The present technology relates generally to neuromodulation and associated systems and methods. In particular, several embodiments are directed to catheters having energy delivering thermocouple assemblies for intravascular neuromodulation and associated systems and methods.
The sympathetic nervous system (SNS) is a primarily involuntary bodily control system typically associated with stress responses. Fibers of the SNS innervate tissue in almost every organ system of the human body and can affect characteristics such as pupil diameter, gut motility, and urinary output. Such regulation can have adaptive utility in maintaining homeostasis or preparing the body for rapid response to environmental factors. Chronic activation of the SNS, however, is a common maladaptive response that can drive the progression of many disease states. Excessive activation of the renal SNS in particular has been identified experimentally and in humans as a likely contributor to the complex pathophysiology of hypertension, states of volume overload (such as heart failure), and progressive renal disease. For example, radiotracer dilution has demonstrated increased renal norepinephrine (“NE”) spillover rates in patients with essential hypertension.
Cardio-renal sympathetic nerve hyperactivity can be particularly pronounced in patients with heart failure. For example, an exaggerated NE overflow from the heart and kidneys to plasma is often found in these patients. Heightened SNS activation commonly characterizes both chronic and end stage renal disease. In patients with end stage renal disease, NE plasma levels above the median have been demonstrated to be predictive of cardiovascular diseases and several causes of death. This is also true for patients suffering from diabetic or contrast nephropathy. Evidence suggests that sensory afferent signals originating from diseased kidneys are major contributors to initiating and sustaining elevated central sympathetic outflow.
Sympathetic nerves innervating the kidneys terminate in the blood vessels, the juxtaglomerular apparatus, and the renal tubules. Stimulation of the renal sympathetic nerves can cause increased renin release, increased sodium (Na+) reabsorption, and a reduction of renal blood flow. These neural regulation components of renal function are considerably stimulated in disease states characterized by heightened sympathetic tone and likely contribute to increased blood pressure in hypertensive patients. The reduction of renal blood flow and glomerular filtration rate as a result of renal sympathetic efferent stimulation is likely a cornerstone of the loss of renal function in cardio-renal syndrome (i.e., renal dysfunction as a progressive complication of chronic heart failure). Pharmacologic strategies to thwart the consequences of renal efferent sympathetic stimulation include centrally acting sympatholytic drugs, beta blockers (intended to reduce renin release), angiotensin converting enzyme inhibitors and receptor blockers (intended to block the action of angiotensin II and aldosterone activation consequent to renin release), and diuretics (intended to counter the renal sympathetic mediated sodium and water retention). These pharmacologic strategies, however, have significant limitations including limited efficacy, compliance issues, side effects, and others. Recently, intravascular devices that reduce sympathetic nerve activity by applying an energy field to a target site in the renal blood vessel (e.g., via radiofrequency ablation) have been shown to reduce blood pressure in patients with treatment-resistant hypertension.
Many aspects of the present disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale. Instead, emphasis is placed on illustrating clearly the principles of the present disclosure. Furthermore, components can be shown as transparent in certain views for clarity of illustration only and not to indicate that the illustrated component is necessarily transparent. For ease of reference, throughout this disclosure identical reference numbers may be used to identify identical or at least generally similar or analogous components or features.
The present technology is directed to apparatuses, systems, and methods for achieving thermally-induced neuromodulation (i.e., rendering neural fibers that innervate, for example, the kidney or another physiological organ or structure inert or inactive or otherwise completely or partially reduced in function) by percutaneous transluminal intravascular access. In particular, embodiments of the present technology relate to catheters and catheter assemblies having energy delivering thermocouple assemblies and being movable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded shape, generally spiral/helical shape, an expanded lasso shape, J-shape, etc.). The thermocouple assembly may include a plurality of non-insulated energy-delivery portions of a first thermocouple wire (e.g., a silver-coated nickel wire, a silver wire, a nickel wire, a copper wire with biocompatible coating thereon, etc.) that can be coupled to or otherwise extend along or about a longitudinal dimension of a catheter shaft, and may include a second insulated thermocouple wire (e.g., a constantan wire) for thermocouple functionality. The thermocouple assembly is in electrical communication with an energy source or energy generator such that energy is delivered from the non-insulated energy delivery portions of the first thermocouple wire to portions of an artery after being advanced thereto via a catheter along a percutaneous transluminal path (e.g., a femoral artery puncture, an iliac artery and the aorta, a radial artery, or another suitable intravascular path). Any suitable energy modality may be used (e.g., electrical energy such as radiofrequency (RF) energy, pulsed energy, etc.). The catheter or catheter assembly carrying the thermocouple assembly may be sized and shaped so that the non-insulated energy delivery portions contact an interior wall of an artery (e.g., a renal artery, an ovarian artery, testicular artery, external iliac artery, internal iliac artery, internal pudendal artery, uterine artery, celiac artery, superior mesenteric artery, hepatic artery, splenic artery, gastric artery, pancreatic artery, and/or associated arterial branches, etc.) when the catheter is in the deployed state within the artery. The pre-formed expanded shape (e.g., spiral/helical, lasso, J-shape, etc.) of the deployed portion of the catheter carrying the thermocouple assembly allows blood to flow through the helix, which is expected to help avoid occlusion of the artery during activation of the non-insulated energy delivery portions of the thermocouple wire.
Energy-delivery catheter systems for inducing neuromodulation that include separate electrodes or arrays of electrodes can be expensive to manufacture. These designs may require separate wiring of each electrode to a conventional thermocouple wire, as well as complex algorithms and energy generator designs to operate. In contrast, the thermocouple assembly presented herein includes a single energy delivering wire (e.g., the first wire) that can have direct electrical communication with an energy generator, and each non-insulated energy delivery portion of the single wire is in electrical communication with each of the other non-insulated energy delivery portions along the wire. This is expected to reduce manufacturing time and material costs associated with separate electrodes and wiring, as well as reduce the complexity of the control algorithm typically necessary to operate more than one independent electrode or energy delivery element.
Specific details of several embodiments of the technology are described below with reference to
As used herein, the terms “distal” and “proximal” define a position or direction with respect to the treating clinician or clinician's control device (e.g., a handle assembly). “Distal” or “distally” are a position distant from or in a direction away from the clinician or clinician's control device. “Proximal” and “proximally” are a position near or in a direction toward the clinician or clinician's control device.
Selected Examples of Catheters and Related Devices
Referring back to
As mentioned above, the pre-shaped control member 124 may be used to provide a spiral/helical shape to the shaft 120 in the distal portion 102 of the catheter 100. In one embodiment, the control member 124 can be a tubular structure comprising a nitinol multifilar stranded wire with a lumen therethrough and sold under the trademark HELICAL HOLLOW STRAND (HHS), and commercially available from Fort Wayne Metals of Fort Wayne, Ind. The tubular control member 124 may be formed from a variety of different types of materials, may be arranged in a single or dual-layer configuration, and may be manufactured with a selected tension, compression, torque and pitch direction. The HHS material, for example, may be cut using a laser, electrical discharge machining (EDM), electrochemical grinding (ECG), or other suitable means to achieve a desired finished component length and geometry.
Forming the control member 124 of Nitinol multifilar stranded wire(s) or other similar materials is expected to provide a desired level of support and rigidity to the therapeutic assembly 110 without additional reinforcement wire(s) or other reinforcement features within the shaft 120. This feature is expected to reduce the number of manufacturing processes required to form the catheter 100 and reduce the number of materials required for the device. In one embodiment, the control member 124 and inner wall of the tube 122 can be in intimate contact with little or no space between the control member 124 and the tube 122. In some embodiments, for example, the tube 122 can have a larger diameter than the control member 124 prior to assembly such that applying hot air to the tube 122 during the manufacturing process shrinks the tube onto the control member 124, as will be understood by those familiar with the ordinary use of shrink tubing materials. This feature is expected to inhibit or eliminate wrinkles or kinks that might occur in the tube 122 as the therapeutic assembly 110 transforms from the relatively straight delivery state 101 to the deployed, generally spiral state 103 (
In other embodiments, the control member 124 and/or other components of the shaft 120 (e.g., in the distal portion 102 of the catheter 100) may be composed of different materials and/or have a different arrangement. For example, the control member 124 may be formed from other suitable shape memory materials (e.g., nickel-titanium (Nitinol), wire or tubing besides HHS, shape memory polymers, electro-active polymers) that are pre-formed or pre-shaped into the desired deployed state. Alternatively, the control member 124 may be formed from multiple materials such as a composite of one or more polymers and metals.
The thermocouple assembly 130 can also include the second wire 132, which can be a wire that is at least insulated along the shaft 120. The second wire 132 can run parallel to the first wire 131 and can be electrically coupled to the junction 133. The first wire 131 and the second wire 132 include dissimilar metals such that the electric potential between the two wires 131, 132 formed at the junction 133 relates to a temperature reading at the junction (e.g., at the therapeutic assembly 110). In one embodiment, the first wire 131 comprises a conductive material, such as nickel, silver, or in another embodiment, silver-coated nickel. In some embodiments, the conductive first wire 131 and/or the exposed regions 134 of the first wire 131 can be coated with a biocompatible conductive material (not shown), such as gold or platinum. In some embodiments, a non-biocompatible material (e.g., copper) may be used, for example in a Type T thermocouple or other non-biocompatible thermocouple, along with a biocompatible conductive material such as gold or platinum (e.g., coating for the non-biocompatible materials). Biocompatible materials and/or coatings, however, can be used with any of the thermocouple assemblies 130 described herein. Additional intermediate bonding materials (e.g., tantalum, titanium, etc.) may also be included. In various embodiments, the second wire 132 can be an insulated constantan wire. In a specific embodiment, the thermocouple assembly 130 can be a Type T thermocouple and the first wire 131 can be copper (e.g., gold or platinum coated copper) and the second wire 132 can be constantan. In this example, the thermocouple assembly 130 can measure temperatures in the temperature range of about −200° C. to about 350° C.
The thermocouple assembly 130 may be coupled or attached to the shaft 120 (e.g., attached to the flexible tube 122) at one or more locations along the shaft 120 using adhesives (e.g., thermal bonds), fasteners, and/or other suitable attachment mechanisms known in the art (e.g., clips, ties, staples, collars, etc.). In one embodiment, the therapeutic assembly 110 can include proximal and distal connectors or retainers (not shown), such as collars or other suitable fasteners to which proximal and distal portions of the thermocouple assembly 130, respectively, may be attached. In such arrangements, the first and second wires 131, 132 can be helically positioned around the shaft 120 between the proximal and distal connectors (not shown). In various arrangements, such connectors may be attached over select portions of the shaft 120, thereby coupling the thermocouple assembly 130 to the shaft 120. The connectors can be attached to the shaft 120, for example, using thermal bonds, adhesives, interlocking surfaces (e.g., threads), friction fit, snap fit, suction, and/or other suitable attachment mechanisms, or the connectors can be formed integrally with the thermocouple assembly 130 and/or the shaft 120. In other embodiments, the therapeutic assembly 110 does not include additional connectors or attachment means, but can be retained against the shaft 120 with a guide sheath or loading tool (not shown) that is moved over the length L1 of the therapeutic assembly 110 during advancement and retrieval.
The junction 133 of the thermocouple assembly 130 can be positioned at a distal end of the therapeutic assembly 110 which may or may not be a distal end 126 of the shaft 120 (
Once deployed, the therapeutic assembly 110 can deliver neuromodulating energy from a power source (not shown) and through the thermocouple assembly 130 (e.g., through the first wire 131) to the energy delivery portions 136a-136d. The purposeful application of energy (e.g., electrical energy such as RF energy and pulsed energy) to tissue at the treatment location within the artery (e.g., renal artery) can induce one or more desired effects at the treatment location, e.g., broadly across the treatment location or at localized regions of the treatment location. In one embodiment, an RF energy field can be delivered to the target nerves adjacent the wall of the artery via the energy delivery portions 136a-136d. In the illustrated embodiment, the energy delivery portions 136a-136 are spaced apart both circumferentially and longitudinally along the wall of the interior lumen of the artery when the therapeutic assembly 110 is in the deployed state 103. Accordingly, application of energy via the energy delivery portions 136a-136d can result in a plurality of discontinuous lesions along the wall of the interior lumen of the artery. Temperature of the target tissue proximate the therapeutic assembly 110 can be measured and monitored by the thermocouple assembly 130 at the junction 133.
Referring to
As best seen in
In the embodiment illustrated in
In one embodiment, the sleeves 250 can be a flexible and insulative material such as polyethylene terephthalate (PET) heat shrink tubing or other shrink tubing materials known in the art. In other embodiments, the sleeves 250 can be composed of other polymer materials with or without additional insulative layers or materials. For example, the sleeves 250 may comprise one or more of the following materials: polyamide; polyimide; polyether block amide copolymer sold under the trademark PEBAX; polypropylene; aliphatic, polycarbonate-based thermoplastic polyurethane sold under the trademark CARBOTHANE; or a polyether ether ketone (PEEK) polymer that provides the desired material properties. In other embodiments, however, the sleeves 250 may be composed of other or additional suitable materials.
In some embodiments, the sleeves 250 are portions of tubing suitable to place over the distal end 226 of the shaft 220 and positioned at a further proximal site along the therapeutic assembly 210. The sleeves 250 can be heat shrunk around the first wire 231 and the shaft 220 using known processes in the art, such that the exposed region 234 of the first wire 231 (e.g., the portion of the wire 231 after the insulating portion has been removed) is held in place (e.g., helically positioned about the shaft 220) and the sleeves 250 provide intermittently positioned insulated regions 235 along the first wire 231 to define the plurality of energy delivery portions 236. In one embodiment, adhesive (not shown) can be placed between an inner surface of the sleeves 250 and the shaft 220 (e.g., the flexible tube 222) to prevent blood from collecting and/or clotting between the sleeves 250 and the shaft 220. In other embodiments, the sleeves 250 can include material that is wrapped about the shaft 220 and secured into position using known mechanical fastening components or adhesive.
The embodiment illustrated in
In a pre-deployed configuration of the therapeutic assembly 310, the sleeves 350 can be positioned along the therapeutic assembly 310 to secure the thermocouple assembly 330 to the shaft 320. In this embodiment, the sleeves 350 can be similar to the sleeves 250 described above with respect to
Features of the catheter device components described above and illustrated in
Features of the catheter device components described above also can be interchanged to form additional embodiments of the present technology. For example, while
Selected Examples of Neuromodulation Systems
Upon delivery to the target treatment site within the target blood vessel (e.g., renal blood vessel), the therapeutic assembly 412 is further configured to be deployed into an expanded state (e.g., a generally spiral/helical configuration, an expanded lasso or J-shaped configuration, etc.) for delivering energy at the treatment site and providing therapeutically-effective thermally-induced neuromodulation. Alternatively, the deployed state may be non-spiral provided that the deployed state provides adequate contact between energy delivery portions and the inner surface of the vessel wall. The therapeutic assembly 412 may be transformed between the delivery and deployed states using a variety of suitable mechanisms or techniques (e.g., self-expansion, remote actuation via an actuator, etc.). In a specific example, the neuromodulation assembly 412 may be placed or transformed into the deployed state or arrangement via remote actuation, e.g., via an actuator 409, such as a knob, pin, or lever carried by the handle 408. In another example, following placement of the therapeutic assembly at the treatment site, advancement of a pre-shaped or expandable element or wire (e.g., a Nitinol wire) into a lumen of the shaft or flexible tube can cause the therapeutic assembly to assume its deployed state.
The proximal end of the therapeutic assembly 412 is carried by or affixed to the distal portion 410 of the elongated shaft 404. A distal end of the therapeutic assembly 412 may terminate the catheter 401 with, for example, an atraumatic tip 420. In some embodiments, the distal end of the therapeutic assembly 412 may also be configured to engage another element of the system 400 or catheter 401. For example, the distal end of the therapeutic assembly 412 may define a passageway for receiving a guide wire (not shown) for delivery of the treatment device using OTW or rapid exchange (“RX”) techniques. Further details regarding such arrangements are described below.
The catheter 401 can be electrically coupled to the energy source 402 via a cable 430, and the energy source 402 (e.g., an RF energy generator) can be configured to produce a selected modality and magnitude of energy for delivery to the treatment site via the thermocouple assembly's energy delivery portions 418 along the first wire. As described in greater detail below, thermocouple wires (not shown) can extend along the elongated shaft 404 or through a lumen in the shaft 404 to the therapeutic assembly 412 at the distal portion 410 of the elongated shaft 404 and transmit the treatment energy to the energy delivery portions 418 (e.g., the exposed regions of the energy delivering thermocouple wire). Accordingly, each energy delivery portion 418 can receive and deliver energy supplied by the single energy delivery wire within the thermocouple assembly 416 instead of each portion 418 having its own supply wire. The energy delivery portions 418 are positioned along the same electrical power wire or line, and accordingly, deliver power in a simultaneous fashion.
A control mechanism 432, such as a foot pedal or handheld remote control device, may be connected to the energy source 402 to allow the clinician to initiate, terminate and, optionally, adjust various operational characteristics of the energy source 402, including, but not limited to, power delivery. The remote control device (not shown) can be positioned in a sterile field and operably coupled to the thermocouple assembly, and specifically to the energy delivering thermocouple wire having the exposed (e.g., uninsulated) energy delivery portions 418, and can be configured to allow the clinician to activate and deactivate the energy delivery to the energy delivery portions 418. In other embodiments, the remote control device may be built into the handle assembly 408.
The energy source or energy generator 402 can be configured to deliver the treatment energy via an automated control algorithm 434 and/or under the control of a clinician. For example, the energy source 402 can include computing devices (e.g., personal computers, server computers, tablets, etc.) having processing circuitry (e.g., a microprocessor) that is configured to execute stored instructions relating to the control algorithm 434. In addition, the processing circuitry may be configured to execute one or more evaluation/feedback algorithms 435, which can be communicated to the clinician. For example, the energy source 402 can include a monitor or display 436 and/or associated features that are configured to provide visual, audio, or other indications of power levels, sensor data, and/or other feedback. The energy source 402 can also be configured to communicate the feedback and other information to another device, such as a monitor in a catheterization laboratory.
In some embodiments, the system 400 may be configured to provide delivery of a monopolar electric field via the energy delivery portions 418. In such embodiments, a neutral or dispersive electrode 438 may be electrically connected to the energy generator 402 and attached to the exterior of the patient (as shown in
The system 400 can also include one or more additional sensors (not shown) located proximate to or within the energy delivery portions 418. For example, the system 400 can include one or more other temperature sensors (e.g., one or more additional thermocouples, thermistors, etc.), impedance sensors, pressure sensors, optical sensors, flow sensors, and/or other suitable sensors connected to one or more supply wires (not shown) that transmit signals from the sensors and/or convey energy to the therapeutic assembly 412.
Image guidance, e.g., computed tomography (CT), fluoroscopy, intravascular ultrasound (IVUS), optical coherence tomography (OCT), intracardiac echocardiography (ICE), or another suitable guidance modality, or combinations thereof, may be used to aid the clinician's positioning and manipulation of the therapeutic assembly 412. For example, a fluoroscopy system (e.g., including a flat-panel detector, x-ray, or c-arm) can be rotated to accurately visualize and identify the target treatment site. In other embodiments, the treatment site can be determined using IVUS, OCT, and/or other suitable image mapping modalities that can correlate the target treatment site with an identifiable anatomical structure (e.g., a spinal feature) and/or a radiopaque ruler (e.g., positioned under or on the patient) before delivering the catheter 401. Further, in some embodiments, image guidance components (e.g., IVUS, OCT) may be integrated with the catheter 401 and/or run in parallel with the catheter 401 to provide image guidance during positioning of the therapeutic assembly 412. For example, image guidance components (e.g., IVUS or OCT) can be coupled to at least one of the therapeutic assembly 412 to provide three-dimensional images of the vasculature proximate the target site to facilitate positioning or deploying the therapeutic assembly 412 within the target renal blood vessel.
Referring to
In operation (and with reference to
In another embodiment, the guide wire 440 may have a stiffness profile that permits the distal portion of the guide wire 440 to remain extended from an opening (not shown) in the tip 420 while still permitting the therapeutic assembly 412 to transform to its deployed state (e.g., deployed state 103 shown in
After treatment, the therapeutic assembly 412 may be transformed back to the low-profile delivery configuration by axially advancing the guide wire 440 relative to the therapeutic assembly 412. In one embodiment, for example, the guide wire 440 may be advanced until the distal tip of the guide wire 440 is generally aligned with the tip 420, and the catheter 401 can then be pulled back over the stationary guide wire 440. In other embodiments, however, the distalmost portion of the guide wire 440 may be advanced to a different location relative to the therapeutic assembly 412 to achieve transformation of the therapeutic assembly 412 back to a low-profile arrangement.
Neuromodulation
Neuromodulation is the partial or complete incapacitation or other effective disruption of nerves innervating, for example, an organ. As an example, renal neuromodulation is the partial or complete incapacitation or other effective disruption of nerves innervating the kidneys. In particular, renal neuromodulation comprises inhibiting, reducing, and/or blocking neural communication along neural fibers (i.e., efferent and/or afferent nerve fibers) innervating the kidneys. Such incapacitation can be long-term (e.g., permanent or for periods of months, years, or decades) or short-term (e.g., for periods of minutes, hours, days, or weeks). Renal neuromodulation is expected to efficaciously treat several clinical conditions characterized by increased overall sympathetic activity, and in particular conditions associated with central sympathetic over-stimulation such as hypertension, heart failure, acute myocardial infarction, metabolic syndrome, insulin resistance, diabetes, left ventricular hypertrophy, chronic and end stage renal disease, inappropriate fluid retention in heart failure, cardio-renal syndrome, osteoporosis, and sudden death. The reduction of afferent neural signals contributes to the systemic reduction of sympathetic tone/drive, and renal neuromodulation is expected to be useful in treating several conditions associated with systemic sympathetic over activity or hyperactivity. Renal neuromodulation can potentially benefit a variety of organs and bodily structures innervated by sympathetic nerves.
Various techniques can be used to partially or completely incapacitate neural pathways, such as those innervating the kidney. The purposeful application of energy (e.g., electrical energy, thermal energy) to tissue by energy delivery element(s) or components such as those described in conjunction with the catheter devices above, can induce one or more desired thermal heating effects on localized regions of the renal artery and adjacent regions of the renal plexus, which lay intimately within or adjacent to the adventitia of the renal artery. The purposeful application of the thermal heating effects can achieve neuromodulation along all or a portion of the renal plexus.
The thermal heating effects can include both thermal ablation and non-ablative thermal alteration or damage (e.g., via sustained heating and/or resistive heating). Desired thermal heating effects may include raising the temperature of target neural fibers above a desired threshold to achieve non-ablative thermal alteration, or above a higher temperature to achieve ablative thermal alteration. For example, the target temperature can be above body temperature (e.g., approximately 37° C.) but less than about 45° C. for non-ablative thermal alteration, or the target temperature can be about 45° C. or higher for the ablative thermal alteration.
More specifically, exposure to thermal energy (heat) in excess of a body temperature of about 37° C., but below a temperature of about 45° C., may induce thermal alteration via moderate heating of the target neural fibers or of vascular structures that perfuse the target fibers. In cases where vascular structures are affected, the target neural fibers are denied perfusion resulting in necrosis of the neural tissue. For example, this may induce non-ablative thermal alteration in the fibers or structures. Exposure to heat above a temperature of about 45° C., or above about 60° C., may induce thermal alteration via substantial heating of the fibers or structures. For example, such higher temperatures may thermally ablate the target neural fibers or the vascular structures. In some patients, it may be desirable to achieve temperatures that thermally ablate the target neural fibers or the vascular structures, but that are less than about 90° C., or less than about 85° C., or less than about 80° C., and/or less than about 75° C. Regardless of the type of heat exposure utilized to induce the thermal neuromodulation, a reduction in renal sympathetic nerve activity (RSNA) is expected.
The following examples are illustrative of several embodiments of the present technology:
1. A method of manufacturing a medical device for neuromodulation (e.g., neuromodulation of renal nerves), the method comprising:
2. The method of example 1 wherein disposing a thermocouple assembly along a distal portion of a catheter comprises helically positioning the thermocouple assembly about the shaft.
3. The method of example 1 or example 2 wherein the shaft comprises a tubular structure having a lumen therethrough and a self-expanding, shape-memory material disposed within the lumen.
4. The method of any one of examples 1-3 wherein the shaft comprises a tubular structure having a lumen therethrough and is composed of a Nitinol multifilar stranded wire.
5. The method of any one of examples 1-4 wherein the method further comprises coating the exposed regions of the first wire with a biocompatible conductive material.
6. The method of any one of examples 1-5 wherein the exposed regions along the first wire of the thermocouple assembly are in electrical communication with each other.
7. The method of any one of examples 1-6, further comprising selectively removing portions of the first wire of the thermocouple assembly to define a plurality of exposed and insulated regions.
8. The method of example 7 wherein selectively removing portions of the first wire of the thermocouple assembly comprises forming four exposed regions along the first wire.
9. The method of any one of examples 1-8 wherein, in the deployed configuration, the shaft carrying the thermocouple assembly comprises a radially expanded, generally spiral shape configured to contact the wall of the blood vessel and to allow blood to flow through the vessel.
10. The method of any one of examples 1-9, further comprising disposing one or more sleeves composed of insulative material about the thermocouple assembly and the shaft.
11. The method of example 10 wherein the sleeves comprise polyethylene terephthalate (PET) heat shrink tubing.
12. The method of any one of examples 1-11 wherein the first wire is composed of copper and the second wire is composed of constantan.
13. The method of any one of examples 1-11 wherein the first wire is composed of silver coated nickel and the second wire is composed of constantan.
14. The method of any one of examples 1-11 wherein the first wire is composed of nickel and the second wire is composed of constantan.
15. The method of any one of examples 1-11 wherein the first wire is composed of silver and the second wire is composed of constantan.
16. A catheter apparatus, comprising:
17. The catheter apparatus of example 16 wherein, in the deployed configuration, the energy delivery portions of the first wire are spaced apart from each other along a longitudinal axis of the artery and are configured to maintain apposition with a wall of the artery.
18. The catheter apparatus of example 16 or example 17 wherein the shaft comprises a tubular member having a lumen therethrough and is composed of a Nitinol multifilar stranded wire.
19. The catheter apparatus of any one of examples 16-18 wherein the exposed regions along the first wire of the thermocouple assembly do not contact each other in the delivery or deployed configurations.
20. The catheter apparatus of any one of examples 16-19 wherein the individual energy delivery portions are in electrical communication with each other.
21. The catheter apparatus of any one of examples 16-20 wherein the first wire of the thermocouple assembly comprises four energy delivery portions.
22. The catheter apparatus of any one of examples 16-21 wherein the therapeutic assembly does not include any electrodes.
23. The catheter apparatus of any one of examples 16-22 wherein the energy delivery portions are configured to deliver a thermal radiofrequency field to target nerves adjacent the wall of the artery.
24. A catheter system, comprising:
The above detailed descriptions of embodiments of the technology are not intended to be exhaustive or to limit the technology to the precise form disclosed above. Although specific embodiments of, and examples for, the technology are described above for illustrative purposes, various equivalent modifications are possible within the scope of the technology, as those skilled in the relevant art will recognize. For example, while steps are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.
From the foregoing, it will be appreciated that specific embodiments of the technology have been described herein for purposes of illustration, but well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the embodiments of the technology. Where the context permits, singular or plural terms may also include the plural or singular term, respectively.
Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in reference to a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all of the items in the list, or (c) any combination of the items in the list. Additionally, the term “comprising” is used throughout to mean including at least the recited feature(s) such that any greater number of the same feature and/or additional types of other features are not precluded. It will also be appreciated that specific embodiments have been described herein for purposes of illustration, but that various modifications may be made without deviating from the technology. Further, while advantages associated with certain embodiments of the technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology can encompass other embodiments not expressly shown or described herein.
This application is a Divisional of U.S. patent application Ser. No. 14/021,838, filed Sep. 9, 2013, now abandoned, the disclosure of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3935348 | Smith | Jan 1976 | A |
4154246 | LeVeen | May 1979 | A |
4169464 | Obrez | Oct 1979 | A |
4419819 | Dickhudt et al. | Dec 1983 | A |
4602624 | Naples et al. | Jul 1986 | A |
4649936 | Ungar et al. | Mar 1987 | A |
4660571 | Hess et al. | Apr 1987 | A |
4706671 | Weinrib | Nov 1987 | A |
4709698 | Johnston et al. | Dec 1987 | A |
4764504 | Johnson et al. | Aug 1988 | A |
4781682 | Patel | Nov 1988 | A |
4796643 | Nakazawa et al. | Jan 1989 | A |
4819661 | Heil, Jr. et al. | Apr 1989 | A |
4834724 | Geiss et al. | May 1989 | A |
4860769 | Fogarty et al. | Aug 1989 | A |
4890623 | Cook et al. | Jan 1990 | A |
4920979 | Bullara | May 1990 | A |
4921484 | Hillstead | May 1990 | A |
4957118 | Erlebacher | Sep 1990 | A |
4961377 | Bando et al. | Oct 1990 | A |
4966597 | Cosman | Oct 1990 | A |
4976711 | Parins et al. | Dec 1990 | A |
4995868 | Brazier | Feb 1991 | A |
5002067 | Berthelsen et al. | Mar 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5016808 | Heil, Jr. et al. | May 1991 | A |
5052998 | Zimmon | Oct 1991 | A |
5054501 | Chuttani et al. | Oct 1991 | A |
5071407 | Termin et al. | Dec 1991 | A |
5071424 | Reger | Dec 1991 | A |
5133365 | Heil, Jr. et al. | Jul 1992 | A |
5156151 | Imran | Oct 1992 | A |
5156610 | Reger | Oct 1992 | A |
5158564 | Schnepp-Pesch et al. | Oct 1992 | A |
5163928 | Hobbs et al. | Nov 1992 | A |
5188602 | Nichols | Feb 1993 | A |
5188619 | Myers | Feb 1993 | A |
5209723 | Twardowski et al. | May 1993 | A |
5211651 | Reger et al. | May 1993 | A |
5228442 | Imran | Jul 1993 | A |
5239999 | Imran | Aug 1993 | A |
5249585 | Turner et al. | Oct 1993 | A |
5263492 | Voyce | Nov 1993 | A |
5263493 | Avitall | Nov 1993 | A |
5279299 | Imran | Jan 1994 | A |
5282484 | Reger | Feb 1994 | A |
5296510 | Yamada et al. | Mar 1994 | A |
5300068 | Rosar et al. | Apr 1994 | A |
5300099 | Rudie | Apr 1994 | A |
5308323 | Sogawa et al. | May 1994 | A |
5318525 | West et al. | Jun 1994 | A |
5324284 | Imran | Jun 1994 | A |
5327905 | Avitall | Jul 1994 | A |
5330496 | Alferness | Jul 1994 | A |
5345031 | Schwartz et al. | Sep 1994 | A |
5345936 | Pomeranz et al. | Sep 1994 | A |
5354297 | Avitall | Oct 1994 | A |
5358514 | Schulman et al. | Oct 1994 | A |
5365926 | Desai | Nov 1994 | A |
5368591 | Lennox et al. | Nov 1994 | A |
5383856 | Bersin | Jan 1995 | A |
5387233 | Alferness | Feb 1995 | A |
5397304 | Truckai | Mar 1995 | A |
5397339 | Desai | Mar 1995 | A |
5405374 | Stein | Apr 1995 | A |
5411546 | Bowald et al. | May 1995 | A |
5423744 | Gencheff et al. | Jun 1995 | A |
5427118 | Nita et al. | Jun 1995 | A |
5462545 | Wang et al. | Oct 1995 | A |
5476495 | Kordis et al. | Dec 1995 | A |
5476498 | Ayers | Dec 1995 | A |
5482037 | Borghi | Jan 1996 | A |
5484400 | Edwards et al. | Jan 1996 | A |
5487385 | Avitall | Jan 1996 | A |
5487757 | Truckai et al. | Jan 1996 | A |
5497774 | Swartz et al. | Mar 1996 | A |
5505201 | Grill, Jr. et al. | Apr 1996 | A |
5507743 | Edwards et al. | Apr 1996 | A |
5509909 | Moy | Apr 1996 | A |
5523092 | Hanson et al. | Jun 1996 | A |
5529820 | Nomi et al. | Jun 1996 | A |
5545193 | Fleischman et al. | Aug 1996 | A |
5545200 | West et al. | Aug 1996 | A |
5545475 | Korleski | Aug 1996 | A |
5549661 | Kordis et al. | Aug 1996 | A |
5564440 | Swartz et al. | Oct 1996 | A |
5571147 | Sluijter et al. | Nov 1996 | A |
5575766 | Swartz et al. | Nov 1996 | A |
5575810 | Swanson et al. | Nov 1996 | A |
5582609 | Swanson et al. | Dec 1996 | A |
5588964 | Imran et al. | Dec 1996 | A |
5591132 | Carrie | Jan 1997 | A |
5599345 | Edwards et al. | Feb 1997 | A |
5609151 | Mulier et al. | Mar 1997 | A |
5617854 | Munsif | Apr 1997 | A |
5626576 | Janssen | May 1997 | A |
5628775 | Jackson | May 1997 | A |
5636634 | Kordis | Jun 1997 | A |
5637090 | McGee et al. | Jun 1997 | A |
5642736 | Avitall | Jul 1997 | A |
5653684 | Laptewicz et al. | Aug 1997 | A |
5672174 | Gough et al. | Sep 1997 | A |
5676662 | Fleischhacker et al. | Oct 1997 | A |
5678296 | Fleischhacker et al. | Oct 1997 | A |
5680860 | Imran | Oct 1997 | A |
5681280 | Rusk et al. | Oct 1997 | A |
5687723 | Avitall | Nov 1997 | A |
5688266 | Edwards et al. | Nov 1997 | A |
5690611 | Swartz et al. | Nov 1997 | A |
5693082 | Warner et al. | Dec 1997 | A |
5697928 | Walcott et al. | Dec 1997 | A |
5700282 | Zabara | Dec 1997 | A |
5707400 | Terry, Jr. et al. | Jan 1998 | A |
5709874 | Hanson et al. | Jan 1998 | A |
5715818 | Swartz et al. | Feb 1998 | A |
5716410 | Wang et al. | Feb 1998 | A |
5722401 | Pietroski et al. | Mar 1998 | A |
5725512 | Swartz et al. | Mar 1998 | A |
5727555 | Chait | Mar 1998 | A |
5730127 | Avitall | Mar 1998 | A |
5730741 | Horzewski et al. | Mar 1998 | A |
5755760 | Maguire et al. | May 1998 | A |
5755761 | Obino | May 1998 | A |
5772590 | Webster, Jr. | Jun 1998 | A |
5800494 | Campbell et al. | Sep 1998 | A |
5807395 | Mulier et al. | Sep 1998 | A |
5814028 | Swartz et al. | Sep 1998 | A |
5823955 | Kuck et al. | Oct 1998 | A |
5827242 | Follmer et al. | Oct 1998 | A |
5827268 | Laufer | Oct 1998 | A |
5842984 | Avitall | Dec 1998 | A |
5846355 | Spencer et al. | Dec 1998 | A |
5860920 | McGee et al. | Jan 1999 | A |
5860974 | Abele | Jan 1999 | A |
5865787 | Shapland | Feb 1999 | A |
5865815 | Tihon | Feb 1999 | A |
5871523 | Fleischman et al. | Feb 1999 | A |
5871531 | Struble | Feb 1999 | A |
5873865 | Horzewski et al. | Feb 1999 | A |
5879295 | Li et al. | Mar 1999 | A |
5882333 | Schaer et al. | Mar 1999 | A |
5882346 | Pomeranz et al. | Mar 1999 | A |
5891114 | Chien et al. | Apr 1999 | A |
5893885 | Webster, Jr. | Apr 1999 | A |
5910129 | Koblish et al. | Jun 1999 | A |
5931848 | Saadat | Aug 1999 | A |
5938694 | Jaraczewski et al. | Aug 1999 | A |
5941823 | Chait | Aug 1999 | A |
5944710 | Dev et al. | Aug 1999 | A |
5951471 | de la Rama et al. | Sep 1999 | A |
5951494 | Wang et al. | Sep 1999 | A |
5951539 | Nita et al. | Sep 1999 | A |
5954719 | Chen et al. | Sep 1999 | A |
5957961 | Maguire et al. | Sep 1999 | A |
5968085 | Morris et al. | Oct 1999 | A |
5972019 | Engelson et al. | Oct 1999 | A |
5972026 | Laufer et al. | Oct 1999 | A |
5980516 | Mulier et al. | Nov 1999 | A |
5983141 | Sluijter et al. | Nov 1999 | A |
5993462 | Pomeranz et al. | Nov 1999 | A |
5997526 | Giba et al. | Dec 1999 | A |
6004269 | Crowley et al. | Dec 1999 | A |
6004316 | Laufer | Dec 1999 | A |
6004348 | Banas et al. | Dec 1999 | A |
6009877 | Edwards | Jan 2000 | A |
6012457 | Lesh | Jan 2000 | A |
6024740 | Lesh et al. | Feb 2000 | A |
6032077 | Pomeranz | Feb 2000 | A |
6036687 | Laufer et al. | Mar 2000 | A |
6042578 | Dinh et al. | Mar 2000 | A |
6048329 | Thompson et al. | Apr 2000 | A |
6064902 | Haissaguerre et al. | May 2000 | A |
6066134 | Eggers et al. | May 2000 | A |
6071729 | Jeffries et al. | Jun 2000 | A |
6074339 | Gambale et al. | Jun 2000 | A |
6074361 | Jacobs | Jun 2000 | A |
6074378 | Mouri et al. | Jun 2000 | A |
6076012 | Swanson et al. | Jun 2000 | A |
6078830 | Levin et al. | Jun 2000 | A |
6078840 | Stokes | Jun 2000 | A |
6078841 | Kuzma | Jun 2000 | A |
6090104 | Webster, Jr. | Jul 2000 | A |
6091995 | Ingle et al. | Jul 2000 | A |
6094596 | Morgan | Jul 2000 | A |
6096036 | Bowe et al. | Aug 2000 | A |
6099524 | Lipson et al. | Aug 2000 | A |
6106522 | Fleischman et al. | Aug 2000 | A |
6117101 | Diederich et al. | Sep 2000 | A |
6125302 | Kuzma | Sep 2000 | A |
6129750 | Tockman et al. | Oct 2000 | A |
6132456 | Sommer et al. | Oct 2000 | A |
6135999 | Fanton et al. | Oct 2000 | A |
6142993 | Whayne et al. | Nov 2000 | A |
6146381 | Bowe et al. | Nov 2000 | A |
6149620 | Baker et al. | Nov 2000 | A |
6152912 | Jansen et al. | Nov 2000 | A |
6156046 | Passafaro et al. | Dec 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6161049 | Rudie et al. | Dec 2000 | A |
6162184 | Swanson | Dec 2000 | A |
6164283 | Lesh | Dec 2000 | A |
6190356 | Bersin | Feb 2001 | B1 |
6214002 | Fleischman et al. | Apr 2001 | B1 |
6219577 | Brown, III et al. | Apr 2001 | B1 |
6223070 | Chait | Apr 2001 | B1 |
6224592 | Eggers et al. | May 2001 | B1 |
6228109 | Tu et al. | May 2001 | B1 |
6246912 | Sluijter et al. | Jun 2001 | B1 |
6270496 | Bowe et al. | Aug 2001 | B1 |
6273886 | Edwards et al. | Aug 2001 | B1 |
6280441 | Ryan | Aug 2001 | B1 |
6283951 | Flaherty et al. | Sep 2001 | B1 |
6292695 | Webster, Jr. et al. | Sep 2001 | B1 |
6308090 | Tu et al. | Oct 2001 | B1 |
6314325 | Fitz | Nov 2001 | B1 |
6322558 | Taylor et al. | Nov 2001 | B1 |
6322559 | Daulton et al. | Nov 2001 | B1 |
6325797 | Stewart et al. | Dec 2001 | B1 |
6364904 | Smith | Apr 2002 | B1 |
6385472 | Hall et al. | May 2002 | B1 |
6405732 | Edwards et al. | Jun 2002 | B1 |
6409742 | Fulton, III et al. | Jun 2002 | B1 |
6413255 | Stern | Jul 2002 | B1 |
6425895 | Swanson et al. | Jul 2002 | B1 |
6430426 | Avitall | Aug 2002 | B2 |
6436056 | Wang et al. | Aug 2002 | B1 |
6442415 | Bis et al. | Aug 2002 | B1 |
6451045 | Walker et al. | Sep 2002 | B1 |
6454775 | Demarais et al. | Sep 2002 | B1 |
6480747 | Schmidt | Nov 2002 | B2 |
6488679 | Swanson et al. | Dec 2002 | B1 |
6496737 | Rudie et al. | Dec 2002 | B2 |
6500174 | Maguire et al. | Dec 2002 | B1 |
6506189 | Rittman et al. | Jan 2003 | B1 |
6508804 | Sarge et al. | Jan 2003 | B2 |
6511492 | Rosenbluth et al. | Jan 2003 | B1 |
6514226 | Levin et al. | Feb 2003 | B1 |
6514249 | Maguire et al. | Feb 2003 | B1 |
6522926 | Kieval et al. | Feb 2003 | B1 |
6527739 | Bigus et al. | Mar 2003 | B1 |
6529756 | Phan et al. | Mar 2003 | B1 |
6530935 | Wensel et al. | Mar 2003 | B2 |
6540734 | Chiu et al. | Apr 2003 | B1 |
6542781 | Koblish et al. | Apr 2003 | B1 |
6546272 | MacKinnon et al. | Apr 2003 | B1 |
6546280 | Osborne | Apr 2003 | B2 |
6554827 | Chandrasekaran et al. | Apr 2003 | B2 |
6562031 | Chandrasekaran et al. | May 2003 | B2 |
6562034 | Edwards et al. | May 2003 | B2 |
6564096 | Mest | May 2003 | B2 |
6572612 | Stewart et al. | Jun 2003 | B2 |
6592581 | Bowe | Jul 2003 | B2 |
6602242 | Fung et al. | Aug 2003 | B1 |
6605061 | VanTassel et al. | Aug 2003 | B2 |
6607520 | Keane | Aug 2003 | B2 |
6610046 | Usami et al. | Aug 2003 | B1 |
6610083 | Keller et al. | Aug 2003 | B2 |
6613046 | Jenkins et al. | Sep 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6622731 | Daniel et al. | Sep 2003 | B2 |
6623515 | Mulier et al. | Sep 2003 | B2 |
6628976 | Fuimaono et al. | Sep 2003 | B1 |
6635054 | Fjield et al. | Oct 2003 | B2 |
6640120 | Swanson et al. | Oct 2003 | B1 |
6652517 | Hall et al. | Nov 2003 | B1 |
6685648 | Flaherty et al. | Feb 2004 | B2 |
6692490 | Edwards | Feb 2004 | B1 |
6702811 | Stewart et al. | Mar 2004 | B2 |
6711444 | Koblish | Mar 2004 | B2 |
6736835 | Pellegrino et al. | May 2004 | B2 |
6745080 | Koblish | Jun 2004 | B2 |
6746474 | Saadat | Jun 2004 | B2 |
6752805 | Maguire et al. | Jun 2004 | B2 |
6758830 | Schaer et al. | Jul 2004 | B1 |
6773433 | Stewart et al. | Aug 2004 | B2 |
6780183 | Jimenez, Jr. et al. | Aug 2004 | B2 |
6802840 | Chin et al. | Oct 2004 | B2 |
6802857 | Walsh et al. | Oct 2004 | B1 |
6814733 | Schwartz et al. | Nov 2004 | B2 |
6817999 | Berube et al. | Nov 2004 | B2 |
6837886 | Collins et al. | Jan 2005 | B2 |
6845267 | Harrison et al. | Jan 2005 | B2 |
6847848 | Sterzer et al. | Jan 2005 | B2 |
6850801 | Kieval et al. | Feb 2005 | B2 |
6869431 | Maguire et al. | Mar 2005 | B2 |
6882886 | Witte et al. | Apr 2005 | B1 |
6885888 | Rezai | Apr 2005 | B2 |
6890329 | Carroll et al. | May 2005 | B2 |
6893436 | Woodard et al. | May 2005 | B2 |
6893438 | Hall et al. | May 2005 | B2 |
6899711 | Stewart et al. | May 2005 | B2 |
6905510 | Saab | Jun 2005 | B2 |
6909920 | Lokhoff et al. | Jun 2005 | B2 |
6917834 | Koblish et al. | Jul 2005 | B2 |
6923808 | Taimisto | Aug 2005 | B2 |
6939346 | Kannenberg et al. | Sep 2005 | B2 |
6941953 | Feld et al. | Sep 2005 | B2 |
6949097 | Stewart et al. | Sep 2005 | B2 |
6952615 | Satake | Oct 2005 | B2 |
6960206 | Keane | Nov 2005 | B2 |
6960207 | Vanney et al. | Nov 2005 | B2 |
6972016 | Hill, III et al. | Dec 2005 | B2 |
7013169 | Bowe | Mar 2006 | B2 |
7013170 | Bowe | Mar 2006 | B2 |
7058456 | Pierce | Jun 2006 | B2 |
7063719 | Jansen et al. | Jun 2006 | B2 |
7081115 | Taimisto | Jul 2006 | B2 |
7104988 | Altman et al. | Sep 2006 | B2 |
7110828 | Kolberg et al. | Sep 2006 | B2 |
7115134 | Chambers | Oct 2006 | B2 |
7149574 | Yun et al. | Dec 2006 | B2 |
7155271 | Halperin et al. | Dec 2006 | B2 |
7158832 | Kieval et al. | Jan 2007 | B2 |
7162303 | Levin et al. | Jan 2007 | B2 |
7184811 | Phan et al. | Feb 2007 | B2 |
7201738 | Bengmark | Apr 2007 | B1 |
7211082 | Hall et al | May 2007 | B2 |
7221979 | Zhou et al. | May 2007 | B2 |
7232458 | Saadat | Jun 2007 | B2 |
7254451 | Seifert et al. | Aug 2007 | B2 |
7264619 | Venturelli | Sep 2007 | B2 |
7282213 | Schroeder et al. | Oct 2007 | B2 |
7285119 | Stewart et al. | Oct 2007 | B2 |
7291146 | Steinke et al. | Nov 2007 | B2 |
7311705 | Sra | Dec 2007 | B2 |
7381200 | Katoh et al. | Jun 2008 | B2 |
7390894 | Weinshilboum et al. | Jun 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7435248 | Taimisto et al. | Oct 2008 | B2 |
7517349 | Truckai et al. | Apr 2009 | B2 |
7526343 | Peterson et al. | Apr 2009 | B2 |
7542808 | Peterson et al. | Jun 2009 | B1 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7617005 | Demarais et al. | Nov 2009 | B2 |
7620451 | Demarais et al. | Nov 2009 | B2 |
7637903 | Lentz | Dec 2009 | B2 |
7646544 | Batchko et al. | Jan 2010 | B2 |
7647115 | Levin et al. | Jan 2010 | B2 |
7647124 | Williams et al. | Jan 2010 | B2 |
7653438 | Deem et al. | Jan 2010 | B2 |
7670335 | Keidar | Mar 2010 | B2 |
7682319 | Martin et al. | Mar 2010 | B2 |
7717853 | Nita | May 2010 | B2 |
7717948 | Demarais et al. | May 2010 | B2 |
7727178 | Wilson et al. | Jun 2010 | B2 |
7729782 | Williams et al. | Jun 2010 | B2 |
7747334 | Bly et al. | Jun 2010 | B2 |
7771421 | Stewart et al. | Aug 2010 | B2 |
7778703 | Gross et al. | Aug 2010 | B2 |
7789877 | Vanney | Sep 2010 | B2 |
7806871 | Li et al. | Oct 2010 | B2 |
7850685 | Kunis et al. | Dec 2010 | B2 |
7863897 | Slocum, Jr. et al. | Jan 2011 | B2 |
7867219 | Chambers | Jan 2011 | B2 |
7881807 | Schaer | Feb 2011 | B2 |
7890188 | Zhang et al. | Feb 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7942928 | Webler et al. | May 2011 | B2 |
7959630 | Taimisto et al. | Jun 2011 | B2 |
8019435 | Hastings et al. | Sep 2011 | B2 |
8062284 | Booth | Nov 2011 | B2 |
8100859 | Patterson et al. | Jan 2012 | B2 |
8123739 | McQueen et al. | Feb 2012 | B2 |
8131371 | Demarals et al. | Mar 2012 | B2 |
8131372 | Levin et al. | Mar 2012 | B2 |
8140170 | Rezai et al. | Mar 2012 | B2 |
8145317 | Demarais et al. | Mar 2012 | B2 |
8150518 | Levin et al. | Apr 2012 | B2 |
8150519 | Demarais et al. | Apr 2012 | B2 |
8150520 | Demarais et al. | Apr 2012 | B2 |
8175711 | Demarais et al. | May 2012 | B2 |
8192428 | Truckai et al. | Jun 2012 | B2 |
8257351 | Stewart et al. | Sep 2012 | B2 |
8308722 | Ormsby et al. | Nov 2012 | B2 |
8337492 | Kunis et al. | Dec 2012 | B2 |
8380275 | Kim et al. | Feb 2013 | B2 |
8398629 | Thistle | Mar 2013 | B2 |
8480663 | Ingle et al. | Jul 2013 | B2 |
8571665 | Moffitt et al. | Oct 2013 | B2 |
8868209 | Clark et al. | Oct 2014 | B2 |
8909316 | Kok-Hwee et al. | Dec 2014 | B2 |
8945107 | Buckley | Feb 2015 | B2 |
9014821 | Wang | Apr 2015 | B2 |
9050106 | Hill et al. | Jun 2015 | B2 |
9055956 | McRae et al. | Jun 2015 | B2 |
9066713 | Turovskiy | Jun 2015 | B2 |
9084609 | Smith | Jul 2015 | B2 |
9192435 | Jenson et al. | Nov 2015 | B2 |
9192766 | Sobotka | Nov 2015 | B2 |
9333113 | Abunassar et al. | May 2016 | B2 |
10188445 | Buckley | Jan 2019 | B2 |
10736690 | Kelly | Aug 2020 | B2 |
10842547 | Buckley | Nov 2020 | B2 |
20010005785 | Sachse | Jun 2001 | A1 |
20010007070 | Stewart et al. | Jul 2001 | A1 |
20010020174 | Koblish | Sep 2001 | A1 |
20010031971 | Dretler et al. | Oct 2001 | A1 |
20020004631 | Jenkins et al. | Jan 2002 | A1 |
20020004644 | Koblish | Jan 2002 | A1 |
20020062124 | Keane | May 2002 | A1 |
20020087208 | Koblish et al. | Jul 2002 | A1 |
20020107515 | Edwards et al. | Aug 2002 | A1 |
20020139379 | Edwards et al. | Oct 2002 | A1 |
20020165532 | Hill, III et al. | Nov 2002 | A1 |
20020169444 | Mest et al. | Nov 2002 | A1 |
20020183682 | Darvish et al. | Dec 2002 | A1 |
20030050635 | Truckai et al. | Mar 2003 | A1 |
20030050681 | Pianca et al. | Mar 2003 | A1 |
20030060857 | Perrson et al. | Mar 2003 | A1 |
20030060858 | Kieval et al. | Mar 2003 | A1 |
20030065317 | Rudie et al. | Apr 2003 | A1 |
20030074039 | Puskas | Apr 2003 | A1 |
20030088244 | Swanson et al. | May 2003 | A1 |
20030125790 | Fastovsky et al. | Jul 2003 | A1 |
20030153967 | Koblish | Aug 2003 | A1 |
20030158584 | Cates et al. | Aug 2003 | A1 |
20030181897 | Thomas et al. | Sep 2003 | A1 |
20030195507 | Stewart et al. | Oct 2003 | A1 |
20030199863 | Swanson et al. | Oct 2003 | A1 |
20030204187 | Hintringer | Oct 2003 | A1 |
20030216792 | Levin et al. | Nov 2003 | A1 |
20030229340 | Sherry et al. | Dec 2003 | A1 |
20030233099 | Danaek et al. | Dec 2003 | A1 |
20040010289 | Biggs et al. | Jan 2004 | A1 |
20040024371 | Plicchi et al. | Feb 2004 | A1 |
20040030375 | Pierce | Feb 2004 | A1 |
20040049181 | Stewart et al. | Mar 2004 | A1 |
20040054363 | Vaska et al. | Mar 2004 | A1 |
20040082978 | Harrison et al. | Apr 2004 | A1 |
20040122421 | Wood | Jun 2004 | A1 |
20040167509 | Taimisto | Aug 2004 | A1 |
20040215186 | Cornelius et al. | Oct 2004 | A1 |
20050010095 | Stewart et al. | Jan 2005 | A1 |
20050015084 | Hill, III et al. | Jan 2005 | A1 |
20050080409 | Young et al. | Apr 2005 | A1 |
20050096647 | Steinke et al. | May 2005 | A1 |
20050187579 | Danek et al. | Aug 2005 | A1 |
20050228460 | Levin et al. | Oct 2005 | A1 |
20050267465 | Hillier et al. | Dec 2005 | A1 |
20060074403 | Rafiee | Apr 2006 | A1 |
20060085054 | Zikorus et al. | Apr 2006 | A1 |
20060095029 | Young et al. | May 2006 | A1 |
20060135870 | Webler | Jun 2006 | A1 |
20060135953 | Kania et al. | Jun 2006 | A1 |
20060206150 | Demarais et al. | Sep 2006 | A1 |
20060212076 | Demarais et al. | Sep 2006 | A1 |
20060241366 | Falwell et al. | Oct 2006 | A1 |
20060247618 | Kaplan et al. | Nov 2006 | A1 |
20060247619 | Kaplan et al. | Nov 2006 | A1 |
20060271111 | Demarais et al. | Nov 2006 | A1 |
20070043409 | Brian, III et al. | Feb 2007 | A1 |
20070083194 | Kunis et al. | Apr 2007 | A1 |
20070106293 | Oral et al. | May 2007 | A1 |
20070129720 | Demarais et al. | Jun 2007 | A1 |
20070225781 | Saadat et al. | Sep 2007 | A1 |
20070265687 | Deem et al. | Nov 2007 | A1 |
20080021408 | Jacobsen et al. | Jan 2008 | A1 |
20080045921 | Anderson et al. | Feb 2008 | A1 |
20080064957 | Spence | Mar 2008 | A1 |
20080097398 | Mitelberg et al. | Apr 2008 | A1 |
20080108975 | Appling et al. | May 2008 | A1 |
20080109011 | Thenuwara et al. | May 2008 | A1 |
20080172104 | Kieval et al. | Jul 2008 | A1 |
20080255539 | Booth | Oct 2008 | A1 |
20080288039 | Reddy | Nov 2008 | A1 |
20080300587 | Anderson | Dec 2008 | A1 |
20080319513 | Pu et al. | Dec 2008 | A1 |
20090018534 | Taimisto et al. | Jan 2009 | A1 |
20090036948 | Levin et al. | Feb 2009 | A1 |
20090157066 | Satake | Jun 2009 | A1 |
20090287202 | Ingle et al. | Nov 2009 | A1 |
20090306650 | Govari et al. | Dec 2009 | A1 |
20090312606 | Dayton et al. | Dec 2009 | A1 |
20100030112 | Anderson et al. | Feb 2010 | A1 |
20100137860 | Demarais et al. | Jun 2010 | A1 |
20100137952 | Demarais et al. | Jun 2010 | A1 |
20100168777 | Stangenes et al. | Jul 2010 | A1 |
20100174282 | Demarais et al. | Jul 2010 | A1 |
20100179512 | Chong et al. | Jul 2010 | A1 |
20100191112 | Demarais et al. | Jul 2010 | A1 |
20100204692 | Stewart et al. | Aug 2010 | A1 |
20100222851 | Deem et al. | Sep 2010 | A1 |
20100222854 | Demarais et al. | Sep 2010 | A1 |
20100261990 | Gillis et al. | Oct 2010 | A1 |
20110021976 | Li et al. | Jan 2011 | A1 |
20110144639 | Govari | Jun 2011 | A1 |
20110160719 | Govari et al. | Jun 2011 | A1 |
20110264086 | Ingle | Oct 2011 | A1 |
20110306851 | Wang | Dec 2011 | A1 |
20110319908 | Thenuwara et al. | Dec 2011 | A1 |
20120010607 | Malecki et al. | Jan 2012 | A1 |
20120029509 | Smith | Feb 2012 | A1 |
20120029510 | Haverkost | Feb 2012 | A1 |
20120029513 | Smith et al. | Feb 2012 | A1 |
20120035615 | Koester et al. | Feb 2012 | A1 |
20120078076 | Stewart et al. | Mar 2012 | A1 |
20120089123 | Organ | Apr 2012 | A1 |
20120101553 | Reddy | Apr 2012 | A1 |
20120116382 | Ku et al. | May 2012 | A1 |
20120116383 | Mauch et al. | May 2012 | A1 |
20120116438 | Salahieh et al. | May 2012 | A1 |
20120123406 | Edmunds et al. | May 2012 | A1 |
20120130289 | Demarais et al. | May 2012 | A1 |
20120130345 | Levin et al. | May 2012 | A1 |
20120130368 | Jenson | May 2012 | A1 |
20120143293 | Mauch et al. | Jun 2012 | A1 |
20120172837 | Demarais et al. | Jul 2012 | A1 |
20120191083 | Moll et al. | Jul 2012 | A1 |
20120197246 | Mauch | Aug 2012 | A1 |
20120277842 | Kunis | Nov 2012 | A1 |
20120290053 | Zhang et al. | Nov 2012 | A1 |
20120310065 | Falwell et al. | Dec 2012 | A1 |
20120310239 | Stewart et al. | Dec 2012 | A1 |
20120323233 | Maguire et al. | Dec 2012 | A1 |
20130053876 | Ogle | Feb 2013 | A1 |
20130066316 | Steinke et al. | Mar 2013 | A1 |
20130085360 | Grunewald | Apr 2013 | A1 |
20130090637 | Sliwa | Apr 2013 | A1 |
20130144283 | Barman | Jun 2013 | A1 |
20130165920 | Weber et al. | Jun 2013 | A1 |
20130165921 | Sutermeister et al. | Jun 2013 | A1 |
20130172872 | Subramaniam et al. | Jul 2013 | A1 |
20130172879 | Sutermeister et al. | Jul 2013 | A1 |
20130184703 | Shireman et al. | Jul 2013 | A1 |
20130184773 | Libbus et al. | Jul 2013 | A1 |
20130253628 | Smith et al. | Sep 2013 | A1 |
20130274614 | Shimada et al. | Oct 2013 | A1 |
20130274730 | Anderson et al. | Oct 2013 | A1 |
20130274731 | Anderson et al. | Oct 2013 | A1 |
20130274737 | Wang et al. | Oct 2013 | A1 |
20130282000 | Parsonage | Oct 2013 | A1 |
20130282084 | Mathur et al. | Oct 2013 | A1 |
20130289686 | Masson et al. | Oct 2013 | A1 |
20130304047 | Grunewald et al. | Nov 2013 | A1 |
20130304052 | Rizq et al. | Nov 2013 | A1 |
20130304062 | Chan et al. | Nov 2013 | A1 |
20140058376 | Horn et al. | Feb 2014 | A1 |
20140213873 | Wang | Jul 2014 | A1 |
20140214018 | Behar et al. | Jul 2014 | A1 |
20140221805 | Wang | Aug 2014 | A1 |
20140243821 | Salahieh et al. | Aug 2014 | A1 |
20140249524 | Kocur | Sep 2014 | A1 |
20140257280 | Hanson et al. | Sep 2014 | A1 |
20140257281 | Squire et al. | Sep 2014 | A1 |
20140276747 | Abunassar et al. | Sep 2014 | A1 |
20140276748 | Ku et al. | Sep 2014 | A1 |
20140276752 | Wang et al. | Sep 2014 | A1 |
20140276787 | Wang et al. | Sep 2014 | A1 |
20140276789 | Dandler et al. | Sep 2014 | A1 |
20140303617 | Shimada | Oct 2014 | A1 |
20140350553 | Okuyama | Nov 2014 | A1 |
20150025525 | Willard et al. | Jan 2015 | A1 |
20150057655 | Osypka | Feb 2015 | A1 |
20150066013 | Salahieh et al. | Mar 2015 | A1 |
20150105659 | Salahieh et al. | Apr 2015 | A1 |
20150112329 | Ng | Apr 2015 | A1 |
20150126992 | Mogul | May 2015 | A1 |
20150223866 | Buelna et al. | Aug 2015 | A1 |
20150223877 | Behar et al. | Aug 2015 | A1 |
20150289770 | Wang | Oct 2015 | A1 |
20160175040 | Magana et al. | Jun 2016 | A1 |
20160175044 | Abunassar et al. | Jun 2016 | A1 |
20160175582 | Serna et al. | Jun 2016 | A1 |
20160374568 | Wang | Dec 2016 | A1 |
20170042610 | Smith et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
101583323 | Nov 2009 | CN |
201469401 | May 2010 | CN |
102198015 | Sep 2011 | CN |
102274075 | Dec 2011 | CN |
102488552 | Jun 2012 | CN |
202386778 | Aug 2012 | CN |
202426649 | Sep 2012 | CN |
202537649 | Nov 2012 | CN |
202538132 | Nov 2012 | CN |
102885648 | Jan 2013 | CN |
102885649 | Jan 2013 | CN |
102908188 | Feb 2013 | CN |
102908189 | Feb 2013 | CN |
202761434 | Mar 2013 | CN |
103027745 | Apr 2013 | CN |
103027746 | Apr 2013 | CN |
202843784 | Apr 2013 | CN |
102772249 | Jan 2015 | CN |
105167840 | Dec 2015 | CN |
105326562 | Feb 2016 | CN |
205433878 | Aug 2016 | CN |
205433879 | Aug 2016 | CN |
29909082 | Jul 1999 | DE |
10252325 | May 2004 | DE |
10257146 | Jun 2004 | DE |
0132344 | Jan 1985 | EP |
510624 | Oct 1992 | EP |
732080 | Sep 1996 | EP |
779079 | Jun 1997 | EP |
821602 | Feb 1998 | EP |
865256 | Sep 1998 | EP |
868160 | Oct 1998 | EP |
868923 | Oct 1998 | EP |
0868923 | Oct 1998 | EP |
728495 | Apr 1999 | EP |
0916360 | May 1999 | EP |
916360 | May 1999 | EP |
1042990 | Oct 2000 | EP |
1233716 | Aug 2002 | EP |
1297795 | Apr 2003 | EP |
963191 | Aug 2003 | EP |
1332724 | Aug 2003 | EP |
757575 | Sep 2003 | EP |
873760 | Jan 2004 | EP |
1383567 | Jan 2004 | EP |
778043 | Nov 2005 | EP |
1733689 | Dec 2006 | EP |
1802370 | Jul 2007 | EP |
1009303 | Jun 2009 | EP |
2208474 | Jul 2010 | EP |
2263588 | Dec 2010 | EP |
2329859 | Jun 2011 | EP |
2519173 | Nov 2012 | EP |
2558016 | Feb 2013 | EP |
2570154 | Mar 2013 | EP |
2598069 | Jun 2013 | EP |
2664295 | Nov 2013 | EP |
2694158 | Feb 2014 | EP |
2759275 | Jul 2014 | EP |
2760532 | Aug 2014 | EP |
2804554 | Nov 2014 | EP |
2839802 | Feb 2015 | EP |
2890321 | Jul 2015 | EP |
2907464 | Aug 2015 | EP |
3003191 | Apr 2016 | EP |
3049007 | Aug 2016 | EP |
2645955 | Oct 2016 | EP |
2836151 | Oct 2016 | EP |
3102132 | Dec 2016 | EP |
2709517 | Jan 2017 | EP |
3123973 | Feb 2017 | EP |
3148467 | Apr 2017 | EP |
355134141 | Oct 1980 | JP |
2015119831 | Jul 2015 | JP |
2016086999 | May 2016 | JP |
WO1991015254 | Oct 1991 | WO |
WO1992020291 | Nov 1992 | WO |
WO1994007446 | Apr 1994 | WO |
WO1994021168 | Sep 1994 | WO |
WO1995013111 | May 1995 | WO |
WO1995020416 | Aug 1995 | WO |
WO1995025472 | Sep 1995 | WO |
WO1995031142 | Nov 1995 | WO |
WO96000036 | Jan 1996 | WO |
WO1996000036 | Jan 1996 | WO |
WO1996032980 | Oct 1996 | WO |
WO1996038196 | Dec 1996 | WO |
WO1997017892 | May 1997 | WO |
WO1997036548 | Oct 1997 | WO |
WO1998002201 | Jan 1998 | WO |
WO1998018393 | May 1998 | WO |
WO1998033469 | Aug 1998 | WO |
WO1998042403 | Oct 1998 | WO |
WO1998043530 | Oct 1998 | WO |
WO1999000060 | Jan 1999 | WO |
WO1999023958 | May 1999 | WO |
WO1999052421 | Oct 1999 | WO |
WO1999056801 | Nov 1999 | WO |
WO1999062413 | Dec 1999 | WO |
WO00001313 | Jan 2000 | WO |
WO2000001313 | Jan 2000 | WO |
WO00056237 | Sep 2000 | WO |
WO00067832 | Nov 2000 | WO |
WO2001022897 | Apr 2001 | WO |
WO01037746 | May 2001 | WO |
WO2001037723 | May 2001 | WO |
WO2001037746 | May 2001 | WO |
WO2001070114 | Sep 2001 | WO |
WO2001074255 | Oct 2001 | WO |
WO01080758 | Nov 2001 | WO |
WO2002045608 | Jun 2002 | WO |
WO2002083017 | Oct 2002 | WO |
WO2002087453 | Nov 2002 | WO |
WO2002089687 | Nov 2002 | WO |
WO2002089908 | Nov 2002 | WO |
WO2003022167 | Mar 2003 | WO |
WO20030777781 | Sep 2003 | WO |
WO2003082080 | Oct 2003 | WO |
WO2004100813 | Nov 2004 | WO |
WO2005030072 | Apr 2005 | WO |
WO2005041748 | May 2005 | WO |
WO2005051216 | Jun 2005 | WO |
WO2005070491 | Aug 2005 | WO |
WO2005110528 | Nov 2005 | WO |
WO2006020920 | Feb 2006 | WO |
WO2006041881 | Apr 2006 | WO |
WO2006065949 | Jun 2006 | WO |
WO2006092000 | Sep 2006 | WO |
WO2006105121 | Oct 2006 | WO |
WO2007001981 | Jan 2007 | WO |
WO2007008954 | Jan 2007 | WO |
WO2007078997 | Jul 2007 | WO |
WO2007128064 | Nov 2007 | WO |
WO2008049084 | Apr 2008 | WO |
WO2008101244 | Aug 2008 | WO |
WO2009121017 | Jan 2009 | WO |
WO2009082635 | Jul 2009 | WO |
WO2010048676 | May 2010 | WO |
WO2010091701 | Aug 2010 | WO |
WO2010120835 | Oct 2010 | WO |
WO2011015218 | Feb 2011 | WO |
WO2011019838 | Feb 2011 | WO |
WO2011055143 | May 2011 | WO |
WO2011060200 | May 2011 | WO |
WO2011082279 | Jul 2011 | WO |
WO2011130534 | Oct 2011 | WO |
WO2012075156 | Jun 2012 | WO |
WO2012130337 | Oct 2012 | WO |
WO2012131107 | Oct 2012 | WO |
WO2012154219 | Nov 2012 | WO |
WO2012154796 | Nov 2012 | WO |
WO2013016203 | Jan 2013 | WO |
WO2013028993 | Feb 2013 | WO |
WO2013030807 | Mar 2013 | WO |
WO2013040201 | Mar 2013 | WO |
WO2013049604 | Apr 2013 | WO |
WO2013101452 | Jul 2013 | WO |
WO2013106054 | Jul 2013 | WO |
WO2013109318 | Jul 2013 | WO |
2013134479 | Sep 2013 | WO |
2013134492 | Sep 2013 | WO |
2013134541 | Sep 2013 | WO |
2013134548 | Sep 2013 | WO |
WO2013154776 | Oct 2013 | WO |
WO2013158676 | Oct 2013 | WO |
WO2013158678 | Oct 2013 | WO |
WO2013165920 | Nov 2013 | WO |
WO2014036160 | Mar 2014 | WO |
WO2014036163 | Mar 2014 | WO |
WO2014056460 | Apr 2014 | WO |
WO0214163987 | Oct 2014 | WO |
WO2014163990 | Oct 2014 | WO |
WO2014176785 | Nov 2014 | WO |
WO2015161790 | Oct 2015 | WO |
WO2016094938 | Jun 2016 | WO |
Entry |
---|
Allen, E.V., Sympathectomy for essential hypertension, Circulation, 1952, 6:131-140. |
Bello-Reuss, E. et al., “Effects of Acute Unilateral Renal Denervation in the Rat,” Journal of Clinical Investigation, vol. 56, Jul. 1975, pp. 208-217. |
Bello-Reuss, E. et al., “Effects of Renal Sympathetic Nerve Stimulation of Proximal Water and Sodium Reabsorption,” Journal of Clinical Investigation, vol. 57, Apr. 1976, pp. 1104-1107. |
Bhandari, A. and Ellias, M., “Loin Pain Hematuria Syndrome: Pain Control with RFA to the Splanchanic Plexus,” The Pain Clinc, 2000, vol. 12, No. 4, pp. 323-327. |
Curtis, John J. et al., “Surgical Therapy for Persistent Hypertenstion After Renal Transplantation” Transplantation, 31:125-128 (1981). |
Dibona, Gerald F. et al., “Neural Control of Renal Function,” Physiological Reviews, vol. 77, No. 1, Jan. 1997, The American Physiological Society 1997, pp. 75-197. |
Dibona, Gerald F., “Neural Control of the Kidney—Past, Present and Future,” Nov. 4, 2002, Novartis Lecture, Hypertension 2003, 41 part^2, 2002 American Heart Association, Inc., pp. 621-624. |
Janssen, Ben J.A. et al., “Effects of Complete Renal Denervation and Selective Afferent Renal Denervation of the Hypertension Induced by Intrarenal Norepinephrine Infusion in Conscious Rats”, Journal of Hypertension, Jul. 1989: 447-445. |
Katholi, Richard E., “Renal Nerves in the Pathogenesis of Hypertension in Experimental Animals and Humans,” Am J. Physiol. vol. 245, 1983, the American Physiological Society 1983, pp. F1-F14. |
Krum, Henry et al., “Catheter-Based Renal Sympathetic Denervation for Resistant Hypertension: A Mulitcentre Safety and Proof-of Principle Cohort Study,” Lancet 2009; 373: 1275-81. |
Krum, et al., “Renal Sympathetic-Nerve Amblation for Uncontrolled Hypertension.” New England Journal of Med, Aug. 2009, 361; 9, 3 pages. |
Luippold, Gerd et al., “Chronic Renal Denervation Prevents Glomerular Hyperfilteration in Diabetic Rats”, Nephrol Dial Transplant, vol. 19, No. 2, 2004, pp. 342-347. |
Mahfoud et al. “Treatment strategies for resistant arterial hyperension” Dtsch Arztebl Int. 2011;108:725-731. |
Osborn, et al., “Effect of Renal Nerve Stimulation on Renal Blood Flow Autoregulation and Antinatriuresis During Deductions in Renal Perfusion Pressure,” Proceedings of the Society for Experimental Biology and Medicine, vol. 168, 77-81, 1981. |
Page, I.H. et al., “The Effect of Renal Denervation on Patients Suffering From Nephritis,” Feb. 27, 1935;443-458. |
Page, I.H. et al., “The Effect of Renal Denervation on the Level of Arterial Blood Pressure and Renal Function in Essential Hypertension,” J. Clin Invest. 1934;14:27-30. |
Rocha-Singh, “Catheter-Based Sympathetic Renal Denervation,” Endovascular Today, Aug. 2009, 4 pages. |
Schlaich, M.P. et al., “Renal Denervation as a Therapeutic Approach for Hypertension: Novel Implications for an Old Concept,” Hypertension, 2009; 54:1195-1201. |
Simplicity Schlaich, M.P. et al., “Renal Sympathetic-Nerve Ablation for Uncontrolled Hypertension,” N Engl J Med 2009; 361(9): 932-934. |
Smithwick, R.H. et al., “Splanchnicectomy for Essential Hypertension,” Journal Am Med Assn, 1953, 152:1501-1504. |
Symplicity HTN-1 Investigators; Krum H, Barman H, Schlaich M, et al. Catheter-based renal sympathetic denervation for resistant hypertension: durability of blood pressure reduction out to 24 months. Hypertension. 2011;57(5):911-917. |
Symplicity HTN-2 Investigators, “Renal Sympathetic Denervation in Patients with Treatment-Resistant Hypertension (The Symplicity HTN-2 Trial): A Randomised Controlled Trial”; Lancet, Dec. 4, 2010, vol. 376, pp. 1903-1909. |
United States Renal Data System, USRDS 2003 Annual Data Report: Atlas of End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, 2003, 593 pages. |
Valente, John F. et al,, “Laparoscopic Renal Denervation for Intractable ADPKD-Related , Pain”, Nephrol Dial Transplant (2001) 16: 1 pages. |
Wagner, C.D. et al., “Very Low Frequency Oscillations in Arterial Blood Pressure After Autonomic Blockade in Conscious Dogs,” Feb. 5, 1997, Am J Physiol Regul Integr Comp Physiol 1997, vol. 272, 1997 the American Physiological Society, pp. 2034-2039. |
Ahmed, Humera et al., Renal Sympathetic Denervation Using an Irrigated Radiofrequency Ablation Catheter for the Management of Drug-Resistant Hypertension, JACC Cardiovascular Interventions, vol. 5, No. 7, 2012, pp. 758-765. |
Avitall et al., “The creation of linear contiguous lesions in the atria with an expandable loop catheter,” Journal of the American College of Cardiology, 1999; 33; pp. 972-984. |
Beale et al., “Minimally Invasive Treatment for Varicose Veins: A Review of Endovenous Laser Treatment and Radiofrequency Ablation”. Lower Extremity Wounds 3(4), 2004, 10 pages. |
Blessing, Erwin et al., Cardiac Ablation and Renal Denervation Systems Have Distinct Purposes and Different Technical Requirements, JACC Cardiovascular Interventions, vol. 6, No. 3, 2013, 1 page. |
ClinicalTrials.gov, Renal Denervation in Patients with uncontrolled Hypertension in Chinese (2011), 6pages. www.clinicaltrials.gov/ct2/show/NCT01390831. |
Dodge, et al., “Lumen Diameter of Normal Human Coronary Arteries Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation”, Circulation, 1992, vol. 86 (1), pp. 232-246. |
Excerpt of Operator's Manual of Boston Scientific's EPT-1000 XP Cardiac Ablation Controller & Accessories, Version of Apr. 2003, (6 pages). |
Excerpt of Operator's Manual of Boston Scientific's Maestro 30000 Cardiac Ablation System, Version of Oct. 17, 2005 , (4 pages). |
Holmes et al., Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation: Clinical Spectrum and Interventional Considerations, JACC: Cardiovascular Interventions, 2: Apr. 2009, 10 pages. |
Kandarpa, Krishna et al., “Handbook of Interventional Radiologic Procedures”, Third Edition, pp. 194-210 (2002). |
Mount Sinai School of Medicine clinical trial for Impact of Renal Sympathetic Denervation of Chronic Hypertension, Mar. 2013, 11 pages. http://clinicaltrials.gov/ct2/show/NCT01628198. |
Opposition to European Patent No. 2465470, Granted Oct. 28, 2015, Date of Opposition Jul. 27, 2016, 34 pp. |
Opposition to European Patent No. EP1802370, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 20 pages. |
Opposition to European Patent No. EP2037840, Granted Dec. 7, 2011, Date of Opposition Sep. 7, 2012, 25 pages. |
Opposition to European Patent No. EP2092957, Granted Jan. 5, 2011, Date of Opposition Oct. 5, 2011, 26 pages. |
Oz, Mehmet, Pressure Relief, TIME, Jan. 9, 2012, 2 pages. <www.time.come/time/printout/0,8816,2103278,00.html>. |
Papademetriou, Vasilios, Renal Sympathetic Denervation for the Treatment of Difficult-to-Control or Resistant Hypertension, Int. Journal of Hypertension, 2011, 8 pages. |
Pieper, et al., “Design and Implementation of a New Computerized System for Intraoperative Cardiac Mapping” Journal of Applied Physiology, 1991, vol. 71 (4), pp. 1529-1539. |
Prochnau, Dirk et al., Catheter-based renal denervation for drug-resistant hypertension by using a standard electrophysiology catheter; Euro Intervention 2012, vol. 7, pp. 1077-1080. |
Purerfellner, Helmut et al., Incidence, Management, and Outcome in Significant Pulmonary Vein Stenosis Complicating Ablation for Atrial Fibrillation, Am. J. Cardiol , 93, Jun. 1, 2004, 4 pages. |
Purerfellner, Helmut et al., Pulmonary Vein Stenosis Following Catheter Ablation of Atrial Fibrillation, Curr. Opin. Cardio. 20 :484-490, 2005. |
Remo, et al., “Safety and Efficacy of Renal Denervation as a Novel Treatment of Ventricular Tachycardia Storm in Patients with Cardiomyopathy” Heart Rhythm, 2014, 11(4), pp. 541-546. |
Schneider, Peter A., “Endovascular Skills—Guidewire and Catheter Skills for Endovascular Surgery,” Second Edition Revised and Expanded, 10 pages, (2003). |
ThermoCool Irrigated Catheter and Integrated Ablation System, Biosense Webster (2006), 6 pages. |
Tsao, Hsuan-Ming, Evaluation of Pulmonary Vein Stenosis after Catheter Ablation of Atrial Fibrillation, Cardiac Electrophysiology Review, Jun. 2002, 4 pages. |
U.S. Appl. No. 11/363,867, filed Feb. 27, 2006, 70 pp. |
U.S. Appl. No. 60/813,589, filed Dec. 29, 2005, 62 pgs. |
U.S. Appl. No. 60/852,787, filed Oct. 18, 2006, 112 pgs. |
Ureter, https://en.wikipedia.org/wiki/Ureter, Jun. 2016, 6 pgs. |
Wittkampf et al., “Control of radiofrequency lesion size by power regulation,” Journal of the American Heart Associate, 1989, 80: pp. 962-968. |
Zheng et al., “Comparison of the temperature profile and pathological effect at an unipolar, bipolar and phased radiofrequency current configurations,” Journal of the Interventional Cardiac Electrophysiology, 2001, pp. 401-410. |
U.S. Appl. No. 95/002,110, filed Aug. 29, 2012, Demarais et al. |
U.S. Appl. No. 95/002,209, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,233, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,243, filed Sep. 13, 2012, Levin et al. |
U.S. Appl. No. 95/002,253, filed Sep. 13, 2012, Demarais et al. |
U.S. Appl. No. 95/002,255, filed Sep. 13, 2012, Demarais et al. |
U.S. Appl. No. 95/002,292, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,327, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,335, filed Sep. 14, 2012, Demarais et al. |
U.S. Appl. No. 95/002,336, filed Sep. 14, 2012, Levin et al. |
U.S. Appl. No. 95/002,356, filed Sep. 14, 2012, Demarais et al. |
“2011 Edison Award Winners.” Edison Awards: Honoring Innovations & Innovators, 2011, 6 pages, <http://www.edisonawards.com/BestNewProduct_2011.php>. |
“2012 Top 10 advances in heart disease and stroke research: American Heart Association/America Stroke Association Top 10 Research Report.” American Heart Association, Dec. 17, 2012, 5 pages, <http://newsroom.heart.org/news/2012-top-10-advances-in-heart-241901>. |
“Ardian(R) Receives 2010 EuroPCR Innovation Award and Demonstrates Further Durability of Renal Denervation Treatment for Hypertension.” PR Newswire, Jun. 3, 2010, 2 pages, <http://www.prnewswire.com/news-releases/ardianr-receives-2010-europer-innovation-award-and-demonstrates-further-durability-of-renal-denervation-treatment-for-hypertension-95545014.html>. |
“Boston Scientific to Acquire Vessix Vascular, Inc.: Company to Strengthen Hypertension Program with Acquisition of Renal Denervation Technology.” Boston Scientific: Advancing science for life—Investor Relations, Nov. 8, 2012, 2 pages, <http://phx.corporate-ir.net/phoenix.zhtml?c=62272&p=irol-newsArticle&id=1756108>. |
“Cleveland Clinic Unveils Top 10 Medical Innovations for 2012: Experts Predict Ten Emerging Technologies that will Shape Health Care Next Year,” Cleveland Clinic, Oct. 6, 2011, 2 pages. <http://my.clevelandclinic.org/media_relations/library/2011/2011-10-6-cleveland-clinic-unveils-top-10-medical-innovations-for-2012.aspx>. |
“Does renal denervation represent a new treatment option for resistant hypertension?” Interventional News, Aug. 3, 2010, 2 pages. <http://www.cxvascular.com/in-latest-news/interventional-news---latest-news/does-renal-denervation-represent-a-new-treatment-option-for-resistant-hypertension>. |
“Iberia—Renal Sympathetic Denervation System: Turning innovation into quality care.” [Brochure], Terumo Europe N.V., 2013, Europe, 3 pages. |
“Neurotech Neurotech Reports Announces Winners of Gold Electrode Awards.” Neurotech business 2009, 1 page, <http://www.neurotechreports.com/pages/goldelectrodes09.html>. |
“Quick, Consistent. Controlled. OneShot renal Denervation System” [Brochure], Covidien: positive results for life, 2013, (n.l.), 4 pages. |
“Renal Denervation Technology of Vessix Vascular, Inc. been acquired by Boston Scientific Corporation (BSX) to pay up to $425 Million.” Vessix Vascular Pharmaceutical Intelligence: A blog specializing in Pharmaceutical Intelligence and Analytics, Nov. 8, 2012, 21 pages, <http://pharmaceuticalintelligence.com/tag/vessix-vascular/>. |
“The Edison Awards™” Edison Awards: Honoring Innovations & Innovators, 2013, 2 pages, <http://www.edisonawards.com/Awards.php>. |
“The Future of Renal denervation for the Treatment of Resistant Hypertension.” St. Jude Medical, Inc., 2012, 12 pages. |
“Vessix Renal Denervation System: So Advanced It's Simple.” [Brochure], Boston Scientific: Advancing science for life, 2013, 6 pages. |
Asbell, Penny, “Conductive Keratoplasty for the Correction of Hyperopia.” Tr Am Ophth Soc, 2001, vol. 99, 10 pages. |
Badoer, Emilio, “Cardiac afferents play the dominant role in renal nerve inhibition elicited by volume expansion in the rabbit.” Am J Physiol Regul Integr Comp Physiol, vol. 274, 1998, 7 pages. |
Bengel, Frank, “Serial Assessment of Sympathetic Reinnervation After Orthotopic Heart Transplantation: A longitudinal Study Using PET and C-11 Hydroxyephedrine.” Circulation, vol. 99, 1999, 7 pages. |
Benito, F., et al. “Radiofrequency catheter ablation of accessory pathways in infants.” Heart, 78:160-162 (1997). |
Bettmann, Michael, Carotid Stenting and Angioplasty: A Statement for Healthcare Professionals From the Councils on Cardiovascular Radiology, Stroke, Cardio-Thoracic and Vascular Surgery, Epidemiology and Prevention, and Clinical Cardiology, American Heart Association, Circulation, vol. 97, 1998, 4 pages. |
Bohm, Michael et al., “Rationale and design of a large registry on renal denervation: the Global Symplicity registry.” EuroIntervention, vol. 9, 2013, 9 pages. |
Brosky, John, “EuroPCR 2013: CE-approved devices line up for renal denervation approval.” Medical Device Daily, May 28, 2013, 3 pages, <http://www.medicaldevicedaily.com/serviet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=83002>. |
Davis, Mark et al., “Effectiveness of Renal Denervation Therapy fol Resistant Hypertension.” Journal of the American College of Cardiology, vol. 62, No. 3, 2013, 11 pages. |
Dubuc, M., et al., “Feasibility of cardiac cryoablation using a transvenous steerable electrode catheter.” J Interv Cardiac Electrophysiol, 2:285-292 (1998). |
Final Office Action; U.S. Appl. No. 12/827,700; dated Feb. 5, 2013, 61 pages. |
Geisler, Benjamin et al., “Cost-Effectiveness and Clinical Effectiveness of Catheter-Based Renal Denervation for Resistant Hypertension,” Journal of the American College of Cardiology, col. 60, No. 14, 2012, 7 pages. |
Gelfand, M., et al., “Treatment of renal failure and hypertension.” U.S. Appl. No. 60/442,970, filed Jan. 29, 2003, 23 pages. |
Gertner, Jon, “Meet the Tech Duo That's Revitalizing the Medical Device Industry.” FAST Company, Apr. 15, 2013, 6:00 AM, 17 pages, <http://www.fastcompany.com/3007845/meet-tech-duo-thats-revitalizing-medical-device-industry>. |
Golwyn, D. H., Jr., et al. “Percutaneous Transcatheter Renal Ablation with Absolute Ethanol for Uncontrolled Hypertension or Nephrotic Syndrome: Results in 11 Patients with End-Stage Renal Disease.” JVIR, 8: 527-533 (1997). |
Hall, W. H., et al. “Combined embolization and percutaneous radiofrequency ablation of a solid renal tumor.” Am. J. Roentgenol,174: 1592-1594 (2000). |
Han, Y.-M, et al., “Renal artery embolization with diluted hot contrast medium: An experimental study.” J Vasc Interv Radiol, 12: 862-868 (2001) . |
Hansen, J. M., et al. “The transplanted human kidney does not achieve functional reinnervation.” Clin. Sci, 87: 13-19 (1994). |
Hendee, W. R. et al. “Use of Animals in Biomedical Research: The Challenge and Response,” American Medical Association White Paper (1988) 39 pages. |
Hering, Dagmara et al., “Chronic kidney disease: role of sympathetic nervous system activation and potential benefits of renal denervation.” EuroIntervention, vol. 9, 2013, 9 pages. |
Imimdtanz, “Medtronic awarded industry's highest honor for renal denervation system.” The official bldg of Medtronic Australasia, Nov. 12, 2012, 2 pages, <http://97waterlooroad.wordpress.com/2012/11/12/medtronic-awarded-industrys-highest-honour-for-renal-denervation-system/>. |
Kaiser, Chris, AHA Lists Year's Big Advances in CV Research, medpage Today, Dec. 18, 2012, 4 pages, <http://www.medpagetoday.com/Cardiology/PCI/36509>. |
Kompanowska, E., et al., “Early Effects of renal denervation in the anaesthetised rat: Natriuresis and increased cortical blood flow.” J Physiol, 531. 2:527-534 (2001). |
Lee, S. J., et al. “Ultrasonic energy in endoscopic surgery.” Yonsei Med J, 40:545-549 (1999). |
Linz, Dominik et al., “Renal denervation suppresses ventricular arrhythmias during acute ventricular ischemia in pigs.” Heart Rhythm, vol. 0, No. 0, 2013, 6 pages. |
Lustgarten, D. L., et al., “Cryothermal ablation: Mechanism of tissue injury and current experience in the treatment of tachyarrhythmias.” Progr Cardiovasc Dis, 41:481-498 (1999). |
Mabin, Tom et al., “First experience with endovascular ultrasound renal denervation for the treatment of resistant hypertension.” EuroIntervention, vol. 8, 2012, 5 pages. |
Mahfoud, Felix et al., “Ambulatory Blood Pressure Changes after Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Circulation, 2013, 25 pages. |
Mahfoud, Felix et al., “Expert consensus document from the European Society of Cardiology on catheter-based renal denervation.” European Heart Journal, 2013, 9 pages. |
Mahfoud, Felix et al., “Renal Hemodynamics and Renal Function After Catheter-Based Renal Sympathetic Denervation in Patients With Resistant Hypertension.” Hypertension, 2012, 6 pages. |
Medical-Dictionary.com, Definition of “Animal Model,” http://medical-dictionary.com (search “Animal Model”), 2005, 1 page. |
Medtronic, Inc., Annual Report (Form 10-K) (Jun. 28, 2011) 44 pages. |
Millard, F. C., et al, “Renal Embolization for ablation of function in renal failure and hypertension.” Postgraduate Medical Journal, 65, 729-734, (1989). |
Oliveira, V., et al., “Renal denervation normalizes pressure and baroreceptor reflex in high renin hypertension in conscious rats.” Hypertension, 19:II-17-II-21 (1992). |
Ong, K. L., et al. “Prevalence, Awareness, Treatment, and Control of Hypertension Among United States Adults 1999-2004.” Hypertension, 49: 69-75 (2007) (originally published online Dec. 11, 2006). |
Ormiston, John et al., “First-in-human use of the OneShot™ renal denervation system from Covidien.” EuroIntervention, vol. 8, 2013, 4 pages. |
Ormiston, John et al., “Renal denervation for resistant hypertension using an irrigated radiofriquency balloon: 12-month results from the Renal Hypertension Ablation System (RHAS) trial.” EuroIntervention, vol. 9, 2013, 5 pages. |
Pedersen, Amanda, “TCT 2012: Renal denervation device makers play show and tell.” Medical Device Daily, Oct. 26, 2012, 2 pages, <http://www.medicaldevicedaily.com/servlet/com.accumedia.web.Dispatcher?next=bioWorldHeadlines_article&forceid=80880>. |
Peet, M., “Hypertension and its Surgical Treatment by bilateral supradiaphragmatic splanchnicectomy” Am J Surgery (1948) pp. 48-68. |
Renal Denervation (RDN), Symplicity RDN System Common Q&A (2011), 4 pages, http://www.medtronic.com/rdn/mediakit/RDN%20FAQ.pdf. |
Schlaich, Markus et al., “Renal Denervation in Human Hypertension: Mechanisms, Current Findings, and Future Prospects.” Curr Hypertens Rep, vol. 14, 2012, 7 pages. |
Schmid, Axel et al., “Does Renal Artery Supply Indicate Treatment Success of Renal Denervation.” Cardiovasc Intervent Radiol, vol. 36, 2013, 5 pages. |
Schmieder, Roland E. et al., “Updated ESH position paper on interventional therapy of resistant hypertension.” EuroIntervention, vol. 9, 2013, 9 pages. |
Sievert, Horst, “Novelty Award EuroPCR 2010.” Euro PCR, 2010, 15 pages. |
Stella, A., et al., “Effects of reversible renal denervation on haemodynamic and excretory functions on the ipsilateral and contralateral kidney in the cat.” Hypertension, 4:181-188 (1986). |
Stouffer, G. A. et al., “Catheter-based renal denervation in the treatment of resistant hypertension.” Journal of Molecular and Cellular Cardiology, vol. 62, 2013, 6 pages. |
Swartz, J. F., et al., “Radiofrequency endocardial catheter ablation of accessory atrioventricular pathway atrial insertion sites.” Circulation, 87: 487-499 (1993). |
Uchida, F., et al., “Effect of radiofrequency catheter ablation on parasympathetic denervation: A comparison of three different ablation sites.” PACE, 21:2517-2521 (1998). |
Verloop, W. L. et al., “Renal denervation a new treatment option in resistant arterial hypertension.” Neth Heart J., Nov. 30, 2012, 6 pages, <http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3547427/>. |
Weinstock, M., et al., “Renal denervation prevents sodium retention and hypertension in salt sensitive rabbits with genetic baroreflex impairment.” Clinical Science, 90:287-293 (1996). |
Wilcox, Josiah N., Scientific Basis Behind Renal Denervation for the Control of Hypertension, ICI 2012, Dec. 5-6, 2012. 38 pages. |
Worthley, Stephen et al., “Safety and efficacy of a multi-electrode renal sympathetic denervation system in resistant hypertension: the EnligHTN I trial.” European Heart Journal, vol. 34, 2013, 9 pages. |
Worthley, Stephen, “The St. Jude Renal Denervation System Technology and Clinical Review.” The University of Adelaide Australia, 2012, 24 pages. |
Zuern, Christine S., “Impaired Cardiac Baroflex Sensitivity Predicts Response to Renal Sympathetic Denervation in Patients with Resistant Hypertension.” Journal of the American College of Cardiology, 2013, doi: 10.1016/j.jacc.2013.07.046, 24 pages. |
Miller, Reed, “Finding a Future for Renal Denervation With Better Controlled Trials.” Pharma & Medtech Business Intelligence, Article # 01141006003, Oct. 6, 2014, 4 pages. |
Papademetriou, Vasilios, “Renal Denervation and Symplicity HTN-3: “Dubium Sapientiae Initium” (Doubt is the Beginning of Wisdom)”, Circulation Research, 2014; 115: 211-214. |
Papademetriou, Vasilios et al., “Renal Nerve Ablation for Resistant Hypertenstion: How Did We Get Here, Present Status, and Future Directions.” Circulation. 2014; 129: 1440-1450. |
Papademetriou, Vasillos et al., “Catheter-Based Renal Denervation for Resistant Hypertension: 12-Month Results of the EnligHTN I First-in-Human Study Using Multielectrode Ablation System.” Hypertension. 2014; 64: 565-572. |
Doumas, Michael et al., “Renal Nerve Ablation for Resistant Hypertension: The Dust Has Not Yet Settled.” The Journal of Clinical Hypertension. 2014; vol. 16, No. 6, 2 pages. |
Messerli, Franz H. et al. “Renal Denervation for Resistant Hypertension: Dead or Alive?” Healio: Cardiology today's Intervention, May/Jun. 2014, 2 pages. |
European European Search Report dated Jan. 30, 2013; European Application No. 12180426.4; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Feb. 28, 2013; European Application No. 12180427.2; Applcant: Medtronic Ardian Luxembourg S.a.r.l.; 4 pages. |
European Search Report dated Jan. 30, 2013; Application No. 12180428.0; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
European Search Report dated Jan. 30, 2013; Application No. 12180430.6; Applicant: Medtronic Ardian Luxembourg S.A.r.l.: 6 pages. |
European Search Report dated Jan. 30, 2013; Application No. 12180431.4; Applicant: Medtronic Ardian Luxembourg S.A.r.l.; 6 pages. |
European Search Report dated Feb. 22, 2013: Application No. 12180432.2; Applicant: Medtronic Ardian Luxembourg S.a.r.l.; 6 pages. |
Hanker et al., “Biomedical Materials and Devices,” Materials Research Society Symposium Proceedings, vol. 110, Dec. 4, 1987, Boston Massachusetts, USA, 8 pages. |
Claudine Jaboro, “An in vivo study of the biocompatibility of classic and novel device materials on the central nervous system”, (Jan. 1, 2007), ETD Collection for Wayne State University, Paper AA13310737, 2 pages. <http://digitalcommons.wayne.edu/dissertations/AA13310737>. |
Lahiri D. et al. Boron nitride nanotube reinforced polylactide-polycaprolactone copolymer composite: Mechanical properties and cytocompatibility with osteoblasts and macrophages in vitro. Acta Biomater (2010). doi: 10.1016/j.actbio.2010.02.44. |
Search Report and Written Opinion dated Jan. 23, 2012 for PCT Application No. PCT/US2011/057761. |
Search Report and Written Opinion dated Jan. 20, 2012 for PCT Application No. PCT/US2011/057756. |
Search Report and Written Opinion dated Feb. 16, 2012 for PCT Application No. PCT/US2011/057754. |
Search Report and Written Opinion dated Dec. 5, 2014 for PCT Application No. PCT/US2014/054654. |
International Search Report, PCT/US02/07661, dated Aug. 13, 2002, 5 Pages. |
International Search Report, PCT/US03/031339, dated Feb. 18, 2004, 3 Pages. |
International Search Report, PCT/US01/044977, dated Jun. 7, 2002, 6 Pages. |
Number | Date | Country | |
---|---|---|---|
20190192849 A1 | Jun 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14021838 | Sep 2013 | US |
Child | 16290565 | US |