This invention relates to a process of manufacturing a fire-retardant treated wood composite panel, such as oriented strand board (OSB), particleboard, medium density fiberboard (MDF), or other cellulose-based panels.
In general, wood-based composites include, but are not limited to, oriented strand board (OSB), wafer board, flake board, particleboard, and fiberboard (e.g., medium density fiberboard, or MDF). These wood-based composites are typically formed from a wood element (e.g., flake, strand, particle, wafer) combined with a thermosetting adhesive to bind the wood substrate together. In some processes, other additives are added to impart additional properties to the wood composites. Additives may include fire retardants, fungicides, mildew-cides, insecticides, and water repellents. A significant advantage of strand and particle-based wood composites is that they have many of the properties of plywood and dimensional lumber, but can be made from a variety of lower grade wood species, smaller trees and waste from other wood product processing. In addition, they can be formed into panels in lengths and widths independent of the size of the harvested timber.
One class of wood-based composites products comprise multilayer, oriented wood strand panel products. These oriented-strand, multilayer composite wood panel products are composed of several layers of thin wood strands, which are wood particles having a length which is several times greater than their width. These strands are created from debarked round logs by placing the edge of a cutting knife parallel to a length of the log and then slicing thin strands from the log. The result is a strand in which the fiber elements are substantially parallel to the strand length. These strands can then be oriented on a mat-forming line with the strands of the outer face layers predominantly oriented in a parallel-to-machine direction, and strands in the core layer generally oriented perpendicular to the face layers (i.e., “cross-machine”) direction.
In one known commercial process, these mat layers are bonded together using natural or synthetic adhesive resins under heat and pressure to make the finished product. Oriented, multilayer wood strand panels of the above-described type can be produced with mechanical and physical properties comparable to those of commercial softwood plywood and are used interchangeably, such as for wall and roof sheathing. In certain types of construction, these wood-based panels (and other construction materials) may be required by building codes to meet certain durability requirements, such as fire, wind and water resistance.
Oriented, multilayer wood strand panels and similar products of the above-described type, and examples of processes for pressing and production thereof, are described in detail in US. Pat. No. 3,164,511, US. Pat. No. 4,364,984, US. Pat. No. 5,435,976, US. Pat. No. 5,470,631, US. Pat. No. 5,525,394, US. Pat. No. 5,718,786, and US Pat. No. 6,461,743, all of which are incorporated herein in their entireties by specific reference for all purposes.
Some wood panel products (e.g., fire-retardant treated plywood) are treated with fire retardants, which are activated and catalyze the dehydration of cellulose when exposed to heat during a fire event. This reaction converts wood into water and “char” (i.e., partially-burned wood or charcoal), and reduces the susceptibility of the wood to continuous combustion.
While effective for imparting fire retardancy to wood, these fire retardants may be susceptible to premature activation. For example, some fire retardants could be activated under the high heat and high humidity in an attic space during summer, which would degrade the mechanical strength of wood structural panels. Various fire-retardant formulations have developed to address this issue. For, example, U.S. Pat. No. 4,373,010 (which is incorporated herein in its entirety by specific reference for all purposes) describes several liquid fire retardants that contain guanylurea phosphate (GUP) and boric acid. Similarly, U.S. Pat. No. 10,703,009 (which is incorporated herein in its entirety by specific reference for all purposes) describes an aqueous boric acid dispersion.
These fire retardants, however, will not properly work with wood-based panels, such as OSB, due to the high temperatures of the press during the manufacturing process. OSB typically is manufactured using press temperatures ranging from approximately 190° C. to approximately 220° C. Boric acid has a melting point of 170.9° C., which is below these press temperatures, so it will soften and melt while at higher temperatures, and its use during the OSB manufacturing process thus will result in build-up of the melted material in the press itself. Accordingly, OSB cannot be manufactured with these fire-retardant materials by currently-known processes.
In various exemplary embodiments, the present invention comprises a process of manufacturing a fire-retardant treated OSB with low melting point fire retardant material. The present invention reduces the press temperature to below the melting point or softening temperature of the fire retardants noted above. To obtain an OSB panel with sufficient bonding and integrity while using a lower press temperature, the present invention in one embodiment applies a fast-cure adhesive system. In one exemplary embodiment, the fast-cure adhesive system comprises a 1-component adhesive with a latent catalyst/accelerator. In an alternative embodiment, an adhesive may be mixed in-line with an external catalyst or accelerator before being applied to the OSB strands prior to mat formation.
In other embodiments, the present invention applies a zinc borate or calcium borate dispersion to the wood strands prior to formation of a mat layer or a mat, and thus prior to application of heat and pressure in the press to form the composite panel. Zinc borate has a melting point of 1150° C., and calcium borate has a melting point of 986° C. These materials thus can be used with standard press temperatures (i.e., below 190 to 220° C.). The zinc borate and/or calcium borate are not melted or softened during the OSB manufacturing process, thereby avoiding the press build-up issues with boric acid.
In various exemplary embodiments, the present invention comprises a process of manufacturing a fire-retardant treated OSB with low melting point fire retardant material. The present invention reduces the press temperature to below the melting point or softening temperature of the fire retardants noted above. To obtain an OSB panel with sufficient bonding and integrity while using a lower press temperature, the present invention in one embodiment applies a fast-cure adhesive system. In one exemplary embodiment, the fast-cure adhesive system comprises a 1-component adhesive with a latent catalyst/accelerator. In an alternative embodiment, an adhesive may be mixed in-line with an external catalyst or accelerator before being applied to the OSB strands prior to mat formation.
In other embodiments, the present invention applies a zinc borate or calcium borate dispersion to the wood strands prior to formation of a mat layer or a mat, and thus prior to application of heat and pressure in the press to form the composite panel. Zinc borate has a melting point of 1150° C., and calcium borate has a melting point of 986° C. These materials thus can be used with standard press temperatures (i.e., from approximately 190° C. to approximately 220° C.). The zinc borate and/or calcium borate are not melted or softened during the OSB manufacturing process, thereby avoiding the press build-up issues with boric acid.
Steps of a manufacturing process in accordance with the present invention using a low temperature press are shown in
In various embodiments, the FR treatment gives the FRT panel product Fire Resistant (FR) characteristics (for use in a fire-resistance-rated assemblies, or where FRT wood is required by building codes).
A large dosage of FR, e.g., 10-20% based on the weight of wood, is typically necessary to meet the code requirements for wood structural panels. To effectively distribute the FR to individual strands, FR may be added in various stages of the process, such as wet bin outfeed, dry bin outfeed, blender infeed, or directly inside blender etc. An alternative approach would be to install a second set of blenders with the sole purpose of adding the FR treatment to the strands, and then these treated strands are subsequently processed through the normal blending processes to add the resin/wax needed for OSB production. This approach would allow for specific modifications to blending variables (i.e., speed, angle, RPM, spray nozzles, etc.) to ensure a more complete application and absorption of the FR treatment. This approach would also further reduce blender build-up, and reduce the potential interference of the FR treatment with proper resin/wax blending.
Thus, it should be understood that the embodiments and examples described herein have been chosen and described in order to best illustrate the principles of the invention and its practical applications to thereby enable one of ordinary skill in the art to best utilize the invention in various embodiments and with various modifications as are suited for particular uses contemplated. Even though specific embodiments of this invention have been described, they are not to be taken as exhaustive. There are several variations that will be apparent to those skilled in the art.
This application claims benefit of and priority to U.S. Provisional Applications No. 63/309,568, filed Feb. 13, 2022, No. 63/324,105, filed Mar. 27, 2022, and No. 63/326,168, filed Mar. 31, 2022, all of which are incorporated herein in their entireties by specific reference for all purposes.
Number | Date | Country | |
---|---|---|---|
63309568 | Feb 2022 | US | |
63324105 | Mar 2022 | US | |
63326168 | Mar 2022 | US |