reverse or upward extrusion of the steel into the annular portion of the cavity


92


surrounding the punch


54


to form the tubular end portion


110


of the coupler body


105


. External threads


116


are rolled or cut onto the solid end portion


108


to form the male coupler


24


shown in FIG.


2


.




Referring to

FIG. 11

, the cold-forging method of producing a rebar coupler in accordance with the invention, is also used to form a coupler


120


having opposite unthreaded tubular end portions


122


separated by an integrally forged intermediate radial wall


124


. The tubular end portions


122


receive corresponding opposing end portions of two concrete reinforcing bars or rebars


30


, and the tubular end portions


122


are compressed or swaged radially inwardly into the rebars


30


and between the ribs


32


and


34


to form positive high strength connections with the rebars


30


. The conventional swaging operation is performed by mating dies (not shown) which are usually operated by a portable hydraulic press and which produced circumferential ribs


126


such as the ribs


36


described above in connection with FIG.


1


.





FIG. 16

shows the body of the coupler


120


before receiving the end portions of the rebars


30


and before the swaging operations and is also produced by steps which include the cold-forging a cylindrical solid steel rod section


130


(FIGS.


12


-


15


). The rod section


130


is first processed through the heat treatment and phosphate operations described above in connection with the solid rod sections


40


and


90


. The rod section


130


is then placed within the cylindrical cavity


42


of the lower die member


44


, and the punch


54


, supported by the ram of the forging press, is forced downwardly into the rod section as shown in

FIG. 13

for partially forming a bore


132


and partially forming one of the tubular end portions


122


of a partially formed coupler body


135


.




After the coupler body


135


is removed from the cavity


42


, it is again processed through the heat treatment and phosphate operations, and is then inserted into a cavity


138


of a lower cylindrical die member


140


. The lower die member


140


includes a base plate


142


having a protrusion or punch


144


projecting upwardly into the cavity


138


. During the next cold-forging step or operation (

FIG. 15

) the punch


54


is forced into the solid upper end portion of the partially formed coupler body


135


to form the tubular opposite end portions


122


of the coupler


120


by forward flow or extrusion of the steel downwardly around the punch


144


and reverse flow or extrusion of the steel upwardly within the cavity


138


around the punch


54


. The completely forged coupler body


135


shown in

FIG. 15

, is removed from the die cavity


138


and is shown in section in FIG.


16


.




From the drawings and the above description, it is apparent that a rebar coupler constructed in accordance with the method of the present invention, provides desirable advantages. As a primary advantage, by processing a solid cylindrical section of steel rod using the steps described above, a rebar coupler is made or produced at a substantially lower cost for each coupler since the cost of solid steel rods is significantly lower than the cost of seamless steel tubing. The cold-forging operations or steps also produce a coupler with precision and uniform wall thickness which is desirable for the swaging operations. As illustrated, the method of the invention may be used to form rebar coupler bodies having threaded end portions as described in connection with

FIGS. 1-10

or non-threaded coupler bodies, as described in connection with

FIGS. 11-16

.




While the rebar couplers and the method of producing the couplers herein described constitute preferred embodiments of the invention, it is to be understood that the invention is not limited to the precise coupler, method and form of forging apparatus described, and that changes may be made therein without departing from the scope and spirit of the invention as defined in the appended claims.



Claims
  • 1. A method of making a rebar coupler and for rigidly connecting the coupler to an end portion of a concrete reinforcing bar, comprising the steps of forming a cavity in a first die member with an inner extension portion of the cavity smaller than an outer portion of the cavity and having a tapered inner surface, inserting a solid steel rod section into the cavity of the first die member with an end surface of the steel rod section opposing an inner end surface of the inner extension portion of the die cavity, forcing a punch along an axis of the cavity into a solid first end portion of the solid rod section to forge a first bore and a tubular first end portion of a coupler body and to forge a second solid end portion of the solid rod section into the inner extension portion of the cavity to form a solid second end portion of the coupler body smaller than the tubular first end portion of the coupler body and having a tapered outer surface, forming external threads on the tapered outer surface of the second end portion of the coupler body, extending the end portion of the concrete reinforcing bar into the tubular first end portion of the coupler body, and compressing the first end portion of the coupler body radially inwardly against the end portion of the concrete reinforcing bar to form a rigid connection therebetween.
  • 2. The method of claim 1 in combination with a method of making a second rebar coupler and for rigidly connecting the second rebar coupler to an end portion of a second concrete reinforcing bar, comprising the steps of forming a second cavity in a second die member having a second punch projecting into an end portion of the second cavity, inserting a second solid steel rod section into the second cavity of the second die member, forcing a third punch along an axis of the second cavity into a solid first end portion of the second solid rod section to forge a second bore and a third bore within opposite end portions of the second solid rod section and to form a second coupler body, forming internal threads within the second bore of the second coupler body, extending the end portion of the second concrete reinforcing bar into the third bore of the second coupler body, and compressing an end portion of the second coupler body defining the third bore radially inwardly against the end portion of the second concrete reinforcing bar to form a rigid connection therebetween.
Parent Case Info

This is a continuation of application Ser. No. 09/233,399, filed Jan. 19, 1999, now abandoned.

US Referenced Citations (21)
Number Name Date Kind
172253 Chapman Jan 1876 A
2789344 Karl Apr 1957 A
3056197 Lawson Oct 1962 A
3079682 Bailey Mar 1963 A
3101534 Longe Aug 1963 A
3186209 Friedman Jun 1965 A
3415552 Howlett Dec 1968 A
3551999 Gutmann Jan 1971 A
3638978 Guntermann Feb 1972 A
4166373 Braun Sep 1979 A
4416141 Nippert Nov 1983 A
4423616 Pease Jan 1984 A
4752151 Ashida Jun 1988 A
4918969 Takeuchi et al. Apr 1990 A
5088311 Inoue Feb 1992 A
5152118 Lancelot Oct 1992 A
5399274 Marcus Mar 1995 A
5664902 Holdsworth Sep 1997 A
5689882 Adachi et al. Nov 1997 A
5729952 Dahl Mar 1998 A
5871403 Simmons et al. Feb 1999 A
Continuations (1)
Number Date Country
Parent 09/233399 Jan 1999 US
Child 09/718209 US