The invention relates to a method of manufacturing a cutting member of a shaver, comprising the steps of providing a plate-shaped carrier, cutting at least one cutting element free from the carrier except for a residual connection between a base of the cutting element and the carrier, and bending the cutting element relative to the carrier.
A method of manufacturing a cutting member of the kind mentioned in the opening paragraph is known from EP-A-1 537 963. The known method is in particular used to manufacture an internal cutting member of a cutting unit of an electric rotary shaver. The internal cutting member comprises an annular metal plate-shaped carrier with a number of regularly distributed cutting elements formed integrally with the carrier. Each cutting element is formed from the carrier by the successive steps of cutting free the cutting element from the carrier, except for a residual connection between a base of the cutting element and the carrier, and bending the cutting element upwardly relative to the carrier. The step of cutting free the cutting element is commonly performed by cutting a free space around the cutting element by means of a suitable cutting die. The successive step of bending the cutting element is commonly performed by bending the cutting element along a bending axis situated close to the base of the cutting element by means of a separate bending die.
A disadvantage of the known method is that the free space cut around the cutting element during the step of cutting free decreases the mechanical strength of the carrier. In order to obtain a required strength of the carrier the dimensions of the carrier should be increased to compensate the loss of material caused by the free space. Such an increase of the dimensions of the carrier is not always allowable, in particular in the case of shavers or cutting units thereof that have only a limited available space to accommodate the cutting member.
It is an object of the present invention to provide a method of manufacturing a cutting member of the kind mentioned in the opening paragraph that does not have the disadvantage of the known method.
In order to achieve this object, a method of manufacturing a cutting member according to the invention is characterized in that the steps of cutting free and bending the cutting element are performed simultaneously using a tool having a combined punching and bending effect. By using a tool having a combined punching and bending effect, the cutting element is teared free and simultaneously bent out of the carrier. Accordingly the action of cutting free is obtained by a tearing process, which does not lead to a free space between the cutting element and the carrier. As a result, the strength of the carrier is not decreased by a free space between the cutting element and the carrier, so that the dimensions of the carrier need not be increased to remain a required strength of the carrier. An additional advantage of the method according to the invention is that, close to the residual connection between the base of the cutting element and the carrier, the side walls of the cutting element remain in contact with the carrier. As a result the carrier provides additional mechanical support to the cutting element via friction forces between the carrier and the portions of the side walls that are in contact with the carrier. This increases the stiffness and stability of the cutting elements.
It is noted that in this context the expression “a free space between the cutting element and the carrier” intends to indicate a free space or clearance oriented in a direction parallel to the carrier, so that the portion of the cutting element cut free from the carrier could be freely bent through the plane of the carrier without touching the carrier. In the cutting member manufactured according to the invention such a free space is not present, so that said portion of the cutting element would touch the carrier if it were bent through the plane of the carrier.
A particular embodiment of a method according to the invention is characterized in that the tool has a punching surface that, during the simultaneous steps of cutting free and bending the cutting element, has an angle of inclination relative to the carrier substantially corresponding with a desired bending angle of the cutting element relative to the carrier. In this particular embodiment the simultaneous steps of cutting free and bending take place in successive positions starting near an end portion of the cutting element and ending close to the base of the cutting element. This limits the punching force necessary to tear free and bend the cutting element.
A particular embodiment of a method according to the invention is characterized in that the simultaneous steps of cutting free and bending the cutting element are followed by at least one additional step of bending at least a portion of the cutting element into a final bent position. In this particular embodiment, after the cutting element has been cut free and bent into an initial bent position by the simultaneous steps of cutting free and bending, the cutting element or one or more particular portions thereof can be bent into any desired final bent position by the following at least one additional step of bending.
A further embodiment of a method according to the invention is characterized in that in the final bent position at least an end portion of the cutting element carrying a cutting edge is bent over an angle greater than 90° relative to the carrier. In this further embodiment the cutting edge of the cutting element is formed by an (upper) edge of the end portion of the cutting element that is first teared free from the carrier during the simultaneous steps of cutting free and bending. Said upper edge will be relatively free from burrs, as contrasted with the opposing (lower) edge of the end portion that is lastly teared free from the carrier during said simultaneous steps and that will have a considerable degree of burrs caused by the tearing process. In this way the cutting edge needs no or only limited after-processing.
A particular embodiment of a method according to the invention is characterized in that before the simultaneous steps of cutting free and bending the cutting element a free space is cut between the carrier and an end portion of the cutting element carrying a cutting edge. In this particular embodiment, by first cutting free said end portion using a suitable cutting die to cut a free space between said end portion and the carrier, only the remaining portion of the cutting element between said end portion and the base is teared free from the carrier. As a result, burrs at the location of the cutting edge are prevented, while the reduction of the strength of the carrier by the free space is limited to the area around the end portion of the cutting element.
The invention further relates to a cutting unit comprising an external cutting member and an internal cutting member movable relative to the external cutting member, wherein the internal cutting member is manufactured by a method according to the invention. The invention also relates to a shaving unit comprising at least one cutting unit according to the invention.
The invention also relates to a shaver comprising a shaving unit according to the invention.
Particular embodiments of a method of manufacturing a cutting member according to the invention will be described in detail in the following with reference to the drawings, in which
Each external cutting member 5 comprises hair-entry apertures 7 via which hairs can penetrate into the external cutting member 5. In the example shown the hair-entry apertures 7 are arranged in two concentric tracks 8a, 8b. In this example the internal cutting member 6 has two concentric circular arrays of regularly distributed cutting elements 9a, 9b for cooperation with said tracks 8a, 8b. The internal cutting member 6 is coupled to a drive system of the shaver 1 that is not visible in the figures. In operation the internal cutting member 6 is driven into a rotational motion relative to the external cutting member 5 in the direction of the arrow R in
The internal cutting member 6 is manufactured by a method according to the invention. According to the method, first a metal plate-shaped carrier 10 is provided. In the example shown in
Since with the method according to the invention the cutting element 9b is teared free from the carrier 10 by the tool 11, substantially no material is cut away from the carrier 10 and from the cutting element 9b. Accordingly the cutting member 6 manufactured according to said method will not show any substantial free space between the cutting element 9b and the carrier 10, viewed in directions parallel to the carrier 10. As substantially no material is cut away from the carrier 10, the mechanical strength of the carrier 10 is substantially not reduced by the method according to the invention. This implies that the dimensions of the carrier 10 need not be increased in order to compensate any loss of material during the manufacturing process. In the specific example shown in
During the process of cutting free the cutting element 9b by means of said tearing process, a lower edge 17 of the end portion 14 of the cutting element 9b, i.e. the edge that faces in a direction opposite to the upward direction A just before the cutting element 9b is bent (see
The cutting elements 9a are formed by similar simultaneous steps of cutting free and bending from the carrier 10 as described before in connection with the cutting elements 9b. Also a number of additional steps of bending are performed in order to bend the cutting elements 9a in their final bent positions as shown in
It is noted that the holes 25 provided in the carrier 10 near the end portions 14 of the cutting elements 9b do not constitute free spaces within the meaning described above. The holes 25 do not surround the end portions 14, but only adjoin the end faces of the end portions 14. The holes 25 are provided to facilitate the initialization of the tearing process performed by the tool 11.
Number | Date | Country | Kind |
---|---|---|---|
06124107.1 | Nov 2006 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB07/54580 | 11/12/2007 | WO | 00 | 12/8/2009 |