Method of manufacturing a cylinder piston rod guide

Information

  • Patent Grant
  • 6397462
  • Patent Number
    6,397,462
  • Date Filed
    Thursday, July 24, 1997
    27 years ago
  • Date Issued
    Tuesday, June 4, 2002
    22 years ago
Abstract
A guide (30) for surrounding and sealing a rod (26) in the end of a hydraulic cylinder (12) including a piston (24) slidably disposed in the cylinder (12) and attached to the end of the rod (26) and a method for manufacturing the guide (30). The guide (30) includes an inner guide bore (38) with dovetail shaped channels (40) extending annularly about the guide bore (38) and an organic polymeric bearing material (42) disposed in the guide bore (38) in mechanically interlocking engagement with the dovetail channel in the radial direction to exert a radial retaining force from the channel (40) to the bearing material (42) to establish a force fit in the radial direction between the channel (40) and the bearing material (42). placing the guide (30) in a mold (44, 46) defining a cylindrical cavity extending about the guide bore (38) and between the end faces (32) of the guide (30). The guide is manufactured by filling a cylindrical cavity adjacent the guide bore (38) with an organic polymeric bearing material (42) and, after curing the bearing material (42), machining a rod engaging surface (54) into the interior of the bearing material (42), the bearing material (42) being machined in reference to an to a closer tolerance than the machined surface (34) on the exterior of the guide (30).
Description




TECHNICAL FIELD




This invention relates to hydraulic cylinder assemblies and a method for manufacturing such assemblies.




BACKGROUND OF THE INVENTION




A hydraulic assembly includes a piston slidably disposed in a cylinder with a piston rod connected to the piston and extending through a guide assembly supporting a seal at one end of the cylinder. Such guide assemblies prevent hydraulic fluid from leaking about the rod. Examples of such guide assemblies are shown in U.S. Pat Nos. 4,532,856 to Taylor; 4,987,826 to Deppert et al and 5,127,497 to Struckmeyer et al.




One of the problems associated with prior assemblies is that it is very difficult and expensive to attain very close tolerances with the piston rod. Large tolerances allow the extrusion of seals into the gap between the guide material and the rod. Accordingly, the closer the tolerances between the guide material and the rod, the more effective and longer life of the seal between the guide and the rod.




SUMMARY OF THE INVENTION AND ADVANTAGES




A method for manufacturing a guide for surrounding and sealing a rod in the end of a hydraulic cylinder including a piston slidably disposed in the cylinder and attached to the end of the rod. The method comprises the steps of: forming an annular guide from metal and having end faces interconnected by an outer mounting surface and an inner guide bore; forming a least one annular channel in the guide bore; placing the guide in a mold defining a cylindrical cavity extending about the guide bore and between the end faces of the guide; filling the cylindrical cavity with an organic polymeric bearing material; curing the bearing material: and removing the guide from the mold. The method is characterized by forming the channel with a mechanical interlock in the radially inward direction and curing the bearing material to radially contract and exert a radially inwardly directed force against the mechanical interlock and machining rod engaging surface into the interior of the bearing material.




The method, therefore, produces a guide for surrounding and sealing a rod in the end of a hydraulic cylinder including a piston slidably disposed in the cylinder and attached to the end of the rod wherein the guide comprises end faces interconnected by an outer mounting surface and an inner guide bore with at least one annular channel in the guide bore and an organic polymeric bearing material disposed in the guide bore. The guide is characterized by the bearing material and the channel including a mechanical interlock in the radial direction to exert a radial retaining force from the channel to the bearing material to establish a force fit in the radial direction between the channel and the bearing material.




Accordingly, the subject invention provides an improved guide with very close tolerances between the rod and the guide to increase seal effectiveness and life.











BRIEF DESCRIPTION OF THE DRAWINGS




Other advantages of the present invention will be readily appreciated as the same become better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:





FIG. 1

is longitudinal cross sectional view of a hydraulic cylinder incorporating a preferred embodiment of the rod guide of the subject invention;





FIG. 2

is an enlarged cross sectional view of the guide of the subject invention;





FIG. 3

is a cross sectional view of the guide in a mold with bearing material molded in the bore of the guide; and





FIG. 4

is an enlarged fragmentary view of the undercut channel in the bore of the guide of the subject invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to Figures, wherein like numerals indicate like or corresponding parts throughout the several views, a hydraulic cylinder assembly is generally shown at


10


. The cylinder assembly


10


includes a cylinder


12


having an open end


14


and a closed end


16


, the closed end


16


presenting a coupling extension


18


for connection to a support structure for reaction thereagainst. The cylinder


12


includes a fluid passages


20


and


22


for the ingress of hydraulic fluid through one of the passages and egress of fluid out of the other passage during actuation in one direction and for fluid flow in the opposite direction during actuation in the opposite direction. The actuation is accomplished by a piston


24


moving back and forth in the cylinder


12


, the piston


24


being of the type disclosed in U.S. Pat. No. 4,067,093, assigned to the assignee of the subject invention. A piston rod


26


extends through the piston


24


and is secured thereto by a nut


28


on the inner end othereof. The rod


26


extends through a guide


30


to a rod coupling


31


for reaching with a member to be controlled.




The guide


30


surrounds and seals the rod


26


in the open end


14


of the hydraulic cylinder


12


. A best shown in

FIG. 2

, the guide


30


includes end faces


32


interconnected by an outer mounting surface


34


,


36


and an inner guide bore


38


. The outer mounting surface


34


,


36


is divided into precisely machined gaging portion


34


and a threaded portion


36


, the threaded portion


36


being in threaded engagement with the interior of the open end


14


of the cylinder


12


. Instead of a threaded connection, a snap ring type connection or fastener, or the equivalent, could be used.




The guide bore


38


includes at least one, and in the embodiment shown, three annular channels


40


. An organic polymeric bearing material


42


is disposed in the guide bore


38


. The guide


30


is characterized by the bearing material


42


and the channel


40


including a mechanical interlock in the radial direction to exert a radial retaining force from each channel


40


to the bearing material


42


to establish a force fit in the radial direction between the channel


40


to bearing material


42


. The mechanical interlock comprises an undercut extending at an acute angle relative to the guide bore


38


as viewed in the cross section. More specifically, in the preferred embodiment illustrated, the undercut is defined by a dovetail shape as viewed in cross section.




In accordance with the method for manufacturing the guide


30


, after the an annular guide


30


is formed from metal with the end faces


32


interconnected by the outer mounting surface


34


,


36


and an inner guide bore


38


, the annular channel


40


are formed by machining in the guide bore


38


. Thereafter, the guide


30


is placed in a mold


44


,


46


defining a cylindrical cavity extending about the guide bore


38


and between the end faces


32


of the guide


30


. The main body


44


of the mold includes a mandrel


48


extending into the guide bore


38


, but in radially spaced relationship thereto ti create an annular space or cylindrical cavity around the mandrel


48


and within the guide bore


38


. The guide


30


is centered in the mold by the threads


36


of the outer surface contacting the interior of the main body


44


of the mold. The other component of the mold is a cover or closure member


46


.




Once the mold is closed by placing cover


46


into tight engagement with the main body


44


of the mold, the cylindrical cavity is filled or injected with the organic polymeric bearing material in the liquid and usually hot condition. Various plastics well known for bearing qualities may be utilized, and in some cases may include a dispersion of glass, graphite, minerals, or the like. The bearing material is injected through the injection passage


50


and the air, which the bearing material


42


replaces, is forced out through vent passages. After the bearing material


42


has hardened or cured sufficiently, usually by simply cooling, the guide


30


is removed from the mold and allowed to further cure, if necessary.




However, the method is characterized by forming the channels


40


with a mechanical interlock in the radially inward direction and curing the bearing material to radially contact and exert an radially inwardly directed force against the mechanical interlock. Of course, the channels


40


are machined before the guide


30


is placed in the mold


44


,


46


. As described above, the under cut is formed by machining in the shape of a dovetail as viewed in cross section. Accordingly, there is established an extension of the material of the guide under a portion of the bearing material


42


so that as the bearing material cures and shrinks radially inwardly, the undercut resists such shrinkage and, in fact, establishes a force fit between the bearing material


42


and the undercut of the dovetail shape.




Either before or after the bearing material


30


is molded, the gaging portion


34


of the mounting surface is machined to closer tolerance than the guide bore


38


. Preferably, the machined gagging surface


34


is maintained at a tolerance of plus or minus 0.002 inch. The machined gagging surface


34


is placed in a fixture as a reference to then machine a rod engaging surface


54


into the interior if the bearing material


42


in close concentric relationship to the gagging surface


34


, but to closer tolerance than the mounting surface


34


. The rod engaging surface


54


is machined to a closer or tighter tolerance than the gagging surface


34


so that it is in very close engagement with the rod


26


. Preferably, the rod engaging surface


54


is machined to the tolerance of plus or minus 0.001 inch and concentric to the gaging surface


34


, i.e., in close tolerance concentric relationship to the mounting surface


34


. Therefore, at least a portion


34


of the mounting surface has a closer tolerance than the tolerance of the finished


54


guide bore


38


.




Irregularities


56


may also be formed in the direction about the inner guide bore


38


to prevent the cured bearing material


42


from rotating relative to bore


38


. These irregularities may take the form of knurling, or the like. Usually, the shrink fit between the bearing material


42


and the dovetail channels


40


will be sufficient to prevent rotative movement of the bearing material


42


relative to the guide bore


38


.




Irregularities


56


may also be formed in the direction about the inner guide bore


38


to prevent the cured bearing material


42


from rotating relative to the bore


38


. These irregularities may take the form of knurling, or the like, Usually, the shink fit between the bearing material


42


and dovetail channels


40


will be sufficient to prevent rotative movement of the bearing material


42


relative to the guide bore


38


.




In addition, annular grooves


58


are machined through the bearing material


42


into the metal of the guide


30


. Before the guide is placed in service, a seal


60


is place in each annular groove


58


.




A guide


30


manufactured in accordance with the subject invention will provide longer life of the seals


60


because of the closer tolerance in engaging the rod


26


. In other words, the guide bore


38


provides an improved back-up for seals


60


. The guide bore


38


prevents extrusion of the seals


60


to increase seal life.




The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation.




Obviously, many modification and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims, wherein reference numerals are merely for convenience and are not to be in any way limiting, the invention may be practiced otherwise than as specifically described.



Claims
  • 1. A method for manufacturing a guide (30) for surrounding and sealing a rod (26) in the end of a hydraulic cylinder (12) including a piston (24) slidably disposed in the cylinder (12) and attached to the end of the rod (26), said method comprising the step of;forming an annular guide (30) from metal and having end faces (32) interconnected by an outer mounting surface (34, 36) and an inner guide bore (38), forming at least one annular channel (40) in the guide bore (38), placing the guide (30) in a mold (44, 46) defining a cylindrical cavity extending about the guide bore (38) and between the end faces (32) of the guide (30), filling the cylindrical cavity with an organic polymeric bearing material (42), curing the bearing material, and removing the guide (30) from the mold (44, 46); forming the channel (40) with a mechanical interlock in the radially inward direction and curing the bearing material (42) to radially contact and exert a radially inward directed force against the mechanical interlock and machining a rod engaging surface (54) into the interior of the bearing material (42), machining at least a portion (34) of the mounting surface to closer tolerances than the guide bore (38), machining the bearing material (42) in relationship to the machined portion (34) of the mounting surface and to a closer tolerance than the machined portion (34) of the mounting surface so that said bearing material (42) is in closer tolerance relationship to said machined portion (34) of said mounting surface than said guide bore (38).
  • 2. A method as set forth in claim 1 further defined as forming the mechanical interlock with an undercut as viewed in the cross section.
  • 3. A method as set forth in claim 2 defined as forming the undercut at an angle.
  • 4. A method as set forth in claim 2 further defined as forming irregularities (56) in the direction about the guide bore (38) to prevent the cured bearing material (42) from rotating relative to said bore (38).
  • 5. A method as set forth in claim 3 further defined as forming said undercut in the shape of a dovetail as viewed in the cross section.
  • 6. A method as set forth in claim 5 further defined as machining an annular groove (58) through the bearing material (42) and into the guide (30).
  • 7. A method as set forth in claim 6 further defined as inserting a seal (60) in the annular groove (58).
  • 8. A method as set forth in claim 1 further defined as machining the machined portion (34) of the mounting surface to a tolerance of plus or minus 0.001 inches and machining the bearing material (42) to a tolerance of plus or minus 0.002 inches.
Parent Case Info

This application is a divisional of application Ser. No. 08/661,996 filed on Jun. 12, 1996 now U.S. Pat. No. 5,782,162.

US Referenced Citations (11)
Number Name Date Kind
1652468 Catlin Dec 1927 A
3046062 Wettstein Jul 1962 A
3537762 Lodige Nov 1970 A
3850483 Roberts et al. Nov 1974 A
4067093 Schumacher et al. Jan 1978 A
4532856 Taylor Aug 1985 A
4756630 Teeslink Jul 1988 A
4987826 Deppert et al. Jan 1991 A
5127497 Struckmeyer et al. Jul 1992 A
5263404 Gaucher et al. Nov 1993 A
5435650 Emig et al. Jul 1995 A