Not applicable.
The present invention relates generally to a method of making a railcar. More specifically, the invention relates to a method of manufacturing a multiple axle railcar having cambered span bolsters.
When a railway transports oversized or heavy cargo, it must account for the loading of each axle supporting the weight of the oversized load. To accommodate the excessive load, railways utilize railcars having additional axles compared to standard-capacity railcars. With the load distributed over a greater number of axles, the weight carried by each individual axle is reduced. However, railcar manufacturers must account for the turning performance of the multiple axle railcar, which can be diminished as the number of axles increases. Typically, multiple axle railcars have groups of truck assemblies connected by a span bolster, with a bolster located at each end of the railcar. The span bolster, in turn, attaches to the rail car at a pivot point near the center of the bolster. In this configuration, a multiple axle railcar is able to perform similarly to a standard railcar with a single pivoting truck at each end of the railcar.
An example of such a railcar is a twelve-axle rail vehicle manufactured by Kasgro Rail Corp. and disclosed in U.S. Pat. No. 5,802,981. The twelve-axle railcar has three sets of trucks, or six axles, at each end of the vehicle. The three trucks at each end of the railcar are mounted to a common carrier that distributes the load, otherwise known as a span bolster. The benefit of twelve-axle railcar, in addition to its load carrying capability, is improved turning performance resulting from the fact that one span bolster can pivot independent of the other.
The increased load carrying capability of the twelve-axle railcar, or any other railcar having additional axles, is the result of evenly distributing the weight of the cargo to maintain reasonable wheel and axle loadings. While twelve-axle railcars improve loading, situations can exist where there is a significant variance between each of the axles. For example, the center truck of a three truck set will often have a higher loading than each of the outboard trucks as it is located below the attachment point to the rail car body. Having equal loading on each axle provides numerous benefits, such as improved safety of operation and reduced maintenance costs. It would therefore be advantageous to develop a method of manufacturing a multiple axle railcar having a span bolster in a manner that minimizes manufacturing variances and promotes consistent loading across each axle.
Disclosed is a method of manufacturing a multiple axle railcar having a span bolster capable of evenly distributing a load. The manufacturing method minimizes variances that can be introduced during fabrication or welding operations. The elimination of variances leads to more consistent weight distribution in the completed railcar. Moreover, to improve weight distribution among the multiple axles, the components of the span bolster are fabricated with a camber so that the entire span bolster exhibits a slight arc, with the peak near the point where the bolster attaches to the main body of the railcar. The result of creating a camber is that the span bolster tends to flatten under load, equalizing the load among the axles supported by the bolster. The manufacturing process utilizes a jig, which is adjustable depending on the load rating of the railcar being built, to accurately set the desired camber.
The method of manufacturing a railcar having a cambered span bolster 502 begins with fabrication of the span bolster 502. Construction of the span bolster 502 begins with fabrication of the longitudinal supports 401 and 402, which are shown in
In the preferred embodiment, as shown in
To evenly distribute the load on each of the six axles, the span bolster 502 is manufactured with a slight camber. More specifically, area of the bolster 502 near its center (the area of the bolster 502 at the receiver 202) is raised compared to the ends of the bolster 502. That is, the span bolster is fabricated with a slight arc which is convex in shape. It is not necessary for the peak of the camber to be located in the center of the bolster 502. Rather, load equalization among the axles is realized when the peak is located near the rail car body receiver 202. Since the load of the railcar is concentrated at the receiver 202, this area of the span bolster 502 experiences the greatest force and, as a result, the greatest deflection from its unloaded shape. As an example, a bolster 502 without a camber would tend to sag under the receiver 202 as the load-induced deflection causes the receiver 202 area to drop below the horizontal plane of the bolster 502.
The amount of camber required for the span bolster 502 is determined based on the specifications of the railcar, such as the length of the bolster 502, the number of axles, trucks, and bolsters 502 being used, the size of material used to create the bolster 502, and the load expected to be carried by the railcar, to name a few. In the preferred embodiment, the camber is ½ inch for a three truck bolster 502 approximately 22 feet long. In this preferred embodiment, the center truck assembly is mounted below the receiver 202 and the two outboard truck assemblies 101 and 301 are mounted towards the end of the bolster 502. As can be seen in
During the fabrication of longitudinal supports 401 and 402, the pre-determined camber is cut into the profile of each support 401 and 402. The longitudinal stringers 401 and 402 are beam-like members spanning substantially the length of the bolster 502, with a height from a few to several inches, depending on the load to be carried. As shown in
Cutting the stringers 401 and 402 can be accomplished by any typical method, such as using a plasma, waterjet, laser, or oxygen fuel cutter. However, in the preferred embodiment, longitudinal supports 401 and 402, as well as the other components, are cut from flat steel using a computer-controlled cutting machine. As will be appreciated by one skilled in the art, a computer-controlled cutter offers a higher level of accuracy and precision. For example, in the preferred embodiment the tolerance for the peak of the camber is plus ¼ of an inch and the tolerances for other components are plus or minus 1/16 of an inch for lengths and plus or minus ½ of a degree for angles. Over the span of a bolster 502 having a length of 20 feet or more, ¼ of an inch offers very little room for error.
Once longitudinal supports 401 and 402 are complete and within tolerances, truck mounting assemblies 101, 201, and 301 are fabricated. A portion of truck mounting assemblies 101, 201 and 301 are welded in between longitudinal supports 401 and 402, where the supports 401 and 402 are arranged in a parallel orientation and run substantially the length of the span bolster 502. In alternative embodiments, a single longitudinal support or additional supports can be used. The remainder of the truck mounting assemblies is positioned below the longitudinal supports 401 and 402.
As shown in
As shown in
Plates 206 and 304, for the center 201 and outboard 301 truck assemblies, are attached in a similar process. As further shown in
The outboard truck mounting assembly is fabricated in a similar manner and is shown in
At this stage of the manufacturing process, longitudinal supports 401 and 402 were cut and fabricated. Truck mounting assemblies 101, 201, and 301 were fabricated and attached to supports 401 and 402. The next step of the manufacturing process is to align and weld the combined truck mounting assemblies and longitudinal supports structure to top plate 403 and bottom plate 404.
As previously indicated, the entire bolster is cambered. As such, bottom plate 404 requires a camber to match the arced profile cut into longitudinal supports 401 and 402. Bottom plate 404 can be bent in a press to create the required profile. Alternatively, in the preferred embodiment, bottom plate 404, which is cut from flat stock and still has a flat profile, is placed in a jig 600 that substantially matches the camber of the bottom surface 406 of longitudinal supports 401 and 402. That is, the jig 600 used with the bottom plate 404 will have a convex shape. The jig 600 has an advantage of keeping the parts in proper alignment during the welding process, which can cause distortion as the metal heats and cools.
The jig 600 comprises a series of parallel flat bars that span the width of bottom plate 404. The bars are constructed of plate steel and are spaced every several inches to every few feet along the length of the bolster. Stated differently, a first bar is located near the inboard truck mounting assembly 101, a second bar is placed parallel to the first bar a few inches away from the first bar, and additional bars are positioned along the length to the outboard truck mounting assembly 301. Alternatively, other supports that can support the weight of the components can be used, such as pipes or monolithic forms. In the preferred embodiment, the parallel bars have adjustable heights so that the camber can be adjusted depending on the load rating of the railcar. For a camber of ½ of an inch, the center bar, which aligns with the center truck mounting assembly 201, has a height of ½ inch greater than the bars on each end of the jig 600. Intervening bars are have a height lower than the center bar, but greater than the end bar. With a jig 600 of this configuration, the amount of camber and the degree of taper from the peak to the ends can be adjusted prior to placing the bottom plate 404 in the jig 600.
After the jig 600 is set for the appropriate camber and bottom plate 404 is placed in the jig 600, the combined longitudinal support and truck assembly component is placed on top of bottom plate 404, which is resting on the jig 600. The weight of the steel begins deforming the bottom plate 404 to the shape of the jig 600. However, additional force is often required and can be supplied by additional weight, a press, clamps, or other means. In the preferred embodiment, the jig 600 rests on a table and several chains are positioned across the width of the table. Each chain is anchored to the floor or to the table and a winch tensions the chain. Thus, the chain supplies a downward force to the components. Alternatively, to equalize the pressure of the chain on the components, pulleys are placed at the terminal ends of a bar and the bar is placed across the component. By placing separate chains and winches at several locations along the length of the bolster, the bottom plate 404 is forced into contact with each bar of the jig 600. After the chains are tensioned, the parts are checked for proper positioning. If aligned correctly, the bottom surfaces 406 of longitudinal support 401 and 402, which already have been supplied with the truck mounting assembly components, is welded to bottom plate 404. If the alignment is not correct, shims can be used to force the components into the correct alignment. Typically, welding components together causes heat stress that can lead to warping and other deformations in the components being welded together. However, the method of the present invention alleviates this concern as the components are forced into position and held there until the welding process is complete. By using this method, tight tolerances can be achieved.
A second jig with the same structure as the first jig 600 but having a concave shape is prepared in a similar manner. Alternatively, the components can be removed from the first jig 600 and the bars adjusted to a concave shape, wherein the bar aligned with the center truck mounting assembly 201 has a height of ½ inch lower than the bars at the end of the jig. Top plate 403 is placed on the concave-shaped jig. Next, the previously assembled component is inverted and placed on top of top plate 403. Stated differently, the entire assembly is placed in the jig upside-down, since the longitudinal support structure is attached to the underside of the top plate 403, with the top surface 405 of the longitudinal members 401 and 402 welded to the underside of the top plate 403. As a result, the top side of top plate 403 must rest against the jig.
A clamping process using chains and winches is again performed. Once the parts are aligned within the tolerances, the top plate 403 is welded to the previously assembly components. The top plate 403 and bottom plate 404 are welded to both the longitudinal supports 401 and 402 as well as each individual truck mounting assembly 101, 201, and 301. Additionally, receiver 202 is welded around the circumference of an opening in top plate 403. Alternatively, the sequence in which the top plate 403 and bottom plate 404 are attached to the longitudinal supports can be reversed.
Prior to final assembly and depending on the application, weld inspections may be performed by a mag particle or a dye penetrant test. Inspection of the weld between the longitudinal supports 401 and 402 to top plate 403 and bottom plate 404 are most critical.
While the method has been described in detail and with reference to specific embodiments and examples thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the embodiments. Thus, it is intended that the present disclosure cover the modifications and variations of this disclosure provided they come within the scope of the appended claims and their equivalents.
This application claims the benefit under 35 U.S.C. §119 of U.S. Provisional Application No. 62/074,124, filed Nov. 3, 2014, which is incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/28569 | 4/30/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62074124 | Nov 2014 | US |