The entire teachings of the above applications are incorporated herein by reference.
Despite advances in lock technology, individuals often carry multiple keys on a daily basis. Typically, the individual attaches the multiple keys together on a key ring extending through a hole in the head of each key. While the keys are bundled together, they can be cumbersome to use, transport, or store.
While various devices have been devised to replace the key ring and simplify key storage and organization, none have been particularly successful. Because conventional keys are available in various shapes and sizes, the prior art has been unable to offer a successful workable solution. One prior solution was to design a holder to fit the largest key head, which also required the holder to be much longer and wider than the key blade and bulky. In another prior solution, a holder was designed to fit keys having key heads of the same or similar size. In yet another solution, key heads were cut to a smaller size and attached within the holder, but the fitting tended to be loose due to differences in key thicknesses, etc.
In addition to keys, people frequently carry other devices either attached to a key ring or carried separately. These devices can include useful tools that may be carried in a holder such as multi-tools and army knives. Like conventional keys, most of these tools, such as bottle and can openers, knives, scissors, screw drivers, and saws include elongated bodies.
A particular embodiment of the invention is a method of manufacturing a universal pocket tool for a universal organizer. The method can include providing an elongated pocket tool having a working end and a gripping end along a longitudinal axis. The method can further include providing a first mounting plate having a first mating feature and a second mounting plate having a second mating feature, the first mating feature dimensioned to mate with the second mating feature.
The method can then include machining the gripping end into a mounting stub having a mounting feature. The mounting stub can have a predetermined thickness, a predetermined width, and a maximum length relative to the longitudinal axis.
The mounting stub can then be positioned between the first mounting plate and the second mounting plate such that the mounting feature of the mounting stub is aligned with the first mating feature of the first mounting plate and the second mating feature of the second mounting plate. The mounting feature can then be engaged with the first and second mating features. The method can then integrate the first mounting plate with the second mounting plate to secure the mounting stub within an integrated mounting head, such as by welding.
In accordance with the particular method, the elongated hand tool can be a key or an electronic device. Other elongated devices can also be included.
Furthermore, machining the gripping end can include machining an orifice through the gripping end as a mounting feature. That machining can include machining a plurality of orifices through the gripping end.
In accordance with a more particular embodiment, the first and second mounting plates comprises can be formed from a plastic material. Specifically, the plastic material can comprise nylon.
Another particular embodiment of the invention is a standardized pocket tool for a universal organizer. An elongated pocket tool can have a working end and a mounting stub along a longitudinal axis. The mounting stub can have a mounting feature, a predetermined thickness, a predetermined width, and a maximum length relative to the longitudinal axis. In a more particular embodiment, the elongated hand tool can be a key or an electronic device.
An integrated mounting head can be secured to the mounting stub. The integrated mounting head can include a first mounting plate having a first mating feature and a second mounting plate having a second mating feature. The first mating feature can be dimensioned to mate with the second mating feature. The mounting stub can be disposed between the first mounting plate and the second mounting plate such that the mounting feature of the mounting stub can be aligned with the first mating feature of the first mounting plate. The second mating feature of the second mounting plate and the mounting feature can be engaged with the first and second mating features.
More particularly, the mounting feature can include an orifice. Specifically, the mounting feature can include a plurality of orifices.
The first mounting plate and the second mounting plates can be integrally welded.
The first mounting plate and the second mounting plate can be plastic. More specifically, the plastic comprises nylon.
Another particular embodiment of the invention is a workstation for manufacturing a standardized pocket tool for a universal organizer. The workstation can include a first staging area, a machining station, a second staging area, and an integration station.
The first staging area can receive an elongated pocket tool having a working end and a gripping end along a longitudinal axis.
The machining station can machine the gripping end into a mounting stub having a mounting feature. The mounting stub can have a predetermined thickness, a predetermined width, and a maximum length relative to the longitudinal axis. More particularly, the machining station can include a first station for cutting the gripping end into a proto-stub of the predetermined width and the length and forming the mounting features into the proto-stub and a second station for dimensioning the proto-stub into the predetermined thickness to form the mounting stub.
The second staging area can receive a first mounting plate having a first mating feature and a second mounting plate having a second mating feature, where the first mating feature can be dimensioned to mate with the second mating feature. The mounting stub can then be positioned between the first mounting plate and the second mounting plate such that the mounting feature of the mounting stub can be aligned with the first mating feature of the first mounting plate and the second mating feature of the second mounting plate. The mounting feature can then engage with the first and second mating features.
The integration station can integrate the first mounting plate with the second mounting plate to secure the mounting stub within an integrated mounting head. In particular, the integration station can be a welding station, more particularly an electrostatic welder.
The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular description of particular embodiments of the invention, as illustrated in the accompanying drawings in which like reference characters refer to the same parts throughout the different views. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention.
To simply and improve the task of carrying multiple tools in a pocket or purse, the tools are fitted with a standardized head for operation within a compact organizer device. Examples of mechanical pocket tools include, but are not limited to, keys, knives, saws, screw drivers, scissors, bottle and can openers, and whistles. The pocket tools can also be electronic devices, such as solid state memory devices (e.g. flash drives), LED flashlights, and fobs. It should be understood that various pocket tools can be combined into a single standardized head, and can employ hinges and the like. While all elongated pocket tools are encompassed by embodiments of the invention, the invention will generally be described with reference to the conversion of conventional keys.
Conventional keys have numerous physical differences. They come in various widths to fit different keyways. It has been found that most key blade widths are less than or equal to 0.460″. Similarly, conventional key blades come in various lengths to fit different keyways. Conventional key blades also come in various thicknesses ranging from 0.050″ up to 0.165″, with the majority ranging between 0.070″ to 0.125″ thick. Sometimes groove patterns are cut at an angle such that the blade is at a different angle than the head of the key.
Some high security keys are also equipped with electronic Radio Frequency Identification (RFID) chips and coils that verify the key's unique identity with the host lock or ignition. Typically these chips are located within a plastic key head. Other key types are also in use, such as cylindrical (bit and barrel) keys. However, keys with straight blades are especially common.
Described in more detail below is a more particular method for converting conventional keys in their many shapes and sizes to keys that can be used, among other uses, within a key organizing device, utilizing a key conversion workstation.
Converting conventional keys to modified key assemblies 10A, 10B, . . . , 10E standardizes conventional keys by making all key heads one uniform size in length, width, and height. This conversion can reduce the bulk and weight of a conventional key chain, allows for more organizational options, and allows a much improved user experience. In a particular embodiment, a key organizer holding six key assemblies can weigh less than the original six keys on a key ring.
Without the use of the standardized head 100 it can be very difficult to convert conventional keys into a standardized geometry in an effective manner. The standardized head allows the use of nearly any conventional key in an organizational device and creates a plethora of other options with regard to key storage, organization, and customization. The many key materials, widths, lengths, thicknesses, forms, integrated electronics, etc. present various scenarios for converting conventional keys 1 to standardized keys 10.
A particular embodiment of the standardized key assemblies is particularly useful in the context of a key organizer device. As described in the incorporated applications, a particular key organizing device can house a plurality of keys having a slideable organizer-mountable key head. The device can be constructed of a single housing or can be an expandable device, constructed from a number of separate key housings. The device can also be constructed to house insertable items other than, or in addition to, standardized keys. Items that are too large to be housed within the housing can be attached using suitable modules, as described in the incorporated application. The key assemblies have a universal head that can be inserted into, removed from, and transferred between organizing devices, and is adaptable to other devices.
As shown, the key organizing device 400 further includes a housing sleeve or sleeves 420A, 420B that can be permanently or removably affixed to the housing 410 to protect the housing 410 and provide added strength and aesthetic value to the key organizing device 400. The sleeves 420A, 420B can be attached to the housing 410 utilizing tape, glue, or snaps (not shown). When assembled, the sleeves 420A, 420B include slots 424 that are registered to the slider slots 414 in the housing 410. As shown, the two sleeves 420A, 420B are identical but that is not necessary. To customize the key organizer, the sleeves can be metal or plastic, and can have any suitable finish, such as polished steel, anodized aluminum, titanium, carbon fiber, wood, or wood grain patterns. The sleeve can also be a pliable material or can be textured.
The housing can hold a plurality of standardized key assemblies 10 positioned in alternative opposing relationships to one another such that every neighboring key assembly 10 is positioned in an opposing direction. The key assemblies 10 are disposed in the channels 411 within the housing 410 that are separated by the wall members 412 to guide the standardized key assemblies 10 when slid in the longitudinal direction along the housing 410. In the illustrated example, a single standardized key assembly 10 is mounted within the housing 410 of the key organizing device 400.
Each key assembly 10 is constructed of a standardized key head 100 operated by an actuator 440. In this example, the actuator 440 is a spring-loaded pin assembly having a head 444 for engaging the key assembly 10 through aligned slots 414, 424. Although shown rounded, each individual actuator head 444 can have a particular shape, texture, or color to help distinguish the function of the keys within the housing.
As illustrated, the housing 410 has three slider slots 414 on the top side and three slider slots on the bottom side (not shown). The pin portion 442 of the actuator 440 includes a stop mechanism 446 that fits snugly in the front detents 415 of the housing to prevent the key assemblies from moving within the channels once extended. When the head 444 of the actuator 440 is depressed, by applying pressure to the pin assembly, the stop mechanism 446 is moved into the cavity of the housing channel, thereby releasing the stop mechanism 446 from the respective detent and disengaging the corresponding key assembly 10, which allows it to move longitudinally along the housing channel to retract or extend the standardized key assemblies. The back end of the slider slots 414 can also include a detent 419 to engage with the stop mechanism 446 to help retain the key assembly in the retracted position. In particular, channel dimensions that exceed the standardized head dimensions (width and thickness) by less than 0.005 (such as 0.001-0.005) inch to inhibit rattling due to a snug fit and to provide for sufficiently smooth operation.
More particularly, when assembled, the stop mechanism 446 of the pin assembly 440 extends just over the top edges of the opposing retaining side plates 100-M, 100F. This allows the stop mechanism 446, when the pin assembly 440 is in a resting position, to rest within the detents 415, 419, thereby retaining the position of the standardized key head and key blade in either a fully retracted or fully extended position. The pin is spring 448 loaded to both hold the stop mechanism 446 in an engaged relationship with the detents 415, 419 and to resist movement of the key assembly 10 by forcing it to the bottom of the channel 411. It also pre-loads the key assembly 10 when deployed (to prevent movement) and retracted (to prevent rattling). When the head 444 of the pin assembly 440 is depressed, the stop mechanism 446 is lowered into the actuator channels 105 (
In a particular embodiment, an unused pin assembly 440 can be stored inside the cover 432. More particularly, the pin 440 and spring 448 can be placed within an empty channel as long as the head's diameter is larger than the channel opening to prevent the head from falling into the channel. The cover 432 and foam 434 are then secured to the housing 410 to secure the pin assembly 440 in place.
The housing 440 includes two opposing tabs 416 spaced-apart for engaging the cover 432 for removable attachment of the cover 432 over the open back end of the housing 410. For example, the tabs 416 can be configured to have hook ends 417 for engagement with openings 438 on opposing sides of the cover 432. The hook end 417 of the tabs 416 may be disengaged from the tabs on the side slots of the housing 410, by pushing in the hook ends 417 through the openings 438 of end cap 432. Those skilled in the art will recognize alternative mechanisms for removably attaching the cover. Also shown is a lanyard receiving port 435 for attaching the organizer to a lanyard string (not shown).
Additionally, in this example, to prevent the unwanted removal of the cover 432 (for example when the key organizing device is dropped or tethered from a removable string, clip, or ring), the tabs 416 can only move inward and release the cover 432 when the key assemblies in the outermost channels are extended beyond the tab release. By moving the key assemblies downward and away from the tab releases, the mechanical interference is removed and the tabs 416 can be depressed inward to release the cover. Other release mechanisms can be employed, such as a latch assembly inside the cover 432.
As shown in
The retaining plates comprise a main plate 110-M, 110-F and a tail plate 120-M, 120-F separated by a bidirectional actuator channel 105-M, 105-F. The retaining plates 100-M, 100-F align and engage with one another through a locking or snap lock friction fit, or through welding procedures, including, but not limited to, ultrasonic welding.
The interior sides of the first tail plate 120-M includes male engagement members 124-M, 126-M. The interior sides of the second tail plate 120-F includes corresponding female engagement members 124-F, 126-F.
Each main plate 110-M, 110-F also includes a pocket for receiving the modified head or stub of a conventional key, regardless of the blade type. The pockets are defined by a shoulder 112-M, 112-F. The first shoulder 112-M includes a pair of projections 114-M and the second shoulder 112-F includes a corresponding pair of channels 116-F. Within the first pockets are male aligning projections 118-M and within the second pockets are corresponding female aligning projections 119-F. The male alignment projections 118-M and the female alignment projections 119-F engage with each other through one or more alignment holes 15A, 15B in a modified key stub.
The standardized head has an overall width of about 0.459-0.461 inch and the pockets have a width of about 0.260 inch to accommodate conventional keys having modified key heads with widths less than or equal to this dimension. The standardized head has a thickness of about 0.126-0.128 inch after welding. As can be appreciated, conventional keys can be adapted to receive the retaining plates 100-M, 100-F. While the side retaining plates 100-M, 100-F are shown as being separate pieces, it should be understood that they can be integrally fabricated with the key blade.
As shown in
As shown, the workstation is manually operated and requires an operator to convert conventional keys. However, the workstation can be automated to increase production speed.
In most cases the key will be converted before any patterns, teeth, or grooves are cut into the key blade. The key conversion workstation can, however, convert keys before or after patterns are cut. The user of the key conversion workstation must identify the material prior to the conversion process to ensure the tooling is set up to cut the harder materials such as steel without damaging the equipment. Many keys also have plastic heads that must be removed prior to converting to standardized key assemblies. Most conventional keys with plastic coated heads are also commercially available as key blanks with metal heads.
There are multiple operations used to convert conventional keys to key assemblies with a standardized key head that can be used for thousands of different shaped conventional keys. One goal of the operation as a whole is to reduce the size of the many conventional keys so the head is cut to the desired profile and attachable to the standardized key head. The method as illustrated below combines the different steps into a compact and efficient workstation where an operator positions the conventional key and runs it through the various steps to attach the standardized head. The method could be automated and duplicated to increase the output.
It is also possible to manufacture the key assemblies with similar processes as the key conversion workstation, but doing so may not be economical due to the high cost of setup for the vast array of key manufacturers, conventional keys, various processes used by different key manufacturers, the increasing number of high security keys that are unable to be duplicated on a standard key duplicator, and feasibility of all the various manufacturers adopting the standardized key head. Therefore the key conversion workstation can be used to convert conventional keys to one-size-fits-all key assemblies.
The key conversion workstation employs a series of steps to process the conventional keys. The conventional keys are secured in the transport 1070 by a fixture 1072 as they move and lock into place at the stop frames 1010, 1020, 1030 for each station 1100, 1200, 1300. The transport fixture 1072 is adjustable to accommodate a wide variety of conventional key sizes and shapes.
The transport fixture 1072 centers and secures the conventional keys and the length of cut can be adjusted using a sliding bar. Once the desired length is achieved, the sliding bar is secured utilizing a retaining knob and pulling a lever that locks two transport jaws. The jaws move together simultaneously to center and secure the key as required through the process. Due to the vast array of conventional key shapes and sizes the transport jaws can be replaced to accommodate and securely clamp various sizes, forms, and shapes of conventional keys. There are many forces applied to the key as it goes through the conversion steps to create a modified key assembly. If the conventional key is not secured appropriately throughout the process, the conventional key may be cut inappropriately or fly out of the transport jaws or miscut. The steps will now be described in more particular detail.
In the first step, the transport 1072 is positioned at the main staging area 1050. At the staging area 1050, a conventional key is positioned and secured in the transport fixture 1072. If provided, any plastic key head cover is also removed from the key. The key blade is clamped so the head is parallel to the workstation's work surface. Therefore, various interchangeable clamping devices are utilized for different conventional key forms. The transport 1070 can also be adjusted to cut the key blade to the desired length.
Returning to
Returning to
Returning to
Returning to
In addition, the heads can be marked with the individual key codes utilizing a permanent polyester sticker or laser marking device (not shown).
During the conversion process, it should be appreciated that the overall length of the conventional key is reduced significantly by removing the key's head. Various issues can arise if the converted keys do not retain a suitable blade length. If the blade is too short, the key could bottom out in the keyway and never reach the positive stop on the shoulder of the tip before the blade's teeth engage with the lock pins within the keyway. If the blade is cut too long the tip of the blade could protrude out from the key organizing device in the resting position. Other issues could also arise when used in the key organizing device, such as the device sticking too far out of a vehicle ignition. Because the majority of key blades measure 2 inches or less in length, a particular embodiment of the key organizer fits keys with blades equal to or less than this length, although the device can be longer or shorter to accommodate different key lengths.
While this invention has been particularly shown and described with references to particular embodiments, it will be understood by those skilled in the art that various changes in form and details may be made to the embodiments without departing from the scope of the invention encompassed by the appended claims.
This application claims the benefit of U.S. Provisional Application No. 61/246,082, filed on Sep. 25, 2009 and is: a continuation of International Application No. PCT/US10/50451, filed on Sep. 27, 2010 even date herewith; and a continuation-in-part of U.S. application Ser. No. 12/808,358, filed June 15, 2010, which is the U.S. National stage of International Application No. PCT/US08/86896, filed Dec. 15, 2008, which claims the benefit of U.S. Provisional Application No. 61/007,730, filed Dec. 14, 2007; and a continuation-in-part of U.S. patent Ser. No. 12/442,098, filed Mar. 19, 2009 now U.S. Pat. No. 8,146,736, which is the U.S. National stage of International Application No. PCT/US07/78960, filed Sep. 19, 2007, which claims the benefit of U.S. Provisional Application No. 60/845,998, filed Sep. 20, 2006, and U.S. Provisional Application No. 60/845,887, filed Sep. 19, 2006.
Number | Name | Date | Kind |
---|---|---|---|
1665016 | Benham et al. | Apr 1928 | A |
1936273 | Segal | Nov 1933 | A |
1996933 | Segal | Apr 1935 | A |
2076895 | Johnston | Apr 1937 | A |
2493330 | Zimmerman | Jan 1950 | A |
2503380 | Derby | Apr 1950 | A |
2541333 | Campbell | Feb 1951 | A |
2558265 | Mosch | Jun 1951 | A |
2560595 | Poncar | Jul 1951 | A |
2575424 | Mitchell | Nov 1951 | A |
2605632 | Lamonde | Aug 1952 | A |
2637994 | Harrison, Jr. et al. | May 1953 | A |
2640347 | Majeski | Jun 1953 | A |
2669859 | Hudson, Jr. | Feb 1954 | A |
2695511 | Wing et al. | Nov 1954 | A |
2789613 | Corsaw | Apr 1957 | A |
2790319 | Brunner | Apr 1957 | A |
3004422 | Starrett | Oct 1961 | A |
3147609 | Ryan | Sep 1964 | A |
3328986 | Ralton | Jul 1967 | A |
3354678 | Stifelman | Nov 1967 | A |
3407636 | Kovacevic | Oct 1968 | A |
3457746 | Glassman | Jul 1969 | A |
3606777 | Watson | Sep 1971 | A |
3618346 | Humphrey | Nov 1971 | A |
3729965 | Gartner | May 1973 | A |
3765200 | Vogt | Oct 1973 | A |
3813907 | Jones, Jr. et al. | Jun 1974 | A |
3832874 | Willis | Sep 1974 | A |
3950973 | Grasnianski | Apr 1976 | A |
4006613 | Zion | Feb 1977 | A |
4305267 | Nish et al. | Dec 1981 | A |
4417410 | Freedom | Nov 1983 | A |
4569215 | McCarthy | Feb 1986 | A |
4601185 | Sheldon | Jul 1986 | A |
4646913 | Wing et al. | Mar 1987 | A |
4909054 | Fox | Mar 1990 | A |
D307863 | Boag | May 1990 | S |
4941335 | Allen | Jul 1990 | A |
4951489 | Proch | Aug 1990 | A |
4951819 | Gebert | Aug 1990 | A |
5123579 | Sugiyama | Jun 1992 | A |
5215190 | Hoffpauir, Jr. | Jun 1993 | A |
5228563 | Stringham | Jul 1993 | A |
5232086 | Montanari | Aug 1993 | A |
5487291 | Voigt | Jan 1996 | A |
5495942 | Izhak | Mar 1996 | A |
5544510 | Botteon et al. | Aug 1996 | A |
5943889 | Chiu | Aug 1999 | A |
6092405 | Berwick | Jul 2000 | A |
6237756 | Caudle | May 2001 | B1 |
6367298 | Janssen et al. | Apr 2002 | B1 |
6371286 | Montanari | Apr 2002 | B1 |
6473022 | Wu | Oct 2002 | B1 |
6604308 | Robles | Aug 2003 | B1 |
6755061 | Herzenberg | Jun 2004 | B2 |
6763938 | Nelson | Jul 2004 | B1 |
D499323 | Smith | Dec 2004 | S |
6892558 | Chodosh | May 2005 | B2 |
7055352 | Meyerson et al. | Jun 2006 | B2 |
D530186 | Johansson | Oct 2006 | S |
7360383 | Chang | Apr 2008 | B1 |
D569227 | Boenisch | May 2008 | S |
D592935 | Mesh et al. | May 2009 | S |
D618983 | Downes | Jul 2010 | S |
D624305 | Downes | Sep 2010 | S |
20030167810 | Frias | Sep 2003 | A1 |
20030172696 | Regina | Sep 2003 | A1 |
20040055347 | Herzenberg | Mar 2004 | A1 |
20040069661 | Telleen | Apr 2004 | A1 |
20050103070 | Meyerson et al. | May 2005 | A1 |
20050103071 | Ng | May 2005 | A1 |
20050199628 | Van Handel et al. | Sep 2005 | A1 |
20050204789 | Brion Camean et al. | Sep 2005 | A1 |
20060044109 | Griffits et al. | Mar 2006 | A1 |
20060044116 | Mehler et al. | Mar 2006 | A1 |
20060086163 | Downes | Apr 2006 | A1 |
20100000885 | Downes | Jan 2010 | A1 |
20110016937 | Downes | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
1 621 100 | Feb 2006 | EP |
9933370 | Jul 1999 | WO |
03082063 | Oct 2003 | WO |
2007050442 | Oct 2006 | WO |
2008036783 | Mar 2008 | WO |
2011038372 | Mar 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20110072870 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
61246082 | Sep 2009 | US | |
61007730 | Dec 2007 | US | |
60845887 | Sep 2006 | US | |
60845998 | Sep 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2010/050451 | Sep 2010 | US |
Child | 12891796 | US | |
Parent | 12808358 | US | |
Child | PCT/US2010/050451 | US | |
Parent | 12442098 | US | |
Child | 12808358 | US |