This application claims the benefit of priority to Finland patent application number 20216231, filed on Dec. 1, 2021, the complete disclosure of which is hereby incorporated by reference in its entirety.
This invention relates to a method of manufacturing a knife blade and to a knife blade. More particularly, the invention relates to a knife blade with a sharp edge of a hard material.
Previously there is known a knife blade having a blade preform manufactured of a first material. In order to obtain a durable and hard knife edge, an edge of the blade preform is manufactured of a second material, which is harder than the first material.
In this known knife blade, the second material has been provided by utilizing laser deposition. In laser deposition the second material is introduced as powder which is deposited onto the edge of the blade preform by use of a laser.
A challenge with the prior art solution is that use of powder requires special attention in order to ensure that the powder ends up in correct amounts at the desired locations. If this is not accomplished, excess amounts of powder will be used and the required properties of the knife blade may not be achieved. In any case, laser deposition onto an edge of a blade preform is a relatively slow process.
An object of the present invention is to solve the above-mentioned drawback and to provide an efficient manufacturing method and knife blade. This object is achieved with a method according to independent claim 1 and a knife blade according to independent claim 12.
When the second material is introduced by arc welding it becomes possible to introduce the second material exactly to the correct desired position and exactly in a desired amount of material.
Preferred embodiments of the invention are disclosed in the dependent claims.
In the following the present invention will be described in closer detail by way of example and with reference to the attached drawings, in which
The blade preform 1 is in the illustrated example arranged in a position where an edge 3 of the blade preform 1 faces upwards towards an arc welding tool 4. The arc welding tool 4 deposits a second material 5 on the edge 3 of the blade preform 1. The second material 3 is harder than the first material 2. In this example, the second material 5 is fed as a rod 7 via the arc welding tool 4 to the edge 3 of the blade preform 1. In this connection the term “rod” is used to indicate a welding wire or welding rod as a general filling material irrespectively of the diameter or other properties. Consequently, a “rod” may be wound on a reel from where it is drawn to be used in arc welding or alternatively, it may be implemented in form of a straight stick, as illustrated by way of example in
The deposition is in
Additionally, a gas source 10 containing a shielding gas 11 is utilized in
In
The rod 7′ of the second material 5 may be fed to the edge 3 of the blade preform 1 independently of the arc welding tool 4′, as shown in
The illustrated rod 7″ is a filled rod, which comprises a solid cover 22″ with a core 23″ filled with powder or granulate, for instance. The filling may include metallic powder or granulate, alloys and arc stabilizers, for instance, each of which offer distinct benefits such as lowering oxidation, providing higher impact strengths and reducing silicon deposits in the final weld. In particular, the material of the cover and the material in the core together form the second material 5. Consequently, due to the metal cored rod, it is very easy to provide exactly the desired compounds to form the second material.
In step A, a blade preform 1 is prepared by separating the blade preform 1 from a material sheet of a first material. This step may involve cutting loose the blade preform from the material sheet by stamping, for instance, due to which the shape of the edge 3 is slightly disrupted (not entirely smooth or planar).
In step B second material 5 is deposited on the edge 3 of the blade preform 1. This deposition is implemented by arc welding as illustrated in
In some implementations arc welding may be used to deposit a sufficiently thick layer of the second material 5 on the edge 3 in one single deposition step B only. However, in the example of
In step D the blade preform 1 is sharpened to obtain a sharp cutting edge. In the illustrated example, the sharpening has been carried out in such a way, that in the finished blade, opposite first surface sections 15 of the knife blade made of the first material 2 extend from a back edge 16 of the knife blade towards the sharp edge 17 of the knife blade and approach each other in the direction towards the sharp edge 17. Opposite second surface sections 18 of the knife blade made of the second material 5 extend towards the sharp edge 17 of the knife blade and approach each other in the direction towards the sharp edge 17. A transition 19 from the first surface sections 15 to the second surface sections 18 is provided in the second material 5, where the first and surface sections 15, 18 on opposite sides of the knife blade form an angle with each other. In praxis, the first and second surface sections 15, 18 may be planar surfaces in a direction perpendicular to a longitudinal direction L of the knife blade, as illustrated in step D of
The dimensions of the blade may vary depending on the intended use of the knife blade. One alternative well suited for kitchen knives, for instance, is that the opposite second surface sections 18 of the knife blade form an angle of 25°-35° at the sharp edge 17. In that case the thickness of the blade may be about 0.3 mm at the transition 19.
In the illustrated example it has for step D by way of example been assumed that the blade preform is sharpened on both sides of the blade preform. This is, however, only by way of example. In some implementations it is sufficient to sharpen only one side of the blade to obtain a Japanese sharpening, for instance. In that case a transition 19 from the first surface section 15 to the second surface section 18 may be provided in the second material 5 on only one side of the blade, and on the opposite side (non-sharpened side) of the blade the first surface section 15 may continue smoothly as the second surface section 18 without any angle between the first surface section and the second surface section.
In step E a section 20, such as a back end of the blade preform 1 with the deposited second material 5, is introduced into a mould 21 subjecting the section 20 to injection moulding to produce a handle attached to the blade preform 1. During injection moulding melt plastic material may be introduced into the cavity of the mould.
In praxis there are several alternatives to provide a handle to the back end of the blade preform. A first alternative is to attach a handle of wood or a plastic material, for instance, to section 20 in step E by riveting, for instance. In that case the handle may include two separate handle sections arranged on opposite sides of the section 20 after which the rivets are arranged to protrude trough both handle sections and the section 20, such that section 20 is sandwiched between the handle sections.
A second alternative is to produce a handle of wood or a plastic material, for instance, to include a slot. In that case section 20 of the blade preform may be introduced into the slot where it attaches to the handle by friction.
A third alternative is to produce the handle of a material which can be attached to section 20 of the blade preform by welding. In that case the handle may include two handle sections on plastic material, for instance, which are arranged on opposite sides of the section 20 such that they may be in contact with each other through openings in section 20 or along the outer edges of section 20. This facilitates attachment of the handle sections to each at the contact points by welding.
In step F, the finalized knife, such as a kitchen knife with a handle 24, has been removed from the mould.
The above-described method steps are excellent for producing a blade for a kitchen knife, for instance. The materials used may vary and additionally, more production steps may be used than illustrated in
If the intention is to manufacture a knife with a steel blade, for instance, the blade preform may be cut from a stainless-steel coil, which in that case is the first material 3. The second material 5 may in that case contain a Cr—Ni—Fe alloy which ensures a very hard edge. After the deposition step C of
Once the hardening by the heat treatment is finalized, the blade preform is sharpened in step D of
If the intention is to manufacture a knife with a titanium blade, the blade preform may be cut out from a sheet of titanium, which in that case is the first material 3. The second material 5 may in that case contain an Al—C—Ti alloy providing an excellent wear-off resistant edge. In case of a titanium blade, heat treatment is not necessary, but instead the manufacturing process may after the arc welding proceed as explained in connection with
It is to be understood that the above description and the accompanying figures are only intended to illustrate the present invention. It will be obvious to a person skilled in the art that the invention can be varied and modified without departing from the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
20216231 | Dec 2021 | FI | national |