This invention belongs to the field of metallurgy and aims to replace the widespread technology of steelmaking using only the process of decarbonization in two installations (smelting and ladle furnace) with a new method of steel smelting in a single installation which by innovative technologies covers all stages of steels smelting and refining only in a single installation with solution of the world problem of steel production—optimization of carbon content in steel-smelting pool for all given steel grades as well as casting of ready steel from the casting ladle of the same installation.
Currently, over 1.6 billion tons of steel are annually smelted using the identical technology in a convertor, open-hearth, double-hearth, induction or electric arc furnaces [1].
Loading of a metal charge, melting, finishing are realized in the above mentioned main installations but steel tapping, deoxidation, secondary treatment with agents and refining are carried out in another installation—casting ladle or ladle furnace and finished steel from the same steel casting ladle is casted on continuous-casting machine or in moulds. In a high power ladle furnace together with metal heating its inert gas blowing is performed through the water-cooling nozzle from the top, and from below or a side—by usage of porous plugs.
The methods of melting, production deoxidation and treatment with inert gases have the following disadvantages:
There is also known the method of steel smelting, deoxidation, alloying and refining and the device for its realization which envisages charging into the ladle furnace burden composed of metal scrap and fluxes, simultaneous melting of the burden from the top by electric arc and by a powerful torch of natural gas and air or oxygen from below injected from a nozzle comprising coaxial pipes, dusted with quartz powder in the hole of the ladle slide gate, additional charging of scrap in the process of smelting, disconnection of roof from the casting ladle, its inclination and raking off the primary slag, return of the ladle to its initial position, docking of roof to the casting ladle, secondary slag formation with materials deposited from hoppers, finishing and steel rimming process, after its completion overlapping of the first slide gate, cessation of natural gas supply and air or oxygen, raking off the secondary slag, transmission of extensive treatment process by inert gases to the intensive blowing together with reagents injection in process of steelmaking, during which desulfurization and dephosphorization of steel, homogenization and optimization of temperature and chemical composition of the metal take place [2].
The main drawback of the known method of steelmaking consists in the following:
The invention aims loading of scrap into the melting installation without removing the roof and cessation of the smelting process, using of heat emitted during the smelting of high-temperature exhausts for heating the materials dumped by charging pipes from hoppers into the furnace and supplied there scrap by the conveyor, reduction of fuel consumption, improvement of melting processes, finishing, steel deoxidation, refining with inert gases, reagents, improvement of deoxidation processes by heating the metal in a single modernized installation only up to the optimal temperature and with an abrupt improvement of its quality, also elimination of hard manual labor of the closing and opening of tap-hole of the main installation, secondary oxidation (at tapping from the furnace during flowing through the runner and filling of the ladle), processes polluting the environment, pouring of steel from the same installation on the continuous-casting machine with abrupt improvement of economic, qualitative and ecological indices.
The target was realized without shutting off the furnace and removal of its roof by supplying exhaust gases warmed with heat of steel scrap and pre-reduced pellets via the conveyor with the roof and burden receiving water-cooled charging pipe passing in the water-cooled roof of the ladle furnace receiving, by supplying of burned lime, bauxite, fluorspar and deoxidizers by charging pipes from corresponding hoppers.
The process of steel smelting covers transportation and docking with the roof of charged with scrap, pre-reduced pellets, fluxes of casting ladle with two elastic springs slide gates. One slide gate is used only for conduction of melting and finishing periods and another one—for injection of inert gas (e.g. argon) or nitrogen and reagents together with them for normal conduction of refining processes and metal casting.
The method of invention envisages gunning (coating with a layer of the refractory material) of the lining hot surface of the casting ladle, transportation of the casting ladle with two slide gates filled with steel burden to the installation of secondary treatment, docking of the ladle to water-cooled roof with electrodes (which is attached to gas cleaner by a special conveyer with the roof), melting of steel charge simultaneously from the top by electric arc and from below—with the warmth of a powerful torch formed during combustion of natural gas injected together with air or oxygen through dusted (by quartzite powder in pouring nozzle of the first slide gate) special jet consisted of coaxial pipes on the outside pipe of which natural gas is introduced and by inner pipe—air or oxygen.
Filling of the cavities in the melting process at metal shrinkage without removal of the roof is carried out by additives from hoppers with charging pipes or/and exhaust gases from the furnace ladle heated at moving on the conveyor covered with roof by exhausted from the ladle furnace gases and/or additional gas torches of shredded scrap and/or pre-reduced pellets and/or pouring of liquid iron through the special runner lined with refractory materials.
The process is carried out in an automated mode without switching off the installation, without loss of heat, without splashing of metal at loading cold scrap and other undesirable processes hindering the smooth implementation of the melting. Downloading of the primary slag without disjunction of the ladle with roof is performed by slag skimming machine through the special runner mounted on a ladle lined with refractory materials. After downloading of the primary slag under induced (by lime, bauxite and other fluxes, entered by mounted over the furnace roof dosing bins) secondary slag the periods of melting, finishing, boiling take place. If after total meltdown of burden the carbon content is higher than nominal for the ordered steel grade, then with account of the regularities of scientific discoveries 390 and 416 in 2010-2011 [3, 4], the amount of injection air or oxygen i.e. the excess oxygen coefficient is increased and decarbonization process (carbon burning from the molten steelmaking bath) is accelerated. If the carbon content in molten bath is low, i.e. small for the ordered steel grade, then natural gas consumption is increased, i.e. excess oxygen coefficient is decreased and together with decarbonization, carburization of steelmaking bath with the preservation of a strong metal boiling occurs.
With the help of a permanently operating device in the boiling process there are determined: level of liquid steel in the ladle, its temperature and content of chemical elements. After achievement of desired chemical composition and temperature the slide gate designated for melting process is closed, with it the supply of natural gas and oxygen or air is stopped. This completes the melting period. Simultaneously with this, an extensive purging of the metal with inert gas or nitrogen from the tubule, dusted by dry quartzite powder in the casting nozzle of the second slide gate, is transferred to an intensive mode, together with treatment of steel by reagents, deoxidation and alloying. The process is realized with supply of silicomanganese, ferromanganese, ferrosilicium, aluminum and other ferroalloys from the top with charging pipes from dosing bins located over the ladle furnace. With the help of heat flows directed from the bottom to the top (caused by bottom blowing of calcium carbide, calcium-silicon, magnesium, aluminum, barium and other active powdered reagents-microadditives from the injected apparatus via inert gas or nitrogen) the removal (by assimilation into active slag covering liquid steel) of deoxidation products, endogenous and exogenous nonmetallic inclusions from the finished liquid steel is accelerated.
When the steel grade requires very low index of non-metallic inclusions that is realized by low sulfur and phosphorus content, the secondary slag supersaturated with oxides, sulfides, phosphate compounds is removed and the new, third slag is formed inflowing from the upper hoppers by the slag-forming agents, active desulfurizers, reagents delivered from the bottom by injection apparatus and even after switching on the low level of the ladle furnace by emitted heat successfully continue the processes of the refining as well as deep desulfurization and dephosphorization.
After the desired chemical composition of steel is achieved, the supply of electricity in the ladle furnace is cut off and inert-gas blowing without reagents instead of pipeline is continued from argon cylinder fastened on the ladle during transportation by crane of casting ladle full with steel up to the continuous casting machine where automated process of continuous casting starts with open slide gate by cessation of the inert gas supply from the argon cylinder.
One of the examples of realization of the method with necessary devices is illustrated in FIGURE.
The installation for steel production contains slide gates (1 and 1′) located on the bottom of ladle furnace, embedded in the ladle bottom (2) and passed through the slide gates casting nozzles (3), herewith, in one of these nozzles is fixed a jet (4) for supplying natural gas and air or oxygen connected with main line and in the second—tubule (4′) to supply inert gas and reagents, and this line is connected with injection apparatus (16) for delivering of microalloying elements. A roof (5) is set on the ladle furnace in which are inserted the electrodes (6), a funnel (12) for hot metal pouring-in (29) and a water-cooled charging pipe (24) with which are connected dosing bins (15) for fluxes and deoxidizers and a conveyor (25) for burden supply. The casting ladle contains control lining (11) made on the walls in metal sheath (13) and the above-mentioned basic lining (2) which is coated with a protective refractory layer (23) obtained by pneumatic concrete gun. Also, on the outside on the sheath (13) are arranged trunnions (9), a carrier ring (10) and connected by a tubule (14) to a inert gas and reagents supplying main line (4′) a gas cylinder (17) for argon, herewith, the tubule, connected with the gas cylinder and the main line, is equipped with gate valves (33). Herewith, there is a slag runner (32) in the ladle wall and a slide gate on the bottom of the ladle contains moving (7) and stationary (8) refractory plates. The conveyor (25) covered with roof is connected to the hopper (26) for standard-size scrap, chimney (27), gas cleaner (28) and a hopper (30) for pre-reduced pellets. Besides this, for additional heating of pre-reduced pellets a burner (31) for natural gas is installed in the roof of the conveyer. The FIGURE also illustrates unfused burden (20) uploaded in the furnace, part of which is melted by electric arc (18) and gases (19). Metal flow (21) obtained by inert gas blowing and metal flow (22) obtained by natural gas blowing are also presented.
The ladle furnace is equipped with not shown in the FIGURE permanent apparatus for determining the level of liquid metal, the percentage of carbon content in it and other chemical elements.
The method of steel smelting with a single installation envisages gunning of ladle lining (2) work surface with protective layer (23) of refractory materials obtained by pneumatic concrete gun and after loading of burden materials the installation on the stand of powerful ladle furnace by casting crane, after which it is hermetically covered with water-cooled roof (5) and perform simultaneous melting of the charge from the top by electric arc (18) and from the bottom—by a powerful gas-air or gas-oxygen torch (19) blown up through coaxially located pipes (4) of jet dusted with quartzite powder in the hole of the casting nozzle of one slide gate (1). Simultaneously with start of smelting it is started and continued up to the end the blowing of inert gas or nitrogen with tubule (4′), dusted by quartzite powder in the hole of the casting nozzle of the second slide gate (1′).
Filling of the cavities formed during fusion proceeds automatically by supplying from mounted above the furnace roof a water-cooled charging pipe (24) of heated on the special conveyor (25) covered by roof and attached to a gas cleaner (28) of the chimney (27) with the use of high temperature exhaust gases during the smelting shredded scrap, grinded cutting and pre-reduced pellets.
During intensive melting of the charge (18 and 19) simultaneously with the formation of the liquid phase an extensive inert gas (e.g. argon) or nitrogen blowing of metal is carried out throughout the whole volume of the ladle. In the process of melting immediately upon slag formation, the primary slag is downloaded by skimming machine though a special slag runner (32) of the ladle and the process of steel melting, formation and boiling is continued with addition of lime and feldspar by secondary slag from the hoppers (15).
If carbon content in the pool for the smelted steel is higher than optimal then with account of the regularities of carburization-decarbonization established in the above mentioned scientific discoveries, an increase of the air consumption or oxygen is performed and with this decarbonization process (carbon burning) is accelerated.
However, if carbon content in the melted bath is low, i.e., small for the ordered steel grade then natural gas consumption is increased after which along with decarbonization rhythmic carburization of metal pool under conditions of strong pure boiling takes place.
During fusion of the steel-melting pool after reaching the optimal chemical composition of the steel, gas-air or gas-oxygen blowing, melting process and formation is ceased by closing of the first slide gate. At this point the process of refining the steel starts for which an extensive blowing with inert gas or nitrogen is transmitted to the intensive mode and combined with the process deoxidation-alloying which is realized by supplying alloys from dosing bins (15) and by blowing of slag forming reagents into metal and microalloying from the injection apparatus (16) by means of inert gas there is realized steel deoxidation, compatibility of alloying processes, refining with inert gases and reagents and assimilation in slag deoxidation products, endogenous, exogenous, including gas inclusions.
If smelted steel grade is special superduty—special critical duty, and requires inclusion index approximated to the level of steel vacuum treatment—low sulfur and phosphorus content, then the slag saturated with different oxides is downloaded. After this, through addition of lime and fluorspar from the upper hoppers and blowing in strong reagents from the bottom from the injection apparatus the formation of a new slag occurs; it is heated together with metal by using the heat the warmth of electric arc and through simultaneous blowing of an inert gas (e.g. argon) or nitrogen perform deep desulfurization and dephosphorization caused by blowing process with heat flows, remove from steel sulfide, Sulfide and phosphide nonmetallic inclusions, including gas nonmetallic inclusions as much as possible, especially hydrogen (to a minimal content).
After obtaining the ordered steel grade the blowing of argon into the ladle is continued from the balloon (17) instead of stationary main line during transportation of the ladle by pouring crane up to the continuous casting machine where automation process of continuous casting from the casting ladle (a single installation of casting-refining—ladle furnace) in intermediate ladle and then into crystallizers begins with an open slide gate together with overlapping of argon supply from the balloon.
In order to increase the longevity of the ladle working lining, the restoration of the protective layer of the protective refractory layer with pneumatic concrete gun is carried out after each pouring.
Positive effect of the presented innovation consists in:
Number | Date | Country | Kind |
---|---|---|---|
AP 2015 13735 | Feb 2015 | GE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GE2016/000001 | 2/15/2016 | WO | 00 |