It is believed that examples of known fuel injection systems use an injector to dispense a quantity of fuel that is to be combusted in an internal combustion engine. It is also believed that the quantity of fuel that is dispensed is varied in accordance with a number of engine parameters such as engine speed, engine load, engine emissions, etc.
It is believed that examples of known electronic fuel injection systems monitor at least one of the engine parameters and electrically operate the injector to dispense the fuel. It is believed that examples of known injectors use electromagnetic coils, piezoelectric elements, or magnetostrictive materials to actuate a valve.
It is believed that examples of known valves for injectors include a closure member that is movable with respect to a seat. Fuel flow through the injector is believed to be prohibited when the closure member sealingly contacts the seat, and fuel flow through the injector is believed to be permitted when the closure member is separated from the seat.
It is believed that examples of known injectors include a spring providing a force biasing the closure member toward the seat. It is also believed that this biasing force is adjustable in order to set the dynamic properties of the closure member movement with respect to the seat.
It is further believed that examples of known injectors include a filter for separating particles from the fuel flow, and include a seal at a connection of the injector to a fuel source.
It is believed that such examples of the known injectors have a number of disadvantages.
It is believed that examples of known injectors must be assembled entirely in an environment that is substantially free of contaminants. It is also believed that examples of known injectors can only be tested after final assembly has been completed.
According to the present invention, a fuel injector can comprise a plurality of modules, each of which can be independently assembled and tested. According to one embodiment of the present invention, the modules can comprise a fluid handling subassembly and an electrical subassembly. These subassemblies can be subsequently assembled to provide a fuel injector according to the present invention.
The present invention provides method of manufacturing a fuel injector by providing a clean room, fabricating a fuel tube assembly, an armature assembly and fabricating a seat assembly in the clean room, assembling a fuel group by inserting an adjusting tube into the fuel tube assembly; inserting a biasing element into the fuel tube assembly; inserting the armature assembly into the fuel tube assembly; connecting the seat assembly to the fuel tube assembly; and inserting the fuel group into a power group outside the clean room.
The present invention further provides a method of assembling a fuel injector by providing a clean room, fabricating a fuel tube assembly, an armature assembly and a seat assembly in the clean room; assembling the fuel group by inserting an adjusting tube into the fuel tube assembly; inserting a biasing element into the fuel tube assembly; inserting the armature assembly into the fuel tube assembly; and connecting the seat assembly to the fuel tube assembly.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate an embodiment of the invention, and, together with the general description given above and the detailed description given below, serve to explain features of the invention.
Referring to
Referring to
An armature assembly 260 is disposed in the tube assembly. The armature assembly 260 includes a first armature assembly end having a ferro-magnetic or armature portion 262 and a second armature assembly end having a sealing portion. The armature assembly 260 is disposed in the tube assembly such that the magnetic portion, or “armature,” 262 confronts the pole piece 220. The sealing portion can include a closure member 264, e.g., a spherical valve element, that is moveable with respect to the seat 250 and its sealing surface 252. The closure member 264 is movable between a closed configuration, as shown in
A seat 250 is secured at the second end of the tube assembly. The seat 250 defines an opening centered on the fuel injector's longitudinal axis A—A and through which fuel can flow into the internal combustion engine (not shown). The seat 250 includes a sealing surface surrounding the opening. The sealing surface, which faces the interior of the valve body 240, can be frustoconical or concave in shape, and can have a finished surface. An orifice plate 254 can be used in connection with the, seat 250 to provide at least one precisely sized and oriented orifice in order to obtain a particular fuel spray pattern.
With reference to
Alternatively, a crush ring 256 can be used in lieu of a lift sleeve 255 to set the injector lift height, as shown in FIG. 2C. The use of a crush ring 256 allows for quicker injector assembly when the dimensions of the inlet tube, non-magnetic shell 230, valve body 240 and armature are fixed for a large production run.
An armature assembly 260 is disposed in the tube assembly. The armature assembly 260 includes a first armature assembly end having a ferro-magnetic or armature portion 262 and a second armature assembly end having a sealing portion. The armature assembly 260 is disposed in the tube assembly such that the magnetic portion, or “armature,” 262 confronts the pole piece 220. The sealing portion can include a closure member 264, e.g., a spherical valve element, that is moveable with respect to the seat 250 and its sealing surface 252. The closure member 264 is movable between a closed configuration, as shown in
At least one axially extending through-bore 267 and at least one aperture 268 through a wall of the armature assembly 260 can provide fuel flow through the armature assembly 260. The apertures 268, which can be of any shape, preferably are axially elongated to facilitate the passage of gas bubbles. For example, in the case of a separate intermediate portion 266 that is formed by rolling a sheet substantially into a tube, the apertures 268 can be an axially extending slit defined between non-abutting edges of the rolled sheet. The apertures 268 provide fluid communication between the at least one through-bore 267 and the interior of the valve body 240. Thus, in the open configuration, fuel can be communicated from the through-bore 267, through the apertures 268 and the interior of the valve body 240, around the closure member 264, and through the opening into the engine (not shown).
In the case of a spherical valve element providing the closure member 264, the spherical valve element can be connected to the armature assembly 260 at a diameter that is less than the diameter of the spherical valve element. Such a connection would be on side of the spherical valve element that is opposite contiguous contact with the seat. A lower armature guide 257 can be disposed in the tube assembly, proximate the seat, and would slidingly engage the diameter of the spherical valve element. The lower armature guide 257 can facilitate alignment of the armature assembly 260 along the axis A—A, and while the armature tube 266 can magnetically decouple the closure member 264 from the ferro-magnetic or armature portion 262 of the armature assembly 260.
A resilient member 270 is disposed in the tube assembly and biases the armature assembly 260 toward the seat. A filter assembly 282 comprising a filter 284A and an adjusting tube 280 is also disposed in the tube assembly. The filter assembly 282 includes a first end and a second end. The filter 284A is disposed at one end of the filter assembly 282 and also located proximate to the first end of the tube assembly and apart from the resilient member 270 while the adjusting tube 280 is disposed generally proximate to the second end of the tube assembly. The adjusting tube 280 engages the resilient member 270 and adjusts the biasing force of the member with respect to the tube assembly. In particular, the adjusting tube 280 provides a reaction member against which the resilient member 270 reacts in order to close the injector valve 100 when the power group subassembly 300 is de-energized. The position of the adjusting tube 280 can be retained with respect to the inlet tube 210 by an interference fit between an outer surface of the adjusting tube 280 and an inner surface of the tube assembly. Thus, the position of the adjusting tube 280 with respect to the inlet tube 210 can be used to set a predetermined dynamic characteristic of the armature assembly 260. Alternatively, as shown in
The valve group subassembly 200 can be assembled as follows. The non-magnetic shell 230 is connected to the inlet tube 210 and to the valve body 240. The filter assembly 282 or 282′ is inserted along the axis A—A from the first inlet tube end 200A of the inlet tube 210. Next, the resilient member 270 and the armature assembly 260 (which was previously assembled) are inserted along the axis A—A from the second valve body end of the valve body 240. The filter assembly 282 or 282′ can be inserted into the inlet tube 210 to a predetermined distance so as to abut the resilient member. The position of the filter assembly 282 or 282′ with respect to the inlet tube 210 can be used to adjust the dynamic properties of the resilient member, e.g., so as to ensure that the armature assembly 260 does not float or bounce during injection pulses. The seat 250 and orifice plate 254 are then inserted along the axis A—A from the second valve body end of the valve body 240. At this time, a probe can be inserted from either the inlet end or the orifice to check for the lift of the injector. If the injector lift is correct, the lift sleeve 255 and the seat 250 are fixedly attached to the valve body 240. It should be noted here that both the seat 250 and the lift sleeve 255 are fixedly attached to the valve body 240 by known conventional attachment techniques, including, for example, laser welding, crimping, and friction welding or conventional welding, and preferably laser welding. The seat 250 and orifice plate 254 can be fixedly attached to one another or to the valve body 240 by known attachment techniques such as laser welding, crimping, friction welding, conventional welding, etc.
Referring to
According to a preferred embodiment, the magnetic flux generated by the electromagnetic coil 310 flows in a circuit that comprises the pole piece 220, a working air gap between the pole piece 220 and the magnetic armature portion 262, a parasitic air gap between the magnetic armature portion 262 and the valve body 240, the housing 330, and the flux washer 334.
The coil group subassembly 300 can be constructed as follows. As shown in
Alternatively, as shown in
As is particularly shown in
The first injector end 238 can be coupled to the fuel supply of an internal combustion engine (not shown). The O-ring 290 can be used to seal the first injector end 238 to the fuel supply so that fuel from a fuel rail (not shown) is supplied to the tube assembly, with the O-ring 290 making a fluid tight seal, at the connection between the injector 100 and the fuel rail (not shown).
In operation, the electromagnetic coil 310 is energized, thereby generating magnetic flux in the magnetic circuit. The magnetic flux moves armature assembly 260 (along the axis A—A, according to a preferred embodiment) towards the integral pole piece 220, i.e., closing the working air gap. This movement of the armature assembly 260 separates the closure member 264 from the seat 250 and allows fuel to flow from the fuel rail (not shown), through the inlet tube 210, the through-bore 267, the apertures 268 and the valve body 240, between the seat 250 and the closure member 264, through the opening, and finally through the orifice disk 254 into the internal combustion engine (not shown). When the electromagnetic coil 310 is de-energized, the armature assembly 260 is moved by the bias of the resilient member 270 to contiguously engage the closure member 264 with the seat 250, and thereby prevent fuel flow through the injector 100.
Referring to
To ensure that particulates from the manufacturing environment will not contaminate the fuel group subassembly, the process of fabricating the fuel group subassembly is preferably performed within a “clean room.” “Clean room” here means that the manufacturing environment is provided with an air filtration system that will ensure that the particulates and environmental contaminants will be removed from the clean room.
Despite the use of a clean room, however, particulates such as polymer flashing and metal burrs may still be present in the partially assembled fuel group. Such particulates, if not removed from the fuel injector, may cause the completed injector to jam open, the effects, which may include engine inefficiency or even a hydraulic lock of the engine. To prevent such a scenario, the process can utilizes at least a washing process after a first leak test and a prior to a final flush process during break-in (or bum-in) of the injector.
To set the lift, i.e., ensure the proper injector lift distance, there are at least four different techniques that can be utilized. According to a first technique, a crush ring that is inserted into the valve body 240 between the lower guide 257 and the valve body 240 can be deformed. According to a second technique, the relative axial position of the valve body 240 and the nonmagnetic shell 230 can be adjusted before the two parts are affixed together. According to a third technique, the relative axial position of the non-magnetic shell 230 and the pole piece 220 can be adjusted before the two parts are affixed together. And according to a fourth technique, a lift sleeve 255 can be displaced axially within the valve body 240. If the lift sleeve technique is used, the position of the lift sleeve can be adjusted by moving the lift sleeve axially. The lift distance can be measured with a test probe. Once the lift is correct, the sleeve is welded to the valve body 240, e.g., by laser welding. Next, the valve body 240 is attached to the inlet tube 210 assembly by a weld, preferably a laser weld. The assembled fuel group subassembly 200 is then tested, e.g., for leakage.
As is shown in
The preparation of the power group sub-assembly, which can include (a) the housing 330, (b) the bobbin assembly including the terminals 320, (c) the flux washer 334, and (d) the overmold 340, can be performed separately from the fuel group subassembly.
According to a preferred embodiment, wire 312 is wound onto a pre-formed bobbin 314 with at least one electrical contact 322 molded thereon. The bobbin assembly is inserted into a preformed housing 330. To provide a return path for the magnetic flux between the pole piece 220 and the housing 330, flux washer 334 is mounted on the bobbin assembly. A pre-bent terminal 320 having axially extending connector portions 324 are coupled to the electrical contact portions 322 and brazed, soldered welded, or preferably resistance welded. The partially assembled power group assembly is now placed into a mold (not shown). By virtue of its pre-bent shape, the terminals 320 will be positioned in the proper orientation with the harness connector 321 when a polymer is poured or injected into the mold. Alternatively, two separate molds (not shown) can be used to form a two-piece overmold as described with respect to FIG. 3A. The assembled power group subassembly 300 can be mounted on a test stand to determine the solenoid's pull force, coil resistance and the drop in voltage as the solenoid 310 is saturated.
The inserting of the fuel group subassembly 200 into the power group subassembly 300 operation, shown in
The inserting operation can be accomplished by one of two methods: “top-down” or “bottom-up.” According to the former, the power group subassembly 300 is slid downward from the top of the fuel group subassembly 200, and according to the latter, the power group subassembly 300 is slid upward from the bottom of the fuel group subassembly 200. In situations where the inlet tube 210 assembly includes a flared first end, bottom-up method is required. Also in these situations, the O-ring 290 that is retained by the flared first end can be positioned around the power group subassembly 300 prior to sliding the fuel group subassembly 200 into the power group subassembly 300. After inserting the fuel group subassembly 200 into the power group subassembly 300, these two subassemblies are affixed together, e.g., by welding, such as laser welding. According to a preferred embodiment, the overmold 340 includes an opening 360 that exposes a portion of the housing 330. This opening 360 provides access for a welding implement to weld the housing 330 with respect to the valve body 240. Of course, other methods or affixing the subassemblies with respect to one another can be used. Finally, the O-ring 290 at either end of the fuel injector can be installed.
The method of assembly of the preferred embodiments, and the preferred embodiments themselves, are believed to provide manufacturing advantages and benefits. For example, because of the modular arrangement only the valve group subassembly is required to be assembled in a “clean” room environment. The power group subassembly 300 can be separately assembled outside such an environment, thereby reducing manufacturing costs. Also, the modularity of the subassemblies permits separate pre-assembly testing of the valve and the coil assemblies. Since only those individual subassemblies that test unacceptable are discarded, as opposed to discarding fully assembled injectors, manufacturing costs are reduced. Further, the use of universal components (e.g., the coil/bobbin unit, non-magnetic shell 230, seat 250, closure member 264, filter/retainer assembly 282, etc.) enables inventory costs to be reduced and permits a “just-in-time” assembly of application specific injectors. Only those components that need to vary for a particular application, e.g., the terminal 320 and inlet tube 210 need to be separately stocked. Another advantage is that by locating the working air gap, i.e., between the armature assembly 260 and the pole piece 220, within the electromagnetic coil, the number of windings can be reduced. In addition to cost savings in the amount of wire 312 that is used, less energy is required to produce the required magnetic flux and less heat builds-up in the coil (this heat must be dissipated to ensure consistent operation of the injector). Yet another advantage is that the modular construction enables the orifice disk 254 to be attached at a later stage in the assembly process, even as the final step of the assembly process. This just-in-time assembly of the orifice disk 254 allows the selection of extended valve bodies depending on the operating requirement. Further advantages of the modular assembly include out-sourcing construction of the power group subassembly 300, which does not need to occur in a clean room environment. And even if the power group subassembly 300 is not out-sourced, the cost of providing additional clean room space is reduced.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations, and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it have the full scope defined by the language of the following claims, and equivalents thereof
Number | Name | Date | Kind |
---|---|---|---|
3567135 | Gebert | Mar 1971 | A |
4342427 | Gray | Aug 1982 | A |
4520962 | Momono et al. | Jun 1985 | A |
4552312 | Ohno et al. | Nov 1985 | A |
4597558 | Hafner et al. | Jul 1986 | A |
4662567 | Knapp | May 1987 | A |
4875658 | Asai | Oct 1989 | A |
4915350 | Babitzka et al. | Apr 1990 | A |
4944486 | Babitzka | Jul 1990 | A |
4946107 | Hunt | Aug 1990 | A |
4984744 | Babitzka et al. | Jan 1991 | A |
4991557 | DeGrace et al. | Feb 1991 | A |
5038738 | Hafner et al. | Aug 1991 | A |
5054691 | Huang et al. | Oct 1991 | A |
5058554 | Takeda et al. | Oct 1991 | A |
5076499 | Cranford | Dec 1991 | A |
5127585 | Mesenich | Jul 1992 | A |
5167213 | Bassler et al. | Dec 1992 | A |
5190221 | Reiter | Mar 1993 | A |
5211341 | Wieczorek | May 1993 | A |
5236174 | Vogt et al. | Aug 1993 | A |
5263648 | Vogt et al. | Nov 1993 | A |
5275341 | Romann et al. | Jan 1994 | A |
5340032 | Stegmaier et al. | Aug 1994 | A |
5462231 | Hall | Oct 1995 | A |
5494224 | Hall et al. | Feb 1996 | A |
5494225 | Nally et al. | Feb 1996 | A |
5520151 | Gras et al. | May 1996 | A |
5544816 | Nally et al. | Aug 1996 | A |
5566920 | Romann et al. | Oct 1996 | A |
5580001 | Romann et al. | Dec 1996 | A |
5678767 | Rahbar | Oct 1997 | A |
5692723 | Baxter et al. | Dec 1997 | A |
5718387 | Awarzamani et al. | Feb 1998 | A |
5732888 | Maier et al. | Mar 1998 | A |
5755386 | Lavan et al. | May 1998 | A |
5769391 | Noller et al. | Jun 1998 | A |
5769965 | Liedtke et al. | Jun 1998 | A |
5775355 | Maier et al. | Jul 1998 | A |
5775600 | Wildeson et al. | Jul 1998 | A |
5875975 | Reiter et al. | Mar 1999 | A |
5901688 | Balsdon et al. | May 1999 | A |
5915626 | Awarzamani et al. | Jun 1999 | A |
5927613 | Koyanagi et al. | Jul 1999 | A |
5937887 | Baxter et al. | Aug 1999 | A |
5944262 | Akutagawa et al. | Aug 1999 | A |
5975436 | Reiter et al. | Nov 1999 | A |
5979411 | Ricco | Nov 1999 | A |
5979866 | Baxter et al. | Nov 1999 | A |
5996227 | Reiter et al. | Dec 1999 | A |
5996910 | Takeda et al. | Dec 1999 | A |
5996911 | Gesk et al. | Dec 1999 | A |
6003790 | Fly | Dec 1999 | A |
6012655 | Maier et al. | Jan 2000 | A |
6019128 | Reiter | Feb 2000 | A |
6027049 | Stier | Feb 2000 | A |
6039271 | Reiter | Mar 2000 | A |
6039272 | Ren et al. | Mar 2000 | A |
6045116 | Willke et al. | Apr 2000 | A |
6047907 | Hornby | Apr 2000 | A |
6076802 | Maier | Jun 2000 | A |
6079642 | Maier | Jun 2000 | A |
6089467 | Fochtman et al. | Jul 2000 | A |
6089475 | Reiter et al. | Jul 2000 | A |
6168098 | Brinn, Jr. | Jan 2001 | B1 |
6186421 | Wahba et al. | Feb 2001 | B1 |
6186472 | Reiter | Feb 2001 | B1 |
6201461 | Eichendorf et al. | Mar 2001 | B1 |
6264112 | Landschoot et al. | Jul 2001 | B1 |
6328232 | Haltiner, Jr. et al. | Dec 2001 | B1 |
6454192 | Perry | Sep 2002 | B2 |
6499668 | Dallmeyer et al. | Dec 2002 | B2 |
6550690 | Dallmeyer et al. | Apr 2003 | B2 |
20010017327 | Fochtman | Aug 2001 | A1 |
20010048091 | Enomoto et al. | Dec 2001 | A1 |
Number | Date | Country |
---|---|---|
197 24 075 | Dec 1998 | DE |
0 781 917 | Jul 1997 | EP |
1 219 815 | Jul 2002 | EP |
1 219 820 | Jul 2002 | EP |
WO 9805861 | Feb 1998 | WO |
WO 9815733 | Apr 1998 | WO |
WO 9966196 | Dec 1999 | WO |
WO 0006893 | Feb 2000 | WO |
WO 0043666 | Jul 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20020138983 A1 | Oct 2002 | US |