The present invention relates to a method of manufacturing a fibre reinforced metal matrix composite article, and the present invention relates in particular to a method of manufacturing a fibre reinforced metal matrix composite rotor.
In one known method of manufacturing a fibre reinforced metal matrix composite article, as disclosed in European patent No. EP0831154B1, a plurality of metal coated fibres are placed in an annular groove in a metal ring and a metal ring is placed on top of the metal coated fibres. Each of the metal coated fibres is wound spirally in a plane and the metal coated fibre spirals are stacked in the annular groove in the metal ring. The metal ring is pressed predominantly axially to consolidate the assembly and to diffusion bond the metal rings and the metal coated fibre spirals together to form an integral structure.
In a further known method of manufacturing a fibre reinforced metal matrix composite article, as disclosed in European patent application No. EP1288324A2, the arrangement described in EP0831154B1 is modified by the inclusion of metal wires in the annular groove in the metal ring with the metal coated fibres. Each of the metal wires is wound spirally in a plane and the metal wire spirals are stacked in the annular groove in the metal ring with the metal coated fibre spirals.
Conventionally hot isostatic pressing (HIP) is used as a single stage process to consolidate, to increase the density of, a porous article where the initial density of the porous article is relatively high and therefore the change of shape of the article is usually very small.
Hot isostatic pressing (HIP) is suitable for the consolidation of fibre reinforced metal matrix composite articles, however, the initial density may be as low as 50% and therefore the change in volume and shape will be substantial. In general the consolidation of fibre reinforced metal matrix composite articles has been by hot isostatic pressing, but control of the final shape of the fibre reinforced area of the fibre reinforced metal matrix composite article is difficult, or the control of the position of the fibres in the fibre reinforced metal matrix composite article is difficult.
Accordingly the present invention seeks to provide a novel method of manufacturing a fibre reinforced metal matrix composite article.
Accordingly the present invention provides a method of manufacturing a fibre reinforced metal matrix composite article, the method comprising the steps of:
Preferably the first temperature is less than the second temperature, the first pressure is less than the second pressure and step (c) includes diffusion bonding of the filler metal and the first and second metal components.
Preferably step (a) comprises placing at least one metal coated fibre, at least one fibre and at least one metal wire or at least one fibre and at least one metal foil between the first metal component and the second metal component, step (b) comprises heating to a first temperature and applying a first pressure to partially consolidate the metal on the at least one metal coated fibre, the at least one metal wire or the at least one metal foil.
Preferably the metal of the filler metal is the same metal as the first metal component and is the same metal as the second metal component.
Alternatively the metal of the filler metal is a different metal to the first metal component and to the second metal component.
Preferably the first and second metal components comprise a titanium alloy and the at least one fibre is coated in a titanium alloy or the at least one metal wire is a titanium alloy wire, the first temperature is about 700C, the second temperature is about 925C, the first pressure is about 50 Mpa and the second pressure is about 100 Mpa.
Preferably the fibres are silicon carbide fibres, silicon nitride fibres, boron fibres or alumina fibres.
Preferably the at least one metal coated fibre is a titanium coated fibre, a titanium aluminide coated fibre or a titanium alloy coated fibre.
Preferably the at least one metal wire is a titanium wire, a titanium aluminide wire or a titanium alloy wire.
Preferably the first metal component and the second metal component comprise titanium, titanium aluminide or titanium alloy.
Preferably step (a) comprises forming a groove in the first metal component, placing the at least one fibre and the filler metal in the groove of the first metal component and placing the second metal component in the groove of the first metal component.
Preferably step (a) comprises forming a projection on the second metal component and placing the projection of the second metal component in the groove of the first metal component.
Preferably step (a) comprises forming a circumferentially extending groove in an axial face of the first metal member, placing the at least one circumferentially extending fibre and the filler metal in the circumferentially extending groove of the first metal component and placing the second metal component in the groove of the first metal component.
Preferably step (a) comprises placing a plurality of fibres between the first and second metal components.
Preferably the second temperature and the second pressure diffusion bonds the filler metal and the metal of the first and second metal components.
The present invention will be more fully described by way of example with reference to the accompanying drawings in which:
A finished ceramic fibre reinforced metal rotor 10 with integral rotor blades is shown in
A ceramic fibre reinforced metal rotor 10 is manufactured using a plurality of metal coated ceramic fibres. Each ceramic fibre 14 is coated with metal matrix 18 by any suitable method, for example physical vapour deposition, sputtering etc. Each metal coated 18 ceramic fibre 14 is wound around a mandrel to form an annular, or disc shaped, fibre preform 20 as shown in
A first metal ring, or metal disc, 30 is formed and an annular axially extending groove 32 is machined in one axial face 34 of the first metal ring 30, as shown in
One or more of the annular fibre preforms 20 are positioned coaxially in the annular groove 32 in the axial face 34 of the first metal ring 30. The radially inner and outer dimensions, diameters, of the annular fibre preforms 20 are substantially the same as the radially inner and outer dimension, diameters, of the annular groove 32 to allow the annular fibre preforms 20 to be loaded into the annular groove 32 while substantially filling the annular groove 32. A sufficient number of annular fibre preforms 20 are stacked in the annular groove 32 to partially fill the annular groove 32 to a predetermined level.
The second metal ring 36 is then arranged such that the axial face 40 confronts the axial face 34 of the first metal ring 30 and the axes of the first and second metal rings 30 and 36 are aligned such that the annular projection 38 on the second metal ring 36 aligns with the annular groove 32 in the first metal ring 30. The second metal ring 36 is then pushed towards the first metal ring 30 such that the annular projection 38 enters the annular groove 32 and is further pushed until the axial face 40 of the second metal ring 36 abuts the axial face 34 of the first metal ring 30 as shown in
The radially inner and outer peripheries of the axial face 34 of the first metal ring 30 are sealed to the radially inner and outer peripheries of the axial face 40 of the second metal ring 36 to form a sealed assembly. The sealing is preferably by TIG welding, electron beam welding, laser welding or other suitable welding processes to form an inner annular weld seal 46 and an outer annular weld seal 48 as shown in
The sealed assembly is evacuated using a vacuum pump and pipe 50 connected to the grooves, or chambers, 42 and 44. The sealed assembly is then heated, while being continuously evacuated to remove the glue 22 from the annular fibre preforms 20 and to remove the glue 22 from the sealed assembly.
After all the glue 22 has been removed from the annular fibre preforms 20 and the interior of the sealed assembly is evacuated, the pipe 50 is sealed. The sealed assembly is then heated and pressure is applied to the sealed assembly to produce axial consolidation of the annular fibre preforms 20 and diffusion bonding of the first metal ring 30 to the second metal ring 36 and diffusion bonding of the metal on the metal coated 18 ceramic fibres 14 to the metal on other metal coated 18 ceramic fibres 14, to the first metal ring 30 and to the second metal ring 36. During the application of heat and pressure the pressure acts equally from all directions on the sealed assembly, and this causes the annular projection 38 to move axially into the annular groove 32 to consolidate the annular fibre preforms 20.
The application of heat and pressure to the sealed assembly follows a predefined schedule. In particular if the metal of the metal coated 18 ceramic fibres 14 and the metal of the first and second metal rings 30 and 36 comprise substantially the same metal, or alloy, the sealed assembly is heated up to a first temperature and a first pressure is applied to the sealed assembly for a predetermined period of time. Then the sealed assembly is heated up to a second temperature and a second pressure is applied to the sealed assembly for another predetermined period of time. The second temperature is greater than the first temperature and the second pressure is greater than the first pressure.
For example if the metal on the metal coated 18 ceramic fibres 14 is a titanium alloy comprising 6 wt % aluminium, 4 wt % vanadium and the balance titanium plus incidental impurities and the metal of the first metal ring 30 and the second metal ring 36 is the same alloy, then the first temperature is about 700° C., the first pressure is about 50 Mpa, the second temperature is about 925° C. and the second pressure is about 100 Mpa, as is shown in
If the metal on the metal coated 18 ceramic fibres 14 is a titanium alloy comprising 6 wt % aluminium, 4 wt % vanadium and the balance titanium plus incidental impurities and the metal of the first metal ring 30 and the second metal ring 36 is a titanium alloy comprising 6 wt % aluminium, 4 wt % tin, 4 wt % zirconium, 2 wt % molybdenum, 0.1 wt % Silicon and the balance titanium plus incidental impurities then the first temperature is about 700° C., the first pressure is about 50 Mpa, the second temperature is about 925° C. and the second pressure is about 100 Mpa, as is shown in
If the metal on the metal coated 18 ceramic fibres 14 is a titanium alloy comprising 6 wt % aluminium, 4 wt % tin, 4 wt % zirconium, 2 wt % molybdenum, 0.1 wt % silicon and the balance titanium plus incidental impurities and the metal of the first metal ring 30 and the second metal ring 36 is the same alloy, then the first temperature is about 700° C., the first pressure is about 50 Mpa, the second temperature is about 925° C. and the second pressure is about 100 Mpa, as is shown in
The heating of the sealed assembly to the first temperature and the application of the first pressure on the sealed assembly causes the metal on the metal coated 18 ceramic fibres 20 to be pre-consolidated because there is only point/line contact between the metal coated 18 ceramic fibres 14 and the first and second metal rings 30 and 36, or between metal coated 18 ceramic fibres 14, with some minor consolidation of the first and second metal rings 30 and 36 at the points/lines where the metal coated 18 ceramic fibres 14 contact the first and second metal rings 30 and 36.
At the first temperature and the first pressure the high metal coated 18 ceramic fibre 14 to metal coated 18 ceramic fibre 14 contact stresses and the high metal coated 18 ceramic fibre 14 to first and second metal rings 30 and 36 contact stresses promote creep flow of the metal matrix material 18 on the ceramic fibres 14 and hence starts densification. The first temperature and the first pressure only subjects the first and second metal rings 30 and 36 to relatively low stresses and the creep flow is significantly less than in the metal matrix 18 on the ceramic fibres 14. Thus the first and second metal rings 30 and 36 retain their shape while the metal matrix material 18 on the ceramic fibre 14 is partially densified, and thus the shape is controlled. The lower temperature of the first temperature is too cool for significant diffusion and full density cannot be achieved using the first temperature alone. The first temperature reduces the likelihood of diffusion bonding, which is detrimental during the consolidation phase.
The heating of the sealed assembly to the second temperature and the application of the second pressure on the sealed assembly causes the metal of the first and second metal rings 30 and 36 and the metal of the metal coated 18 ceramic fibres 14 to be deformed more easily, which completes the consolidation of the metal matrix material 18 on the ceramic fibres 14 and enables diffusion bonding of the first and second metal rings 30 and 36 and the metal coated 18 ceramic fibres 14 together. At the second temperature and the second pressure, the temperature and pressure achieve substantially full density and all the components are diffusion bonded into a single integral article. The second temperature and the second pressure are sufficient to produce errors in shape, but the partial densification during the first temperature and first pressure minimises these errors in shape.
If the metal, or alloy, on the metal coated 18 ceramic fibres 14 is different to the metal, or alloy, of the first and second metal rings 30 and 36 then the first temperature and first pressure still produces the consolidation of the metal on the metal coated 18 ceramic fibres 14 and the second temperature and second pressure still produces consolidation of the first and second metal rings 30 and 36 and the first temperature and first pressure are smaller than the second temperature and second pressure respectively.
The particular temperatures of the first and second temperatures and the particular pressures of the first and second pressures depend upon the particular metals, or alloys, on the metal coated 18 ceramic fibres 14 and the metals, or alloys, of the first and second metal rings 30 and 36.
The resulting consolidated and diffusion bonded ceramic fibre reinforced component is shown in
After consolidation and diffusion bonding the article is machined to remove at least a portion of what was originally the first metal ring, at least a portion of the second metal ring and at least a portion of the diffusion bonded region. In the example all of the second metal ring and all of the diffusion bonded region is removed. Thus the fibre reinforced area is retained in it's intended shape with straight, flat, sides and thus the machining is in planes to produce flat, planar, surfaces on the article to provide a uniform distance between the surfaces and the fibre reinforced areas.
The article may then be machined for example by electrochemical machining or milling to form the integral compressor blades 16, as shown in
Alternatively, compressor blades may be friction welded, laser welded or electron beam welded onto the article.
The reinforcing fibres may comprise alumina, silicon carbide, silicon nitride, boron or other suitable fibre.
The metal coating on the reinforcing fibre may comprise titanium, titanium aluminide, titanium alloy, aluminium, aluminium alloy, copper, copper alloy or any other suitable metal, alloy or intermetallic which is capable of being diffusion bonded.
The first metal ring and the second metal ring comprise titanium, titanium aluminide, titanium alloy, aluminium, aluminium alloy, copper, copper alloy or any other suitable metal, alloy or intermetallic which is capable of being diffusion bonded.
Although the present invention has been described with reference to spirally wound metal coated fibres alone, the present invention is also applicable to the use of fibre preforms 20A comprising spirally wound metal coated 18 ceramic fibres 14 and preforms 24A comprising spirally wound metal wires 26, as shown in
Additionally the present invention is applicable to the use of spirally wound ceramic fibres and metal foils, spirally wound ceramic fibres and metal powder, helically wound ceramic fibres in a metal ribbon, spirally wound fibres and spirally wound metal wires or other form of metal filler.
The metal wire may comprise titanium, titanium aluminide, titanium alloy or any other suitable metal, alloy or intermetallic which is capable of being diffusion bonded. The metal foil, metal ribbon, metal powder or other metal filler may comprise titanium, titanium aluminide, titanium alloy or any other suitable metal, alloy or intermetallic which is capable of being diffusion bonded.
Although the present invention has been described with reference to providing a circumferentially extending groove in an axial face of a first metal ring and a circumferentially extending projection on an axial face of a second metal ring it is equally applicable to the provision of a circumferentially extending groove on a radially outer or inner face of a ring.
The present invention is also applicable to any arrangement where the fibres are placed between two or more metal components.
Although the present invention has been described with reference to reinforcement of metal rings it is equally applicable to other arrangements and in such cases the reinforcing metal coated fibres will be arranged accordingly.
Although the present invention has been described with reference to the placing of the filler metal and the ceramic fibres between two metal components and the diffusion bonding of the filler metal and two metal components, the filler metal and ceramic fibres may be placed between two tools but the filler metal is not bonded to the tools.
The advantages of the present invention is that it provides a single consolidation and diffusion bonding process, the two stage process reduces the likelihood of loss of control of the final shape of the fibre reinforced area of the fibre reinforced metal matrix composite article by providing partial densification at a lower temperature and final densification and diffusion bonding at a higher temperature.
Although the present invention has been described with reference to the use of two temperatures and two pressures, it may be possible to use more than two temperatures and more than two pressures.
Number | Date | Country | Kind |
---|---|---|---|
0324810.1 | Oct 2003 | GB | national |