The invention relates to the field of electrochemistry. More specifically, the present invention relates to the methods of manufacture of electrodes that are chemically modified by a redox polymer for use, for example, in energy-storage devices (e.g. capacitors).
The known methods of manufacture of electrodes with a polymer coating are mainly based on the method of chemical polarization [for example, U.S. Pat. No. 4,999,263 Mar. 12, 1991; U.S. Pat. No. 6,533,918, Mar. 18, 2003; U.S. patent application No. 20020089807A1, Jul. 11, 2002]. The process of chemical polarization involves forming a polymer layer on a conducting substrate placed into an electrolytic bath with an electrolyte containing polymer compounds. Different polymer coatings are formed depending on the electrolytes used for this purpose.
Both purely organic systems and polymer metal complexes (or organometallic compounds) fall into the category of the redox polymers [H. G. Cassidy and K. A. Kun. Oxidation Reduction Polymer//Redox Polymers. Wiley-Interscience, New York, 1965]. Polymers that contain a metal usually offer better conductivity.
Redox polymers produced from the octahedral source complex compounds are known. Polypyridine complexes of the composition poly-[Me(vbpy)x(L)y], where: Me=Co, Fe, Ru, Os; L=v-bpy (4-vinyl-4′-methyl-2,2′ bipyridine), phenanthroline-5,6-dione, 4-methylphenanthroline, 5-aminophenanthroline, 5-chlorophenanthroline (x+y=3) [Hurrel H. C., Abruna H. D. Redox Conduction in Electropolymerized Films of Transition Metal Complexes of Os, Ru, Fe, and Co//Inorganic Chemistry. 1990. V. 29. P. 736-741], as well as porphyrin and phthalocianine metal complexes and electrodes modified by these complexes [U.S. Pat. No. 5,729,427, U.S. Pat. No. 5,840,443 may serve as examples of such redox polymers. However, the above-named polymers are characterized by poor energy-accumulating properties and are not used for the production of electrodes for energy-storage devices.
Polymer metal complexes based on the substituted tetra-dentate Schiff's bases, including poly-[Me(R-Salen)] (where Me—a transition metal having at least two different degrees of oxidation—e.g. Ni, Pd; Co, Cu, Fe; Salen—a residue of bis-(salicylaldehyde)-ethylenediamine in Schiff's base, R—electrondonating substituent—e.g. radicals CH3O—, C2H5O—, HO—, —CH3 and others), are known [Timonov A. M., Shagisultanova G. A., Popeko I. E. Polymeric Partially-Oxidized Complexes of Nickel, Palladium and Platinum with Schiff Bases//Workshop on Platinum Chemistry. Fundamental and Applied Aspects. Italy, Ferrara, 1991. P. 28]. The above-named polymer complexes were produced via the electrochemical oxidation of square-planar monomers [Me(R-Salen)], and the stack structure of a polymer was confirmed through the use of spectral methods.
Known (from publications) studies of metal complexes poly-[Me(R-Salen)] and electrodes chemically modified by these metal complexes conducted by the inventors of the present invention and other researchers were of theoretical nature. They were directed at the identification of structure and electrochemical behavior of these polymers. Exclusively analytical chemistry and optics were considered as a fields of potential application of these polymers, such as in U.S. Pat. No. 6,323,309, U.S. Pat. No. 5,543,326, and U.S. Pat. No. 5,840,443.
Moreover, many researchers working in this field believe that poly-[Me-Salen)] are formed due to the covalent bonds between the phenyl nuclei of monomers, and not due to the formation of the stack structures-[P. Audebert, P. Capdevielle, M. Maumy. Redox and Conducting Polymers based on Salen-Type Metal Units; Electrochemical Study and Some Characteristics//New J. Chem. 1992. V. 16. P. 697], which, in turn, according to their opinion, makes it impossible to use poly-[Me(R-Salen)] as an energy-accumulating substance in energy-storage devices.
However, that negative attitude toward the redox polymers (as an energy-accumulating layer) is more likely caused by specific features of the formation of the redox polymer layer on a conducting substrate and, at the end, by the structure of the formed layer (rather than by the electrochemical properties of the redox polymer itself). The problem solved by the present invention is the development of a method of manufacture of the electrodes chemically modified by a redox polymer and offering a high specific energy capacity for use in energy-storage devices.
The present method of manufacture of an electrode is implemented as follows. A conducting substrate is placed in an electrolyte that contains an organic solvent, compounds capable of dissolving in said solvent [which dissolution is accompanied by the production of electrochemically inactive (at concentrations of no less than 0.01 mol/l) ions within the range of potentials from −3.0 V to +1.5 V and a dissolved monomer—namely, metal complex poly[Me(R-Salen)] at a concentration from 5×10 −5 mole/liter to that restricted by the solubility limit (where Me—transition metal, R—electron-donating substituent, Salen—residue of bis-(salicylaldehyde)-ethylenediamine in Schiff's base). The layer of a redox polymer can be applied onto a substrate surface via electrochemical polymerization of a metal complex poly-[Me(R-Salen)], resulting from the application of a voltage between electrode substrate (that serves as an anode) and counter-electrode (that serves as a cathode) submerged into the electrolyte.
The distinctive feature of the present method is the deposition of the redox polymer performed in the electrolyte in which the cations of the above-named compounds have a diameter that is larger than the diameter of cations of the compounds comprising the electrolyte used in an energy-storage device for which the electrodes are manufactured. For example, when the salts of tetraethyl ammonium and tetramethyl ammonium (perchlorates, tetrafluotoborates, hexafluoro phosphates) are used in the composition of the electrolyte for an energy-storage device, salts of tetrapropyl ammonium and tetrabutyl ammonium (tetrafluotoborates, perchlorates, hexafluoro phosphates, trifluoroacetates) can be used as a compound in the composition of an electrolyte in which the deposition of redox polymer layer onto a substrate occurs.
The large sizes of the cations of tetrapropyl ammonium and tetrabutyl ammonium facilitate the formation of the polymer stacks disposed sufficiently far apart from each other, which reduces the probability of cross linking of the stacks. When the electrode is in use, the cations of the electrolyte used in an energy storing device freely move between the polymer layer stacks, resulting in an increase of the energy capacity and stability of operation of the energy storing device.
A material that offers a high value of the specific surface parameter that is characterized by good electronic conduction and that is electrochemically inactive within the range of potentials from −3.0 to +1.5 V (the potentials are given in comparison to a chlorine-silver electrode) can be used as a conducting substrate of the electrode. For example, it is possible to use the carbon fiber and other carbon materials offering a high value of a specific surface parameter, carbon materials with metal coatings, and metal electrodes offering a high value of a specific surface parameter. Besides, polymers (offering an electronic conduction property) in the form of films, porous structures, foams and so forth can be used as a conducting substrate.
A metal from the group Ni, Pd, Co, Cu, Fe is used as a transition metal Me in the metal complex.
CH3O—, C2H5O—, HO—, —CH3 are used as the electron-donating substituents R in the composition of the metal complex.
A layer of the redox polymer is deposited onto the substrate when the potential on the substrate is within the range from 0.85 V to 1.3 V relative to a chlorine-silver comparison electrode disposed in the electrolyte. A specific value of the potential shouldn't be higher than the potential of nonreversible oxidation of the redox polymer—for example, 0.85 V for complex [Pd(CH3O-Salen)] or 1.3 V for complex [Ni(CI-Salen)].
Deposition of a layer of the redox polymer can also be carried out with the simultaneous circulation of the electrolyte, which allows to improve the quality of the manufactured electrode.
The invention is illustrated by the following graphical materials and drawings.
FIGS. 2(a)-(c) is a schematic illustration of the process of redox polymer layer formation;
A schematic diagram of an apparatus for depositing the redox polymer layer onto a substrate of an electrode in accordance with the inventive method is shown in
Electrolyte 2 can be prepared based on organic solvents of the acetonitrile, dimethyl ketone, or propylene carbonate type. To prepare electrolyte 2, one should add certain substances to the solvents indicated above. Such substances should be capable of dissolving in said solvents with the resulting concentration of no less than 0.01 mol/l and dissociating with the formation of electrochemically inactive (within the range of potentials from −3.0 V to +1.5 V) ions. Among such substances are, for example, salts of tetrapropyl ammonium and salts of tetrabutyl ammonium—tetrafluotoborates, perchlorates, hexafluoro phosphates, trifluoroacetates and other substances meeting the above-indicated requirements. Besides solvent and electrochemically inactive ions, the electrolyte contains dissolved metal complex [Me(R-Salen)], out of which a redox polymer layer on electrode substrate 3 will be formed. The concentration of the metal complex may be from 5×10−5 mole/liter and higher—up to a value restricted by the solubility limit of the metal complex in used solvent used in the process.
Formation of the redox polymer layer on electrode substrate 3 occurs under the constant voltage applied by source 6 across substrate 3 and counter electrode 5. In this process, the molecules of metal complex [Me(R-Salen)) located in electrolyte 2 are oxidized on the surface of conducting substrate 3, thus forming a redox polymer layer. This process is conducted until the formation of a redox polymer layer of required thickness is completed.
The electrode manufactured in the above-described manner then (after washing and drying) can be used directly in the design of an energy storing device (e.g. capacitor).
Circulation of electrolyte 2 can take place in bath (reservoir) 1 in the course of formation of redox polymer layer.
The main specific feature of the present method of manufacturing an electrode rests in selecting the compounds used to provide ionic conduction of the electrolyte—the cations of the above-named compounds should have a diameter that is larger than the diameter of the cations of the electrolyte used in the energy-storage device where the electrode operates.
For example, the ions of tetrafluoroborate (BF4−), perchlorate CIO4−), hexafluorophosphate (PF6−), trifluoroacetate (CF3COO−) can be used as anions of said compounds (the diameters of these anions are, respectively, 0.333 nm, 0.370 nm, 0.435 nm and 0.720 nm), while the ions of tetrapropyl ammonium ((C3H7)4N+, diameter—0.77 nm), tetrabutyl ammonium ((C4H9)4N+, diameter 0.96 nm) can be used as cations. Other compounds meeting the above indicated requirements may be used as anions and cations.
During the redox polymer layer formation, when positive potential at which oxidation of the source metal complex molecules is possible, is applied to conducting substrate 3 (relative to comparison/reference electrode 4), the particles present in the electrolyte occurs move in the opposite direction, as shown in
This leads to a situation in which during the initial phase of polymer formation in the form of a stack structure, the molecules of a metal complex can not arrange on substrate surface at a minimally possible distance from each other. If a gap between incipient stacks is smaller than the size of the molecules of the metal complex (1.1 nm), then at a later time the gap would not be “occupied” by them and would remain “vacant”. Thus, the presence of the cations of different sizes in the solution makes it possible to form different distances between the polymer stacks during the polymer formation process.
Stacks 12 located at a considerable distance from one another are formed in the presence of cations 13 of a large diameter (see
Increasing the distance between stacks 12 results in the decrease of the probability of cross-linking 15 of stacks 12, which can be observed in the case of cations 14 of a small diameter (see
When using a manufactured electrode in an electrochemical device (for instance, as capacitor electrodes), the cations of the electrolyte compensate for the charge of the polymer molecules on the negative electrode during the charging process. Use of the smaller-diameter cations in the electrolyte of an electrochemical device, as compared to the diameter of the cations used in the polymer formation process, leads to an easier motion of the smaller-diameter cations between the stacks of polymer layer of the negative electrode during the charging-discharging process. This results in the increase of the energy capacity of an electrochemical device and enhancement of the stability of its operation (stability of the charging-discharging currents over time).
Formation of the redox polymer layer of required thickness can take place not in one stage by using one electrolyte, but also in several stages by using different electrolytes and, possibly, metal complexes at these stages.
An electrode manufactured according to the present method can be used in energy-storing devices (for example, in an electrochemical capacitor).
Usually such a capacitor comprises a hermetically sealed casing (filled with an electrolyte), in which a positive and a negative electrodes disposed. Depending on the specific features of capacitor design, the electrodes can be separated by a porous separator—for example, by microporous polypropylene film.
An electrolyte for the capacitor can be prepared based on the organic solvents of the acetonitrile, dimethyl ketone, propylene carbonate type or other types. To prepare an electrolyte for the capacitor, one should add certain compounds to the solvents indicated above. Such compounds should be capable of dissolving in said solvents with the resulting concentration of no less than 0.01 mol/l and dissociating with the formation of electrochemically inactive (within the range of potentials from −3.0 V to +1.5 V) ions of a diameter no greater than 0.6 nm. Among such substances are, for example, the salts of tetraethyl ammonium, tetramethyl ammonium—perchlorates, tetrafluoroborates, hexafluorophosphates and other substances meeting the above-indicated requirements.
An example of the implementation of the method of manufacturing an electrode in accordance with the present invention is described herein.
An electrode for a supercapacitor was produced through the use of glass-carbon conducting substrate (the area of substrate surface—0.07 cm2) via electrochemical polymerization of complex [Ni(Salen)] on its surface. A polymer layer was formed under the following conditions.
An electrolyte used for polymer formation contained a solvent (acetonitrile, AN), source complex [Ni(Salen)], the concentration of which was Cc=10−3 mol/l, and tetrafluoroborate of tetrabutyl ammonium (the concentration of which was 0.05 mol/l).
The polymer layer on the conducting substrate surface of an electrode was formed under the constant potential of the substrate EH=0.95 V (relative to the reference/comparison chlorine-silver electrode) for a period of 10 min (τH=10 min.).
After a polymer layer was formed, the electrode was washed with acetonitrile and then placed into another deaerated base electrolyte solution that didn't contain the source complex. Prior to using the electrode, it was subjected to polarization at 0 V for 3 minutes (this was done to transfer the polymer from the oxidized state to the neutral state—(Ni(11)). Then the electrode was held in the same solution without applying external potential for a period of 25 minutes.
A control specimen of the electrode was produced under the same conditions as described above, but tetrafluoroborate of tetramethyl ammonium (in the same concentration) instead of tetrafluoroborate of tetrabutyl ammonium was used in the electrolyte to form the polymer.
Testing of the electrodes was conducted in the mode of high-rate charging and discharging of the negative electrode in a device similar to the one showed in
The chrono-volt-ampere-grams of the main electrode and control specimen are shown in
The results of the testing were as follows.
The maximal currents of charging and discharging of an electrode manufactured by the inventive method were stabilized by the 15th cycle and did not vary until the completion of the tests (i.e. during 100 cycles). However, the drop of current with each subsequent cycle was observed for the control specimen. The ratio between the charging currents for the 2nd and 20th cycles was 1.22.
The difference of potentials ΔEp of maxima of the anode and cathode current reflecting the kinetic difficulties of charging/discharging process of the electrode manufactured by the present method was 175 mV (for the control specimen it was 240 mV).
An electrode manufactured by the above-described method and having the structure with the increased distances between the redox polymer stacks possesses a greater power and improved stability as compared to an electrode manufactured by the conventional technology.
This application is a Continuation of PCT application serial number PCT/IB03/04410 filed on Oct. 7, 2003 which claims the benefit of 60/416,593 filed on Oct. 7, 2002 both of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60416593 | Oct 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB03/04410 | Oct 2003 | US |
Child | 11100036 | Apr 2005 | US |