Method of manufacture for a multiwell plate and/or filter plate

Information

  • Patent Grant
  • 6391241
  • Patent Number
    6,391,241
  • Date Filed
    Friday, June 6, 1997
    27 years ago
  • Date Issued
    Tuesday, May 21, 2002
    22 years ago
Abstract
The invention provides for a method for the manufacture of multiwell plates and multiwell filter plates. The plates are the result of a two part construction in which individual filter discs are securely pinned between opposing plates, one of which is insert molded against the other.
Description




BACKGROUND OF THE INVENTION




The invention relates to a disposable multiwell filter apparatus for use in biological and biochemical assays that can be used and is compatible with existing equipment.




In pharmaceutical and biological research laboratories, plates with a multitude of wells have replaced traditional test tubes for assay and analysis. For many years, multi-well laboratory plates have been manufactured in configurations ranging from 1 well to 384 wells, and beyond. The wells of multi-well plates are typically used as reaction vessels in which various assays are performed. The types of analytical and diagnostic assays are numerous. The typical areas of use include cell culture, drug discovery research, immunology, and molecular biology, among others. Current industry standard multi-well plates are laid out with 96 wells in an 8×12 matrix (mutually perpendicular 8 and 12 well rows). In addition, the height, length and width of the 96-well plates are standardized. This standardization has resulted in the development of a large array of auxiliary equipment specifically developed for 96-well formats.




Many assays or tests require a mixture of particulate or cellular matter in a fluid medium. The mixture is then subjected to combination with reagents, separation steps and washing steps. The end product of such analysis is often a residue of solid matter which may be extracted for further analysis.




Separation of solids from fluid medium is often accomplished by filtration. The separation is accomplished in or on the filter material by passing the liquid through it. The liquid can be propelled through the membrane either by a pressure differential or by centrifugal force. Filter plates that conform to a 96 well standardized format are known as disclosed in U.S. Pat. Nos. 4,427,415 and 5,047,215. One significant problem that has been encountered with filter plates adapted for use with a 96 well plate is that cross contamination may occur between wells. When a unitary filter sheet is sandwiched between two pieces of plastic molded in a 96 well format, liquid from one well, upon wetting the filter material, may wick through the paper to neighboring wells thereby contaminating the sample contained within that well. One solution to this problem is offered in U.S. Pat. Nos. 4,948,442 and 5,047,215. In these patents, a 96 well filter plate is disclosed comprising a filter sheet placed between two plastic plates. One of the plates has a series of ridges that cut the filter sheet when the plates are ultrasonically welded together. By cutting the filter sheet around each well, the possibility of wicking between neighboring wells is effectively eliminated. A problem with this design is that it limits the product offering to membranes that can be cut by the process and to plate materials that can be ultrasonically welded. In fact, the potential for wicking and cross contamination still exists when the filter material is not completely severed in the welding process.




U.S. Pat. No. 4,427,415 discloses a filter plate of one piece construction having wells with drain holes in the bottom and capable of receiving filter discs into the wells. Wicking is obviously not a problem in this plate because individual filter discs are used as opposed to a unitary sheet of filter paper. The filter discs used in this plate are put into each well individually and are not secured to the bottom of the well. A danger exists with a filter disc that has not been secured down in that some liquid from the well could pass under the filter and thereby escape filtration, resulting in contamination of the filtrate.




Our invention solves several problems of prior art filter plate designs by providing a multiwell filter plate in which 1) filters are securely fastened to the plate without the use of glue or other potentially contaminant chemical adhesives, 2) an expansive variety of filter materials may be used, 3) a large number of thermoplastic components may be employed in its construction, and 4) no cross contamination through liquid wicking occurs between neighboring wells. The preferred embodiment of the present invention also offers a conical nozzle designed to cause exiting fluid to create droplets rather than lateral flow along the bottom of the plate. Further, a ring or skirt will preferably circumscribe the underside of each filter well. The skirt fits into a corresponding well of a receiver plate and is designed to prevent cross contamination that may otherwise occur by splashing of filtrate.




SUMMARY OF THE INVENTION




It is therefore an object of the present invention to provide a disposable filtration device for chemical and biological tests in which a large number of samples may be tested simultaneously. Further objects of the present invention are: to provide a filter plate that will be compatible with existing 96 well cluster plate formats as standardized by the industry; to provide a filter plate that can be handled by automated robotic assay equipment; to provide a filter plate having individual wells having a support grid on the bottom to help support the filter element, prevent tearing, and allow for an even distribution of filtered material on the filter; to provide a filter plate in which liquid from one well can not mix with liquid from a neighboring well (the filter plate of the present design prevents lateral flow or cross-talk of liquid through the membrane to other wells); to prevent cross contamination of filtrate after passing through the filter and passing to a receiver plate; to provide a filter plate of two part construction in which each individual well filter is securely pinned between opposing plates that are insert molded against each other; and to provide a unique method for the manufacture of filter plates.




Briefly, the present invention relates to an improved filter plate and its method of manufacture. The filter plate is a two part construction. It comprises a well plate preferably with 96 wells, each well being open on both ends, molded against a harvester plate insert preferably having 96 counter-bores, each containing a filter disc, whereby each counter-bore aligns with a corresponding and respective well from the well plate, and whereby the diameter of the counter-bore is greater than the diameter of the well, such that the well bonds with the outer rim of the counterbore thereby creating a lap joint. The lap joint also serves the purpose of fixing the filter disc securely to the insert without the need for glue or chemical adhesives. During the injection molding process, extremely high pressures in the mold ensure that the edges of the filter disc are pressed against the insert.




The assembled filter plate product has a plurality of interconnected wells of uniform diameter, each well being defined by a circular side wall, each of the side walls being interconnected to the side wall of at least two adjacent wells, each of the wells being open at one end. Further, the plate has a bottom wall at the bottom of each of the wells, which is connected to the side wall, each of the bottom walls having an opening therein. A conical drainage nozzle having an external surface and an internal passage communicating with the opening in the bottom wall, extends downwardly from the bottom wall from a point radially inward from the side wall. Finally, a filter disc is positioned on top of the bottom walls of the wells, the peripheries of each filter being sandwiched between a bottom portion of the side wall of each well and a top portion of the bottom wall of each well. The bottom walls have an opening therein, the opening preferably taking the form of a funnel shaped nozzle. A support grid preferably extends across the opening in order to provide support for the filter disc.




The method of manufacturing the plate comprises several steps, namely: forming an insert having a plurality of counter-bores; punching filter discs into the bottom surface of the counter-bore; and insert molding a well plate against the insert and filters such that wells from the well plate align with corresponding counter-bores from the insert thereby forming a lap joint that effectively secures the filter disc in place. The method can be extended for use in the manufacture of multiwell plates which do not have a filter, but require a well bottom of a different material than the side walls.











DESCRIPTION OF THE FIGURES





FIG. 1

is a plan view of the insert of the present invention.





FIG. 2

is a side view of the insert of the present invention.





FIG. 3

is a fragmentary cross sectional view of the insert of

FIG. 1

, taken along the section line


3





3


in FIG.


1


.





FIG. 4

is a three dimensional view of the insert of the present invention.





FIG. 5

is an enlarged view of the corner of the insert of FIG.


4


.





FIGS. 6A-6C

are cross sectional views of a three step process for punching filter discs from a unitary sheet of filter paper, and inserting the discs into the insert.





FIGS. 7A-7D

are cross sectional three dimensional views of the molding process of the current invention whereby a well plate is molded against an insert.





FIGS. 8A-8D

are cross sectional two dimensional views of the molding process shown in FIG.


7


.





FIG. 9

is a multiwell filter plate of the present invention having a corner section extracted.





FIG. 10

is an enlargement of the corner of the multiwell filter plate of

FIG. 9

showing a cross section of two adjacent wells.





FIG. 11

is a multiwell plate of the present invention having a corner section extracted.





FIG. 12

is an enlargement of the corner of the multiwell plate of

FIG. 9

showing a cross section of two adjacent wells.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Shown in

FIG. 1

is an insert


10


of the present invention. The term insert is defined as a harvester plate capable of holding filter elements. The insert


10


is molded of a preferably hydrophobic thermoplastic material and preferably has 96 separate and distinct counter-bores


12


within it. Ideally, the spacings from the center point of each counter-bore


12


will conform to spacings between the centers of wells of the industry standardized 96 well cluster plate. Each counter-bore


12


has an annular lip or rim


14


around its outer periphery. The individual counter-bores


12


are joined together by adjoining the peripheries of adjacent counter-bores. Within the periphery of the rim


14


, each counter-bore has a substantially flat bottom wall


16


capable of seating a filter disc and a depressed center area that forms the conical drain funnel


25


. Further, each counter-bore preferably has a support grid


18


partially covering the drain hole, provided to prevent filter material that is seated on the flat bottom wall


16


of a counterbore from tearing during filtration while maximizing the open filter area for fluid flow.





FIG. 2

shows a side view of the insert of the present invention. Each counter-bore has a funnel shaped drain hole therethrough. Preferably, below the flat surface area of the counterbore, is an annular skirt


20


. The annular skirt serves two functions. First, the annular skirt


20


serves as a guidance system when aligning the filter plate with a 96 well receiving plate. The skirt


20


fits into a corresponding well in the 96 well plate into which filtrate is to be transferred. Any lateral movement of the filter plate, once engaged with the receiving plate, is repressed by the plurality of skirts sitting in the respective wells of the receiver plate. Second, the skirt


20


serves to minimize any contamination between wells of a receiver plate by guarding against aerosols or splashing of liquid filtrate as it transfers into the receiver plate.





FIG. 3

shows a cross sectional view of one counter-bore


12


from an insert of the present invention. The counter-bore has a substantially flat bottom wall


16


to support a filter disc, an annular rim


14


around the periphery, a grid support


18


, an annular skirt


20


and a conical nozzle serving as a drain hole


22


and extending downwardly from the bottom wall


16


, preferably terminating at a point above the termination point of the skirt. The nozzle has an external surface


24


, and an internal passage


25


that communicates with the bottom wall


16


of the counterbore


12


. The internal passage


25


is preferably funnel shaped. The opening or drain hole


22


in the nozzle, where the internal passage


25


and external surface


24


of the nozzle meet, will preferably be quite small relative to the diameter of the bottom surface of the counter-bore. The small diameter and material surface energy are intended to keep the contents of a filter well from flowing until a significant driving force is applied. The conical external surface


24


of the nozzle is designed so that its surface intersects the internal passage


25


to form a sharp edge. The purpose of the sharp edge is to cause the draining fluid to form a droplet, rather than to allow flow laterally to any adjacent well thereby causing fluid cross-contamination of the filtrate along the under surface of the insert portion of the filter plate. Additionally, the edge will cause smaller droplets to form at the opening than would otherwise form without an edge. Ideally, a chamfered edge will be provided on the bottom of the skirt (not shown). The purpose of this chamfer is to guide the filter plate into the correct location over the receiver plate. This design is intended to make the plate easy to handle by a robotic placement system.





FIGS. 4 and 5

show the insert


10


from above and in a three-dimensional view. The insert


10


contains a matrix of counter-bores


12


based upon the standard 96-well standard plate. Each counterbore


12


has an annular rim


14


around its periphery. A grid system


18


provides support over each drain hole. The grid system is comprised of a series of molded supports


15


that extend across the opening in the bottom wall


16


of the counterbore


12


. The supports


15


extend across the internal passage


25


of the nozzle, are attached to the walls of the internal passage and project upward to a plane normal the top surface of the bottom wall of the counterbore. The grid system creates a substantially flat surface entirely across the bottom wall of the counterbore. The bottom wall is therefore able to provide support for a filter disc, and prevent any tearing of the disc, while still allowing filtrate to be drawn into the funnel shaped passage. The grid system further allows liquid to be drawn through the filter disc from a greater surface area than the prior art devices. This creates a more uniform distribution of filtered material on the disc and allows for a smoother flow of liquid through the plate.





FIGS. 6A-6C

show the process of punching and inserting a filter disc into a counterbore of the insert. A molded insert


10


is placed within a punch machine preferably having


96


punches


26


sized to cut membranes that will fit into the corresponding


96


counter-bores


12


of the insert. A filter sheet


28


of the desired material is placed between the insert


10


and the punch mechanism


26


. A series of aligned bores


30


from the die side of the punch will be placed between the filter sheet


28


and each counter-bore


12


of the insert. The insertion of the filter discs preferably takes place in a two step process, first a punch, then an insertion.




For clarity,

FIG. 6A

shows only a single counter-bore


12


. A bore


30


preferably made of hardened steel is located between the counter-bore


12


and a filter sheet


28


. Positioned above the filter sheet


28


is a cylindrical plunger


32


. The plunger


32


has a bottom will and is surrounded by a cylindrical punch


26


. The plunger


32


is slideably mounted within the punch


26


. The punch


26


terminates at its base in a radial cutting edge


34


. The punch and plunger together make up a punch unit and are surrounded by a sleeve


36


. The outer diameter of the punch


26


is approximately the same as the inner diameter of the bore


30


such that the punch fits snugly into the bore. The diameter of the bore


30


is approximately identical to the diameter of the counter-bore


12


.

FIG. 6B

shows the plunger


32


having been thrust downward into the bore


30


. The cutting edge


34


of the punch has severed the filter sheet


28


such that a filter disc


38


has been cut and pushed into the bore


30


. In

FIG. 6C

, the punch


26


has stopped extending into the bore


30


, while the plunger


32


has continued pushing the filter disc


38


down into the counter-bore


12


and against its bottom wall


16


. The plunger


32


and the punch


26


are then retracted, leaving an insert


10


having a filter disk


38


positioned along the bottom wall


16


of the counterbore


12


. Of course, it will be appreciated that as indicated, the described sequence will be performed simultaneously on a multiplicity of wells, e.g. 96 wells. The counterbore


12


as shown in

FIGS. 6A-6C

is only one from a matrix of counterbores making up an insert


10


. Further, bore


30


is only one bore from a die having a matrix of bores that positionally align with the insert. Likewise, the punch unit comprising a plunger


32


surrounded by a cylindrical punch


26


, is one of a matrix of punch units that positionally align with individual bores of the bore plate and individual counterbores of the insert. Preferably, sleeve


36


, which is one sleeve from a precision carrier or guide plate, will encapsulate each punch unit as a protective measure.





FIGS. 7A-7D

and

FIGS. 8A-8D

show the insert molding technique that may be employed to obtain the filter plate of the present invention.

FIGS. 7A-7D

show the molding technique of one filter well, a portion of a plate of preferably 96 interconnected filter wells, in three-dimensional view.

FIGS. 8A-8D

show the same steps in cross sectional views. The mold which will accept this insert will have a cavity geometry that will form a standard 96 well plate against the insert, with the insert forming the bottom of the plate. The mold of

FIG. 7A

has two parts, an upper mold


40


and a lower mold


42


. The lower mold


42


is designed to form a nest


44


for the pre-molded insert


10


, as well as create external molded surfaces of the finished part. The upper mold


40


has a set of 96 core pins


46


that serve both to form the inside surfaces of the wells and to protect and hold each filter disc


38


in place while the material flows into the mold. The diameter of the core pins


46


are preferably smaller than the diameter of the filter discs


38


so that, when the mold closes, the outer edges of the filter discs will be exposed to the mold cavity and thus will also be exposed to material flowing into the mold.

FIGS. 7B and 8B

show the mold closed with the upper part


40


and lower part


42


of the mold pressed together. The core pin


46


is pressing the filter disc


38


in place. Material flows into the mold through a gate and flows across the cavity, thereby forming the well plate


48


. The gate is located in such a position as to optimize mold flow. The formed well plate is a plate preferably having 96 wells that extend through the plate, each well having open ends on each of its top and bottom surfaces.

FIGS. 7C and 8C

show the mold after the thermoplastic material has filled the mold and formed the well plate


48


.

FIGS. 7D and 8D

show the finished ware after it has been removed from the mold. The flange


56


would, of course, connect to corresponding flanges on adjacent wells. The well plate


48


contacts the filter disc


38


around the entire periphery of each well wall


50


. The outer rim


14


of each counter-bore


12


and the lower wall


50


of each well actually bond together during the molding process and form lap joints


52


along their entire periphery. Anywhere the new material contacts the insert directly, the materials will be bonded. The well plate


48


and insert


10


are effectively bonded at each well along the lap joints


52


. The well plate


48


is molded against the outer periphery of the filter disc


38


so as to position it securely against the bottom wall


16


of the insert


10


. In some cases, depending on the membrane material, the filter disc


38


will bond to the material forming the well wall


50


thereby further securing the membrane in place.




The insert molding technique as described lends a further advantage over press fitting techniques or techniques that require ultrasonically welding two plates together. Thermoplastic materials have a tendency to change shape slightly upon cooling. Alignment between two separately molded parts can be compromised by this cooling process resulting, at times, in an improper fit between parts. However, in the present invention, since the well plate is molded against the insert, a reproducible dependable fit is guaranteed. Thereby, the fit between plates as described is inherently superior to a fit obtained by matching together two separately molded pieces.




Referring to

FIG. 9 and 10

, the resultant filter plate


60


has a plurality of wells


62


arranged in an 8×12 matrix. Each individual well is separated from the other, each containing a separate filter disc


38


. No wicking or cross contamination between wells


62


in the filter plate


60


is possible because filter discs


38


are cut from the filter sheet before molding, not as part of the molding process. Each individual well is sealed from neighboring wells and no liquid transfer is possible through the overlapping and material bonded joint


52


formed between the well plate


48


and the insert


10


.




It should be noted that the process for manufacturing filter plates can also be employed in the manufacture of 1×N well filter strips or individual filters. Further, filter plates can have wells of any number, for example 384 wells arranged in a 16×24 matrix.




It should also be noted that the process for manufacturing filter plates is not limited to wells that have a circular cross section. The counterbores of the insert and wells of the well plate may be oval, square, rectangular, etc. The discs that are punched from the sheet of material will, of course correspond to the shape of the well and therefore likewise may be oval, square, rectangular, etc. as punched from an accordingly shaped punch unit.




The process for manufacturing filter plates can also be employed for producing other plates that require a well bottom of a different material than the side walls. For example, for the production of a multiwell plate having wells having opaque side walls and transparent bottoms, a transparent sheet or film such as a fluoropolymer film, may be substituted for the filter membrane material herein before described. In this embodiment and referring to

FIGS. 11 and 12

, the insert


60


consists of a molded support having a matrix of rings


62


corresponding to the desired multiwell plate


61


. The rings


62


, instead of having funnel shaped nozzles extending downwardly from the insert as described in the filter plate manufacturing process, are open throughout the center


64


. Each ring


62


preferably has a flat support portion


66


in a plane parallel to the plane of the insert


60


, and a substantially perpendicular annular rim


68


circumscribing the outer periphery of the flat support portion


66


. The film is then punched by the method previously discussed, and individual discs of the film material are placed against the flat support portion of the ring of the insert. The punch mechanism is preferably sized such that a punched disk of transparent film will be supported by the flat portion and will fit against the annular rim. A well plate is then molded against the insert as previously described. The material of each annular rim bonds with the material of the well plate and each disc of transparent film is pinned between the flat support portion of each ring and the wall of each well. The resultant plate has wells


74


with bottoms


70


consisting of the transparent film material and sidewalls


72


of a different material, for example, opaque polystyrene. Punching individual discs from the transparent sheet also serves the purpose of preventing optical crosstalk between wells that might otherwise occur through a unitary sheet. The rings


62


of the insert may also be opaque and extend below the surface of the well bottom


70


, thereby further preventing optical crosstalk between the wells


74


.




Although preferred embodiments of the invention have been disclosed, other embodiments may be perceived without departing from the scope of the invention, as defined by the appended claims.



Claims
  • 1. A method of making a filter plate comprising the steps of:a) molding an insert having a matrix of interconnected counterbores, each counterbore having a bottom wall, an outer rim of predetermined diameter extending upwardly from said bottom wall, and an opening therethrough; b) positioning a filter disc in each of said counterbores such that said filter disc rests upon the top surface of said bottom wall; c) molding a well plate against said insert, said well plate having a top and bottom wall having a matrix of wells of predetermined diameter extending through said plate, each said well having open ends at each of said top and bottom wall, each said well having lower a wall, and whereby said matrix of counterbores corresponds with said matrix of wells such that each said lower wall aligns with a corresponding counterbore, whereby an outer diameter of each said lower wall is less than an inner diameter of said outer rim of each said corresponding counterbore, whereby said lower wall fits inside the rim of said corresponding counterbore thereby forming a lap joint between each said counterbore and said lower wall, and whereby said lower wall compresses said filter disc against said bottom wall of said counterbore thereby securing said filter disc in place.
  • 2. A method of making a multiwell plate comprising the steps of:a) providing a molded insert plate of interconnected rings, each ring having a predetermined diameter, a substantially flat portion, and an annular rim extending upwardly from said flat portion; b) placing on said insert plate, a die having a matrix of bores, each bore having a diameter of said ring and arranged such that each bore positionally aligns with a corresponding ring from said plate of rings; c) covering said die with a sheet of material; d) positioning above said material, a matrix of punch units, each unit positionally aligned with a corresponding bore from said die, each unit comprising a plunger slidably mounted within a cylindrical punch, each punch having a radial cutting bottom edge extending beyond said plunger, each said unit having an outer diameter substantially identical to said diameter of said corresponding bore such that each unit is capable of fitting securely into said corresponding bore; e) depressing said matrix of punch units through said material thereby cutting a disc from said material at each said cutting edge and such that a bottom surface of said plunger contacts said disc, said matrix of punch units extending into each said bore such that each said punch unit is at least partially contained within said corresponding bore; f) extending each said plunger and attached disc into contact with each flat portion of said ring of said insert while each said punch remains contained within said bore; g) depositing each said disc on said flat portion of each respective ring; h) removing each said punch unit from each said bore; and molding a well plate having matrix of open ended wells corresponding in size and location to said rings, against said insert such that each well fits securely within the annular rim of each corresponding ring whereby an outer diameter of each said well is less than an inner diameter of said annular rim of said corresponding ring, thereby forming a lap joint between each said well and each said rim.
  • 3. A method of making a multiwell plate comprising the steps of:a) molding an insert having interconnected matrix of rings, each ring having a substantially flat support surface and an outer rim of predetermined diameter; b) punching individual discs from a sheet and pushing said discs into contact with said support surface of a corresponding ring such that said disc substantially covers the entire opening of said ring; and c) molding a well plate against said insert, said well plate having a top and bottom wall having a matrix of wells of predetermined diameter extending through said plate, each well having open ends at each of said top and bottom wall, said matrix of rings corresponding with said matrix of wells such that each said well aligns with a corresponding ring whereby said well fits inside the rim of said ring thereby forming a lap joint between each said ring and said well, and whereby said well compresses said disk against said support surface of said ring thereby securing said disc in place.
US Referenced Citations (27)
Number Name Date Kind
3319792 Leder et al. May 1967 A
3990852 Piazzi et al. Nov 1976 A
4090850 Chen et al. May 1978 A
4111754 Park Sep 1978 A
4304865 O'Brien et al. Dec 1981 A
4427415 Cleveland Jan 1984 A
4431307 Suovaniemi Feb 1984 A
4526690 Kiovsky et al. Jul 1985 A
4640777 Lemonnier Feb 1987 A
4704255 Jolley Nov 1987 A
4734192 Champion et al. Mar 1988 A
4777021 Wertz et al. Oct 1988 A
4927604 Mathus et al. May 1990 A
4948442 Manns Aug 1990 A
4956298 Diekmann Sep 1990 A
5009780 Sarrasin Apr 1991 A
5047215 Manns Sep 1991 A
5108704 Bowers et al. Apr 1992 A
5141719 Fernwood et al. Aug 1992 A
5223133 Clark et al. Jun 1993 A
5273718 Skold et al. Dec 1993 A
5294795 Lehtinen et al. Mar 1994 A
5319436 Manns et al. Jun 1994 A
5342581 Sanadi Aug 1994 A
5454951 Hoopman Oct 1995 A
5457527 Manns et al. Oct 1995 A
5885499 Aksberg Mar 1999 A