The present invention relates to a multi-nozzle ink jet head using piezo elements and a manufacturing method thereof, and in particular to a multi-nozzle ink jet head for reducing mechanical interference between adjacent elements and a manufacturing method thereof.
A pressure chamber forming member (dry film resist) 103 and a nozzle forming member 105, which are prepared separately, are then joined on, with positional alignment being carried out with the individual electrodes 100 of the bimorph structures. After that, the MgO substrate is removed by etching, thus completing the multi-nozzle head plate 10.
Regarding the operation of this head 10, ink is fed to the head 10 from an ink tank, not shown, and then within the head 10, the ink is fed through a common channel and ink supply channels to pressure chambers 104 and nozzles 106. Driving signals are applied to the individual electrodes (the electrodes corresponding to the respective nozzles) 100 from a driving circuit, whereupon, due to the piezoelectric effects of the piezo 101, the diaphragm 102 bends towards the inside of the pressure chamber 104 as shown by the dashed line in
Regarding the deformation during driving shown by the dashed line in
To make this bending act so that the ink in the pressure chamber 104 flows, it is necessary to fix the bimorph structure to the pressure chamber 104. As a result, it becomes possible for the surface of the diaphragm 102, which bends with the fixed part as a reference position, to change the volume of the pressure chamber 104, whereupon ink is ejected.
As shown in the schematic drawing of
This reduces the rigidity of the fixing parts 103 of the diaphragm 102, and hence the fixing parts 103 no longer function sufficiently as fixed ends of the diaphragm 102. As a result, in the case of a structure in which adjacent pressure chambers 104 are covered by the same diaphragm 102, when a single part of the diaphragm bends (single-element driving), the part of the diaphragm for the adjacent element is pulled in in the direction A of the bending, i.e. it is difficult for local bending of only the driven part to occur. Moreover, as shown in
In this way, mechanical driving interference (cross talk) occurs in which the bending of the diaphragm 102 differs according to the driving state (single-element driving or multi-element driving). In the ink jet head, this manifests itself as fluctuations in the ink flight characteristics, resulting in a drop in printing quality.
Moreover, a technique is known for dividing a single diaphragm 102 into parts for each of the pressure chambers 104, but with thin pressure chamber walls 103, it is very difficult to secure the reliability of the diaphragm fixing parts (the structure that functions as fixed ends for the diaphragm and also seals the pressure chambers) if the nozzle density is high. Moreover, even if the diaphragm is divided, the strain energy that the piezos 101 exert on the fixed ends of the diaphragm 102 will not change, and hence the energy transmitted to adjacent elements via the pressure chamber walls 103 will not change. As a result, in a high-density head in which the pressure chamber walls are thin, dividing the diaphragm is not an effective measure for solving the problem, and cross talk cannot be prevented.
It is an object of the present invention to provide a multi-nozzle ink jet head and a manufacturing method thereof for suppressing cross talk even in the case of a high nozzle density.
It is another object of the present invention to provide a multi-nozzle ink jet head and a manufacturing method thereof for suppressing strain energy in the diaphragm due to the generated force of the piezos from acting on the fixing parts.
It is yet another object of the present invention to provide a multi-nozzle ink jet head and a manufacturing method thereof for suppressing cross talk, and increasing the amount of displacement of the bimorph parts.
To attain these objects, a multi-nozzle ink jet head of the present invention has a head substrate in which are formed a plurality of nozzles and a plurality of pressure chambers, a diaphragm that covers the plurality of adjacent pressure chambers, a plurality of piezo elements provided on the diaphragm that are provided in correspondence with the pressure chambers, and a plurality of individual electrodes provided respectively on the piezo elements, wherein the cross-section of the diaphragm has linear parts provided in regions of the piezo elements, and non-linear parts provided between the linear parts and the walls of the pressure chambers.
In the present invention, the degree of flatness of the diaphragm is reduced between adjacent driving elements, so that when the part of the diaphragm at one of the driving elements is displaced, it will be difficult for tensile force to be transmitted to the part of the diaphragm at the other driving element. As a result, the amount of displacement is prevented from being different between single-element driving and multi-element driving, and hence fluctuations in ink flight characteristics are suppressed. To this purpose, in the present invention, the cross-section of the diaphragm is made to have a linear shape in the regions of the piezo elements of the bimorph drivers, and a non-linear shape between the linear parts and the pressure chamber walls. The non-linear shape suppresses strain energy generated in the linear parts of the diaphragm from acting on the pressure chamber walls. As a result, transmission of energy to adjacent elements can be suppressed, and hence cross talk can be suppressed. Moreover, because the regions of the diaphragm at the piezo elements are made to have a linear shape, the amount of displacement of the bimorph drivers is not reduced.
Moreover, with the multi-nozzle ink jet head of the present invention, through the non-linear parts of the diaphragm having a shape such that strain energy in the diaphragm due to the piezo elements is suppressed from being transmitted to the walls of the pressure chambers, cross talk can be suppressed.
With the multi-nozzle ink jet head of the present invention, by making the non-linear parts of the diaphragm have a curved or crank shape, a diaphragm having a cross-sectional shape such that transmission of strain energy is suppressed can easily be produced.
With the multi-nozzle ink jet head of the present invention, by forming the non-linear parts of the diaphragm over the whole length (on the longitudinal axis direction) of the pressure chambers, cross talk to adjacent elements can be completely suppressed.
With the multi-nozzle ink jet head of the present invention, by making the non-linear parts of the diaphragm have a shape that is convex in the direction in which the diaphragm bends due to the piezo elements, it becomes such that the diaphragm bends easily, and the amount of displacement of the bimorph drivers can be increased.
With the multi-nozzle ink jet head of the present invention, through the diaphragm being constituted from a diaphragm common to the plurality of pressure chambers, the bimorph drivers can be fixed reliably even in the case of thin pressure chamber walls, and hence cross talk can be suppressed while maintaining the displacement characteristics of the bimorph drivers.
A method of manufacturing a multi-nozzle ink jet head of the present invention has a step of forming a plurality of individual electrodes on a substrate, a step of forming a plurality of piezo elements respectively on the individual electrodes, a step of forming, on the substrate, an insulating layer having rising parts between the regions in which the piezo elements are provided and the walls of the pressure chambers, a step of forming a diaphragm layer on the insulating layer, and a step of forming, on the diaphragm layer, a head substrate in which are formed a plurality of nozzles and a plurality of pressure chambers, such that the piezo elements are respectively positioned at the pressure chambers.
With this form, because rising parts are formed between regions of the insulating layer where the piezo elements are provided and the walls of the pressure chambers, the linear parts and the non-linear parts of the diaphragm can be formed easily.
Moreover, with the method of manufacturing a multi-nozzle ink jet head of the present invention, by making the step of forming the piezo elements comprise a step of forming piezo elements having tapered parts at both ends, and making the step of forming the insulating layer comprise a step of forming an insulating layer having the rising parts at the tapered parts of the piezo elements, cross talk can be suppressed without reducing the width of the piezo elements. Cross talk can thus be suppressed without reducing the amount of displacement of the bimorph drivers.
Furthermore, with the method of manufacturing a multi-nozzle ink jet head of the present invention, by making the step of forming the diaphragm layer comprises a step of forming a diaphragm layer common to the plurality of pressure chambers, the bimorph drivers can be fixed reliably even in the case of thin pressure chamber walls, and hence cross talk can be suppressed while maintaining the displacement characteristics of the bimorph drivers.
Other objects and forms of the present invention will become apparent from the following drawings and embodiments.
The recording medium 8 is conveyed in the direction of the head 1 by a paper-feeding roller 5 and a pressing roller 4, and is conveyed in the direction of a discharged paper receiver 9 by a paper-discharging roller 7 and a notched pressing roller 6. Through the conveyance of the recording medium 8 in the secondary scanning direction and the movement of the carriage 3 in the principal scanning direction, the head 1 carries out printing over the whole of the recording medium 8.
As shown in
Regarding the method of producing the head, a plurality of individual electrodes 20 are formed by sputtering on an MgO substrate, not shown, the piezos 19 are further laminated on to a thickness of a few μm, and pattern formation is carried out. After this, a metal (for example Cr) that will become the common electrode cum diaphragm 18 is formed to a few μm over the whole surface, thus forming the bimorph structures.
A pressure chamber forming member (dry film resist) 14 and nozzle forming members 10 and 11, which are prepared separately to the above, are then joined on, with positional alignment being carried out with the individual electrodes 20 of the bimorph structures. After that, the MgO substrate is removed by etching, thus completing the multi-nozzle head plate 1.
Regarding the operation of this head 1, ink is fed to the head 1 from the ink tank 2 of
Regarding the deformation during driving shown by the dashed line in
To make this bending act so that the ink in the pressure chamber 15 flows, it is necessary to fix the bimorph structure to the pressure chamber 15. As a result, it becomes possible for the surface of the diaphragm 18, which bends with the fixed part as a reference position, to change the volume of the pressure chamber 15, whereupon ink is ejected. Specifically, walls 14 forming the pressure chamber 15 fix the diaphragm 18.
As shown in
As shown in
The non-linear irregular cross-section parts 18-2 of the diaphragm 18 are formed in the width direction (minor axis direction) of the pressure chambers. Moreover, the non-linear irregular cross-section parts 18-2 of the diaphragm 18 are formed uniformly over the whole length (in the longitudinal axis direction) of the pressure chambers 15. The piezos 19 are thin-film piezos of thickness 5 μm or less. Each non-linear irregular cross-section part 18-2 of the diaphragm 18 is provided in a region where the diaphragm 18 bends during driving, such that not all of the non-linear irregular cross-section part 18-2 is contained in the joining part of the diaphragm 18 with the pressure chamber wall 14 (the diaphragm fixing part).
U=Un+Uf+Um+Umn
Here, Un is the strain energy due to the axial force N,
Uf is the strain energy due to the shear force F,
Um is the strain energy due to the bending moment M, and
Umn is the strain energy due to the strain of the bending moment M and the axial force N.
Of these strain energy components, Um and Umn, which arise through the bending moment M, and Uf, which arises through the shear force F, are expended by the deformation of the non-linear part 18-2. Relative to the direction of the piezo generated force acting on the diaphragm 18 (here, contraction in the d31 direction), the bending moment M and the shear force F are generated due to a shape where the diaphragm does not lie on the line of extension in this direction, i.e. due to the non-linear part 18-2.
Moreover, by providing the convex portion of the non-linear part 18-2 in the direction in which the bimorph element is deformed, the amount of deformation of the bimorph element is increased. That is, the deformation of the non-linear part 18-2 acts in a direction so as to make the radius of curvature ρ of the non-linear part 18-2 larger, and as a result the amount of deformation of the bimorph element is increased. From an opposite standpoint, the driving voltage required to obtain a certain prescribed displacement can be reduced.
In the case of a conventional diaphragm that has a purely linear cross-section, on the other hand, as shown in
Furthermore, the present invention is effective even if applied to a diaphragm that is divided into a plurality of diaphragms. That is, when the diaphragm is divided into a plurality of diaphragms by the pressure chamber walls, then force will not act directly for each of the diaphragms, but because each of the diaphragms is fixed to the same pressure chamber wall, there will be an interaction between adjacent elements via the fixing to this wall, and hence cross talk will occur. In particular, this will be marked in the case that the pressure chamber walls are thin and the rigidity is low.
With the present invention, because the strain energy acting on the fixing parts is itself low compared with the strain energy U due to the piezo generated force fp, the energy transmitted to adjacent elements via the pressure chamber walls becomes low, and hence cross talk can be reduced yet further, even in the case of a divided diaphragm.
As a result, in the case of a structure having an increased nozzle density, i.e. a structure in which the diaphragm fixing parts are narrow, mechanical cross talk between adjacent elements can be suppressed, while securing the diaphragm fixing. In particular, in the case of a bimorph diaphragm structure using thin-film piezos of thickness 5 μm or less as actuators, the effects are marked, contributing greatly to increasing the nozzle density and making the head smaller.
Moreover, it is desired to improve the printing quality (resolution, speed) of print recording apparatuses, and in the case of an ink jet printer, this can be realized by making the ink particles smaller (making the dots finer) and increasing the number of nozzles. A bimorph actuator using a thin-film piezo is considered to be extremely promising as the driving element required in this case. Such a thin-film piezo is formed thinly and has a high piezoelectric constant, and hence bending is easy at a low driving voltage, and achieving high integration is made easy through semiconductor manufacturing methods.
Next, a method of manufacturing the above head will be described using
(1) Individual electrodes 20 are formed in the required shape by Pt sputter patterning on an MgO substrate 30.
(2) A piezo layer 19 is formed over the whole of (1) by sputtering.
(3) A resist pattern is formed on the piezo layer 19 of (2) by photolithography, and then the piezo layer 19 is divided by chemical etching such that piezos are left behind on the individual electrode parts. At this time, the piezo edge cross-section becomes a tapered shape through the chemical etching. The piezo width is 90 (μm) on the individual electrode side, and 70 (μm) on the diaphragm side.
(4) A photosensitive polyimide (PI) 31 is spin-coated over the whole of (3). The thickness of the PI 31 is t1 (μm).
(5) The PI (insulating layer) 31 of (4) is subjected to exposure and development. The PI 31 is left behind in the regions where the diaphragm cross-section is to be made curved. Here, as shown in the drawing, the portions of the PI on the tapered edge faces of the piezos 19 are left behind.
(6) A photosensitive polyimide (PI) 32 is spin-coated over the whole of (5), and exposure is carried out. At this time, the newly applied PI 32 is formed to a thickness of 1 μm on the upper surface of the PI 31 that was produced in (5), and moreover the surface of the applied PI 32 becomes smooth due to surface tension. The thickness of the PI 32 is t2 (μm).
(7) A certain required amount is removed from the surface of the PI 32 by ICP etching (using a high-frequency inductively coupled type plasma apparatus). As a result, the curved shape is formed. The amount removed is t3 (μm).
(8) A common electrode cum diaphragm 18 is formed over the whole of (7) by Cr sputtering.
(9) Pressure chamber wall base parts 14-1 are formed on (8) by dry film resist patterning. Here, the ink supply channels 17 are formed by laminate patterning of the dry film resist.
(10) Pressure chamber wall base parts 14-2 are formed by dry film resist patterning on a nozzle substrate (a laminated plate of a nozzle plate 10 and a lead-through channel plate 11) that has been produced separately.
(11) (9) and (10) are aligned, joining is carried out with heating, and then the MgO 30 of the piezo substrate is removed by etching, thus completing the manufacture.
Individual electrodes: width 90 (μm), thickness 0.1 (μm)
Thin film piezos: piezoelectric constant d31 100 E-12 (m/V), width 70˜90 (μm), thickness 3 (μm)
Pressure chambers: length 1700 (μm), width 100 (μm), depth 100 (μm)
Nozzle pitch: 169 (μm) (=150 dpi)
Nozzles: length 20 (μm), diameter 20 (μm)
Lead-through channels: length 50 (μm), diameter 85 (μm)
Here, t1, t2 and t3 shown in
From the above, it is clear that by making the diaphragm 18 not flat, but rather by making part of the cross-section thereof be a non-linear irregular shape 18-2 such as a curve as in the examples, mechanical cross talk between adjacent elements can be suppressed compared with conventionally, and it can be seen that this will contribute to suppressing variation in ink flight characteristics (particle speed, particle volume), which is an object of the present patent.
Even if the crosstalk for the shape of the conventional example is within the range of fluctuation for the target product specifications, by using the shape of the present patent, the fluctuation thus suppressed can be transferred over to other processing fluctuation that arises during manufacturing (for example, the processing precision of the nozzle diameter can be relaxed), and hence using the shape of the present patent contributes to making the manufacturing easier.
Moreover, in
The present invention was described through examples above; however, various modifications are possible within the scope of the purport of the present invention, and these are not excluded from the scope of the present invention.
Because non-linear parts are provided in the diaphragm, in the case of a structure having a high nozzle density, i.e. a structure in which the diaphragm fixing parts are narrow, mechanical cross talk between adjacent elements can be suppressed, while securing the fixing of the diaphragm. Moreover, in the case that the diaphragm is used as an electrode for the driving elements, by making the non-linear irregular cross-section parts have a shape that goes away from the driving elements (electrodes that form a pair), electrical shorting is prevented between the end electrodes of the driving element parts that form a finer structure. In particular, in the case of a bimorph diaphragm structure using thin-film piezos of thickness 5 μm or less as actuators, these effects are marked, contributing greatly to increasing the nozzle density and making the head smaller.
This application is a divisional application of prior application Ser. No. 10/253,821, filed on Sep. 25, 2002, and now U.S. Pat. No. 6,921,159, which is a continuation of international application PCT/JP00/01882, filed on Mar. 27, 2000.
Number | Name | Date | Kind |
---|---|---|---|
5471232 | Hosono et al. | Nov 1995 | A |
5784085 | Hosono et al. | Jul 1998 | A |
6217158 | Kanaya et al. | Apr 2001 | B1 |
6584660 | Shimogawa et al. | Jul 2003 | B1 |
Number | Date | Country |
---|---|---|
58-108163 | Jun 1983 | JP |
5-286132 | Nov 1983 | JP |
1-204748 | Aug 1989 | JP |
09-295402 | Nov 1997 | JP |
2000-006395 | Jan 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20050168538 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10253821 | Sep 2002 | US |
Child | 11101388 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP00/01882 | Mar 2000 | US |
Child | 10253821 | US |