This disclosure generally relates to light weight, low cost three dimensional structures constructed using electronic surface data. More particularly, composite three dimensional structures constructed using expanded polypropylene foam are disclosed.
Automotive vehicle design is a very complicated process. A proper design assures that numerous components may be assembled to one another to provide a functional and aesthetically pleasing vehicle to the customer. Much of vehicle component design includes the use of computer aided design (CAD) software to define the geometry of the components. The software assists designers electronically define relatively complex interior and exterior surfaces that are exposed to the eye of the consumer. While the computer aided design programs have allowed visualization of vehicle component surfaces through the use of computer graphics, it was been found that a full scale three-dimensional model must be created to verify the design.
A full scale design verification model allows designers, executives and would-be customers to get a better “feel” for a design by physically walking around the model and/or sitting in the passenger compartment of the model. Furthermore, construction of a design verification model focuses attention on the interconnection of various components and clearances required between components such as vehicle doors and door jams.
Previous design verification models have been created in an attempt to achieve the goals previously described. One such model includes a steel armature sized and shaped to support a number of planks or blocks. The blocks are bolted to the steel armature which typically includes castors to allow the assembly to be rolled along a floor. The planks or blocks are bonded to one another in the rough shape of the model.
The planks or blocks are constructed from a very rigid and dense two-part epoxy material typically called “wren board.” The wren board structure is machined to define the exterior surfaces to be modeled. Because the two-part epoxy material is very dense, the blocks are very heavy. Accordingly, the steel armature must be constructed from material having sufficient strength to support the heavy blocks. As such, the armature is also very heavy. The weight of the assembly oftentimes requires the use of a forklift or a crane to move the model. Special shipping concerns also exist relating to the extreme weight of the assembly. The wren board is also very costly.
Additionally, it is sometimes necessary to redesign or modify a relatively small portion of the design verification model to account for style changes and/or modifications necessary to properly coordinate with an adjoining part. To modify a portion of the two-part epoxy model, an insert must be created from a separate plank or block. A recess must be machined into the previous model to accept the new insert. This process is time consuming. It is also relatively difficult to properly match the insert to the existing design verification model. Alternatively, a material other than the original two-part epoxy may be used to create the modified portion. Unfortunately, the repair will be visually obvious to one viewing the model. This may draw undue attention to certain areas of the model.
Furthermore, the two-part epoxy plank or block material typically used to create design verification models is not recyclable and creates a further cost and complication relating to disposal of these materials at the end of their service life.
It should be appreciated that the CAD models previously described are also useful for constructing the tooling used to create the parts defined by the CAD data. Before a commitment of many thousands or possibly millions of dollars is made to construct production level tooling, it is common practice to first construct prototype components for evaluation. At this stage of product development, modifications to the component design are relatively inexpensive. Much more time and money may be wasted if changes have to be made to production level tooling.
Many methods for constructing prototype parts exist. Some of these methods include creating parts from drawings and not the CAD data that will be used to construct the production level tools. As such, the prototype part constructed from this type of tool may not represent a component made from with a tool constructed from CAD data. Other methods include constructing “one-off” molds that are only able to produce one component part because the mold is destroyed during the prototype production process. Still other methods include creating low volume prototype molds using the two-part epoxy previously mentioned. The molds created with the two-part epoxy are very heavy and very costly. Accordingly, these molds are also difficult to move due to their weight. Molds constructed from two-part epoxy are also difficult to modify. Lastly, the two-part epoxy is relatively hard and requires relatively slow machining to produce an accurate surface having a suitable surface finish. Accordingly, a need in the art exists for low cost, low weight three dimensional structures constructed using computer generated surface data.
The disclosure presents a three dimensional structure having finished surfaces defined by electronic data. The three dimensional structure includes a core of expanded polypropylene foam having at least one surface offset from one of the finished surfaces of the three dimensional structure and a layer of hardened paste bonded to the offset surface of the core of expanded polypropylene foam. The hardened paste is machined to define the finished surfaces of the three dimensional structure. A method of making such a three dimensional structure is also disclosed.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
A side panel 36 includes an exterior surface 38 and an interior surface 40. Exterior surface 38 and interior surface 40 are machined surfaces that have been defined by the CAD data that require verification. Side panel 36 includes a core 42 constructed from expanded polypropylene foam. A shell 44 surrounds core 42. Shell 44 is constructed from a modeling paste such as provided by Axson under product names such as SC261, SC300 and SC167. Suppliers such as Huntsman and Sanyo Chemical also commercially provide modeling paste.
Modeling paste is sufficiently dense to allow a finished machining process to provide an aesthetically pleasing surface finish. Additionally, the modeling paste is not as dense as the two-part epoxy previously described. Accordingly, three dimensional structures constructed using the modeling paste are much more easily machined than the prior art structures. Therefore, the time required to machine the finished surfaces is substantially less than the time previously required.
An aperture 46 extends through core 42. Aperture 46 is filled with a column 48 of modeling paste to provide additional structure to side panel 36. It should appreciated that any number of columns similar to column 48 may extend through side panel 36 to provide the proper structural rigidity and robustness required to withstand shipping, handling and inspection procedures.
Side panel 36 includes a boss 50 providing support for a package shelf 52. Package shelf 52 is constructed substantially similarly to side panel 36. Specifically, package shelf 52 includes an expanded polypropylene foam core 54 surrounded by a shell 56. Finished external surfaces 58 and 60 are machined to represent the external surface of a production package shelf 52.
An alternate embodiment side panel 62 is shown in
Referring once again to
Roof panel 80 includes a core 82. Core 82 is surrounded by a shell of hardened modeling paste 84. An external surface 86 and an internal surface 88 are machined to represent the final model surfaces.
A floor panel 90 includes a core 91 constructed from a first block of expanded polypropylene foam 92, a stringer 93 and a second block of expanded polypropylene foam 94. A shell 95 surrounds core 91.
An aperture 96 extends through stringer 93. A threaded fastener 97 extends through aperture 96. Threaded fastener 97 mounts floor panel 90 to steel armature 32. Expanded polypropylene foam may exhibit a coefficient of linear thermal expansion greater than the modeling paste. Stringer 93 is provided to maintain the dimensional integrity of floor panel 90 over a reasonable range of operating temperatures.
Floor panel 90 includes a lower surface 98 in contact with a datum surface 99 of steel armature 32. Lower surface 98 is a machined surface to accurately mate with datum surface 99. Floor panel 90 also includes an upper surface 101 which has been machined from shell 95 to provide a representation of the finished surface of the vehicle floor panel.
With reference to
As shown in
After the model has fulfilled its purpose, the expanded polypropylene foam core is separated from the shell. Heat may be applied to the shell to promote the separation. The expanded polypropylene foam core is recycled and the shell is disposed.
Mold 200 may be used as a form to create component part 202 via a hand lay-up method. Component part 202 may be constructed from fiberglass mat and resin, carbon fiber, two-part epoxy, SMC and the like.
Alternatively, mold 200 may represent an upper or lower half operable to work in conjunction with another mold half (not shown). Mold 200 and the mold half not shown would define a cavity in which molten resin may be inserted to form an injection molded part.
A work-in-process level mold 214 is depicted in
Depending on the type of material used to form component 202, a release agent may be applied to surface 212 prior to the hand lay-up or injection molding procedure to allow the component 202 to be removed from mold 200 without damaging the mold. Accordingly, it is contemplated that mold 200 may be repeatedly used to construct a number of substantially similar components 202.
Through the use of expanded polypropylene foam and a relatively thin shell of modeling paste, mold 200 may be constructed as a lightweight, low cost tool. As mentioned in relation to design verification model 30, mold 200 may be easily modified and/or repaired by simply adding or removing additional modeling paste and machining the appropriate section of mold 200 to define the revised mold surface.
Modeling paste is sufficiently dense to allow finished machining and provide an aesthetically pleasing surface finish. Additionally, the modeling paste is not as dense and machines much more easily than prior art molds constructed from two-part epoxy, kirksite or steel. Therefore, the time required to machine finished surface 212 is substantially less than the time required to machine the previously listed materials.
Furthermore, the foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations may be made therein without department from the spirit and scope of the invention as defined in the following claims.
This application is a divisional of U.S. patent application Ser. No. 11/328,770 filed on Jan. 10, 2006. The disclosure of the above application is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11328770 | Jan 2006 | US |
Child | 12115686 | US |