The present invention relates to composite particles of a zinc containing compound and a noble metal for use in nuclear power reactors. More specifically, the present invention provides composite particles of zinc oxide coated with a noble metal, a process for their preparation, and their use in nuclear power reactors.
U.S. Pat. Nos. 5,448,605, 5,600,191 and 5,600,192 describe the doping of metallic surfaces with noble metals to impart catalytic properties on the surfaces. The methods described in these patents deviate significantly from the conventional methods such as electroplating and electroless plating that are commonly used to impart such catalytic properties on metal surfaces. As an example, electroplating requires the use of an externally applied voltage, whereas electroless plating requires the use of strong chemical reducing agents to deposit noble metals on surfaces. Furthermore, electroplating and electroless plating require high concentration of metal to be deposited, low or high pH and addition of other undesirable chemical species such as chlorides and sulfates. As described in the above-listed patents, deposition of noble metals can be achieved by injecting noble metal containing chemicals in to the reactor water. Previous studies have shown that the incorporation of noble metals or platinum group metals such as Palladium, Platinum, Iridium, Rhodium, etc. can be accomplished by this relatively simple treatment and they impart catalytic properties on these surfaces as shown by low ECPs and very low crack growth rates in the presence of a stoichiometric excess of hydrogen and in high temperature water. The presence of noble metal on these noble metal doped surfaces has been proven by surface analysis using Auger Spectroscopy, Atomic Absorption Spectroscopy and ESCA. Noble metal addition technology has been applied to 28 commercial BWRs worldwide and the ECP of treated surfaces remained low in the presence of low levels of hydrogen injection into feedwater after multiple years of plant operation without showing any sign of deterioration of catalytic activity. Thus, it is clear that the noble metal, once deposited by this technique, is very tenaciously bound to the internal surfaces of the BWR.
U.S. Pat. Nos. 4,756,874, 4,950,449, 4,759,900 and 5,896,433 describe the addition of either zinc oxide (ZnO), depleted ZnO (DZO) or Zn ions to nuclear reactor water to suppress radio nuclide build-up on out of core reactor internals surfaces. The effectiveness of Zn ions or Zno in suppressing radioactive build-up of out of core surfaces and reducing drywell dose rates as well as lowering personnel exposure have been well demonstrated in operating nuclear reactors. DZO addition has been practiced in 43 BWRs worldwide as a means of controlling shut down dose rates arising largely from the accumulation of the undesirable isotope Cobalt-60 (Co60) in the recirculation piping. The zinc addition results in a zinc containing spinel type oxide film on BWR internal surfaces where the zinc atoms preferentially occupy the sites that would otherwise have been occupied by Co60.
To date, the addition of noble metals and depleted ZnO (DZO) to reactors have been performed as two distinct operations, at two different locations of the reactor, in two different ways. As an example, noble metal has been added to reactor water as a solution, while DZO has been added to feedwater as Zn ions in the form of a slurry or by allowing feedwater to flow through a bed of solid DZO pellets. Furthermore, the addition of the two species occurs at two different temperatures, in one case DZO addition to feedwater (350° to 450° F.) and in the other case noble metal addition to reactor water at a much lower temperature (240° to 300° F.). Moreover, noble metal addition is active (requires pumps for injection) and intermittent, while the DZO addition is passive and continuous during plant operation.
The cumulative noble metal addition experience in nuclear power plants is about 120 reactor operating years and the DZO experience is in excess of 300 reactor operating years, demonstrating that the two technologies are widely accepted by the nuclear industry. However, currently there is no single approach of adding both noble metal and DZO in to an operating plant simultaneously. The present invention seeks to address that need.
The present invention provides a unique noble metal/zinc-containing compound composite product that will enable plants to practice both technologies at the same time using a passive (no pumps) approach where operator intervention is minimal. The invention involves identifying the optimum chemistry conditions for maximum or optimum incorporation of noble metals into the zinc-containing compound, so that the micron or sub-micron size zinc-containing particles are individually coated with a noble metal(s) that are of nano-meter size distribution, such as platinum. Nano-meter size distribution of platinum is achievable because platinum is deposited on zinc oxide particles from an ionic solution of a platinum compound.
In a first aspect, there is provided a composite particle comprising a zinc containing compound and a noble metal. In a second aspect, there is provided a process for preparing a composite particle comprising a hybrid of noble metal and a zinc containing compound, and more specifically depleted zinc oxide, zinc carbonate, zinc oxalate, zinc acetate or similar zinc compound that is benign for nuclear reactor applications.
The invention will now be further described with reference to the accompanying drawings, in which:
The present invention resides in the discovery that it is possible, by way of a composite particle containing a zinc-containing compound, typically zinc oxide or depleted zinc oxide, and a noble metal, to introduce both zinc and noble metal into a reactor while the reactor is operating, thereby obviating the need to shut-down the reactor to facilitate addition of either species. The invention provides a solution chemistry process that permits a selected surface interaction to occur between the particles and the noble metal ionic species or particles to achieve a desired loading of noble metal on the surface of the particles.
Referring to
This interaction causes the charge reversal of DZO as depicted schematically in
In a typical embodiment, commercially available DZO powder having micron or submicron particle size 0.1 to 50 micron, and more specifically 1 to 10 micron is employed together with available noble metal chemicals, such as H2Pt(OH)6, Na2Pt(OH)6, Na2Rh(NO2)6 or similar compounds of other noble metals. Examples of other compounds of the form MxAy, where M is a metal acceptable in a reactor water environment such as sodium, potassium, iron, nickel, titanium, zirconium, zinc, tungsten, niobium, tantalum, yttrium, platinum, palladium, osmium, iridium, ruthenium, rhodium, vanadium, chromium, manganese and the anion is a hydroxide, nitrate, nitrite or any other simple or complex anion acceptable in a nuclear reactor water environment. Alternatively, the metal (selected from any of the above listed metals) may be in an anionic form and the cation could be any of the metal ions acceptable in a nuclear reactor water environment. An example of such a compound is Na2Pt(OH)6.
The invention resides in the discovery that it is possible to manufacture a hybrid noble metal/zinc product by using specific chemistry conditions favorable for the formation of particles coated with noble metal to the desired levels, such that the optimum amounts of noble metal and zinc ions/particles are injected into the feedwater. It has been found according to the invention that simple mixing of noble metal solution or noble metal particles with zinc-contain particles is not adequate, since there will be no control of the amount of zinc or the noble metal entering the feedwater due to the heterogeneity of the mixture. As an example, if the feedwater zinc concentration is 0.4 ppb, the noble metal concentration could be 0.1 ppb or 5 ppb depending on the heterogeneity of the mixed compounds. Since the mix between two chemicals is macroscopically heterogeneous, individual control of the concentration of the two species would not be possible.
The composite particles of the invention may be prepared using a known quantity of the zinc oxide powder or depleted zinc oxide powder having a surface area of 1 to 100 m2/g or more specifically about 10 m2/g, and equilibrating it with pH adjusted Pt containing anion solutions such as H2Pt(OH)6, Na2Pt(OH)6 under well stirred or ultrasonicated conditions. The pH is adjusted to maintain the desired strong interaction between the positively charged DZO particles and the negatively charged Pt containing anions, such as Pt(OH)62−. Typically, as depicted in
Since the feedwater temperature is relatively fixed in a given power plant (typically 350 to 450° F.), the solubility of the zinc oxide and hence the amount of zinc ions entering the feedwater is also fixed depending on the operating feedwater temperature, since feedwater is used as the carrier for zinc ions. The approach to control zinc concentration in the feedwater stream for a given loading of the pellet bed is to change the flow through the latter by using the flow control valve (FCV) 6 shown in
An alternate method is to employ the highest noble metal loaded zinc oxide or depleted zinc oxide bed in parallel with just a zinc oxide/depleted zinc oxide bed with a separate flow control valve as shown
Once the maximum interaction between noble metal anion and the zinc-containing particles is achieved (
The noble metal is present as a deposit 40 on the DZO particle, and is present as an anionic species, for example Pt(OH)62−, initially, but is converted to metallic Pt or oxide of Pt during the calcining process. The deposited noble metal may have a thickness of molecular dimensions since it is deposited from an ionic state for example from several angstroms to 1 micron and more specifically 5 to 1000 angstroms. The noble metal particle deposits may be continuous or discontinuous.
The composite particle normally has a size in the range of 0.1 to 50 microns, for example 1 to 20 microns.
Composite particle may further comprise a binder. A typical binder for this application include zinc stearate which acts as a binder as well as a solid lubricant. The amount of zinc stearate is 0.1 to 5% and more specifically in the range 0.5 to 1%.
The composite noble metal/DZO hybrid product is used to simultaneously introduce both noble metal and DZO into the reactor feedwater. This approach eliminates the current practice of adding noble metal species into reactors during plant shutdown that requires prohibitively expensive critical path time. The process is passive whereby the noble metal and zinc containing hybrid product is loaded into a container (
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.
As an example, instead of having an interaction between DZO and noble metal anion at low pH, it is also possible to have a strong interaction between the two species at high pH as well. However, in the latter case, it is necessary to use a noble metal cation such as Pt4+ and the anion has to be species such as nitrate, nitrite, hydroxide etc., that are acceptable in nuclear reactor water environment. In addition, the same approach can be used to add any metal other than a noble metal in to the reactor along with oxides other than DZO.