The present invention is directed to a fixture for holding a preform during a heating process, and, more specifically, toward a restraint fixture for holding a preform that expands during a heating process and limits the force applied to the preform when the restraint fixture cools.
Brake discs for aircraft or automobiles require materials having high heat resistance and long wear. Asbestos has been used in these applications, due to its heat resistance properties. Asbestos-based friction components have limited applicability under severe use conditions because the polymeric resins used to bind the asbestos fibers together decompose at elevated temperatures. The use of carbon-carbon brake components has therefore become more common.
Among the types of substrates used to make carbon-carbon parts are discontinuous carbon fiber moldings, nonwoven airlaid carbon substrates, woven carbon fiber substrates, and braided carbon fiber substrates. Carbon-carbon parts can also be made by using fibers that are precursors to carbon fibers to build a preform and then converting the fiber to carbon fiber. The substrates are typically stacked on top of each other to a desired thickness, and then the stacked substrates may be needle-punched together to join or consolidate the substrates to each other by intermingling fibers between the layers of substrates to form the preform. Other methods of manufacturing a preform or impregnating the preform with pitch may also be used.
An alternate method of consolidating the layers of a substrate is to use a pitch or resin binder and press the materials under heat and pressure to form a preform. The preform is then typically batch carbonized to reduce its non-carbon content. The carbonized preform may then be die cut or machined to a desired shape for further densification.
The preform may be further densified by a chemical vapor deposition (CVD) process, e.g. with hydrocarbon gasses, by resin infiltration or by pitch infiltration and then carbonized yet again. These densification processes may be repeated until the desired density is attained. The preform may then be heat-treated to reorient the carbon atoms, which modifies the thermo-mechanical properties of the preform, machined if necessary, and the non friction surfaces treated with an anti-oxidant to form the finished carbon-carbon part.
It has been found that, for preforms containing pitch, if the preform is carbonized without undergoing a stabilization step, a significant amount of the liquid pitch runs out of the preform during carbonization. This limits the density of the resulting carbon-carbon preform. In an effort to address this problem, the present inventors have attempted to carbonize performs while they are contained in a restraint fixture. The use of such a restraint fixture substantially addresses the problem of run out, but may cause damage to the finished perform. This is because, while the preform and the restraint fixture both expand when heated during the carbonization process, the restraint fixture contracts to a greater extent that the preform as it cools and thus squeezes and sometimes damages the preform. It would therefore be desirable to provide a restraint fixture for quickly and efficiently producing preforms that reduces the need for a stabilization step and avoids pitch run out during carbonization.
One aspect of the invention comprises a restraint fixture including a band having a central portion having first and second ends and a first finger extending from the first end at a first angle and a second finger extending from the second end at a second angle. The center portion is curved so that its first end lies adjacent to its second end, and the first finger is connected to the second finger.
Another aspect of the invention comprises a restraint fixture that includes a band having a central portion having first and second ends, a first finger extending from the first end and a second finger extending from the second end. The center portion is curved so that the first end lies adjacent to the second end and the first finger is connected to the second finger. The band has a first configuration wherein the first finger extends from the first end at a first angle and the second finger extends from the second end at a second angle, and a second configuration wherein the first finger extends from the first end at a third angle different than the first angle and the second finger extends from the second end at a fourth angle different from the second angle.
A further aspect of the invention comprises a restraint fixture that includes a band having a first surface defining a preform retention region and a first expansion portion adapted to deform upon application of a force to the band first surface.
Another aspect of the invention comprises a restraint fixture that includes a band having a first surface defining a preform retention region and an arrangement for limiting a force exerted by the band on a preform in the preform retention region during a thermal contraction of the band.
An additional aspect of the invention comprises a restraint fixture that includes a band having first edge and a second edge and an inner surface defining a preform retention region, wherein the band has an inner diameter at the first edge greater than the inner diameter at the second edge.
These and other aspects and features of the present invention will be better understood after a reading of the following detailed description together with the drawings wherein:
Referring now to the drawings, wherein the showings are for the purpose of illustrating preferred embodiments of the invention only and not for the purpose of limiting same,
In use, restraint fixture 12 is placed around preform 10, and the first finger 26 and second finger 28 are fastened together with fastener 32. When a standard carbonization process is carried out on the restraint fixture 12 and preform 10, at a temperature of about 750° C., for example, both the preform 10 and the restraint fixture 12 thermally expand. However, once the preform is carbonized, the new coefficient of thermal expansion will not allow the preform to shrink back to its original size when it cools. The restraint fixture 12, however, will shrink as it cools, and as it shrinks, it applies force to the circumference of preform 10. This squeezing may damage the preform. However, as will be appreciated from
Band 14 may be formed from a variety of thicknesses of steel. The present inventors have found that steel sheet as thin as 18 gauge or as thick as one half inch can be used to form band 14. When thinner material is used, the distance between opening 30 and preform 10, in other words, the length of first finger 26 and second finger 28, may be relatively small because band 14 and fingers 26, 28 will readily deform. When a thicker band 14 is used, such as one formed from quarter inch steel, the fingers 26, 28 must be longer so that the pressure of band 14 contracting around preform 10 during cooling will be sufficient to deform the first and second fingers 26, 28 without damaging the preform 10. Beneficially, while thinner bands generally can only be used once, thicker bands are reusable and may be used, for example, up to about 100 times before the repeated heating and cooling cycles render them unsuitable for further use. Alternately, band 14 can be formed from a carbon-carbon material that is both strong and will withstand a greater number of heating and cooling cycles before failing. A carbon-carbon band 37 is illustrated
As illustrated in
A second embodiment of the present invention is illustrated in
A third embodiment of the invention is illustrated in
A fourth embodiment of the invention is illustrated in
A fifth embodiment of the invention is illustrated in
A sixth embodiment of the invention is illustrated in
A seventh embodiment of the invention is illustrated in
An eighth embodiment of the invention is illustrated in
A ninth embodiment of the invention is illustrated in
The invention has been described in terms of several embodiments, however, other modifications and additions will become apparent to those skilled in the art upon a reading of this disclosure and such modifications and additions are intended to be included within the scope of this patent.
This application is a Divisional of co-pending application Ser. No. 10/942,258, filed on Sep. 16, 2004 now abandoned, the entire contents of which are hereby incorporated by reference and for which priority is claimed under 35 U.S.C. §120
Number | Name | Date | Kind |
---|---|---|---|
773710 | Bronson | Nov 1904 | A |
2379568 | Herman | Jul 1945 | A |
2427770 | Herman | Sep 1947 | A |
3409971 | Morrow | Nov 1968 | A |
3565374 | Jones | Feb 1971 | A |
3708834 | Anderson | Jan 1973 | A |
3815855 | Appleton | Jun 1974 | A |
4006874 | McGee | Feb 1977 | A |
4350485 | Larribe | Sep 1982 | A |
6083436 | Thompson et al. | Jul 2000 | A |
6109209 | Rudolph et al. | Aug 2000 | A |
6521152 | Wood et al. | Feb 2003 | B1 |
6691393 | James et al. | Feb 2004 | B2 |
6726753 | Koucouthakis et al. | Apr 2004 | B2 |
6749937 | Gray | Jun 2004 | B2 |
Number | Date | Country |
---|---|---|
102 48 782 | Apr 2004 | DE |
07277845 | Oct 1995 | JP |
10202623 | Aug 1998 | JP |
10 180009 | Jan 2000 | JP |
2000-005941 | Jan 2000 | JP |
WO-0123167 | Apr 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080251959 A1 | Oct 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10942258 | Sep 2004 | US |
Child | 12213235 | US |