Method of manufacturing a power module

Information

  • Patent Grant
  • 8528190
  • Patent Number
    8,528,190
  • Date Filed
    Thursday, August 21, 2008
    15 years ago
  • Date Issued
    Tuesday, September 10, 2013
    10 years ago
Abstract
A method of manufacturing a power module on a substrate. In one embodiment, the method includes providing power conversion circuitry including providing a magnetic device having a magnetic core and at least one switch on the substrate. The method also includes placing a shielding structure with a baffle over the magnetic core to create a chamber thereabout. The method also includes depositing an encapsulant about the power conversion circuitry. The shielding structure limits the encapsulant entering the chamber and the baffle directs the encapsulant away from the magnetic core thereby limiting an amount of the encapsulant that contacts the magnetic core within the chamber.
Description
TECHNICAL FIELD

The present invention is directed, in general, to electronics packaging and, more specifically, to a method of manufacturing a power module.


BACKGROUND

A magnetic device uses magnetic material arranged to shape and direct magnetic flux in a predetermined manner to achieve a desired electrical performance. The magnetic flux provides a medium for storing, transferring or releasing electromagnetic energy. The magnetic devices typically include a core having a predetermined volume and composed of a magnetic material (e.g., ferrite) having a magnetic permeability greater than that of a surrounding medium (e.g., air). A conductive winding (or a plurality of conductive windings) of a desired number of turns and carrying an electrical current surround, excite and are excited by the magnetic core (or legs thereof). Inasmuch as the magnetic core usually has a relatively high permeability, magnetic flux produced by the conductive windings is generally confined almost entirely to the magnetic core. The magnetic flux follows the path that the magnetic core defines; magnetic flux density is essentially consistent over a uniform cross sectional area of the magnetic core, particularly for magnetic cores having a small cross sectional area.


The magnetic devices are often used to suppress electromagnetic interference. When used in the suppression role, the efficiency with which a magnetic device stores and releases electrical power is not usually a concern. However, magnetic devices are also frequently employed to transmit, convert or condition electrical power (so called “power magnetic devices”). Under such conditions (often in an environment of a power converter to power a microprocessor or the like), a performance and efficiency of the magnetic device becomes a major concern.


As those of ordinary skill in the art understand, it is highly desirable to provide a protective, heat dissipating package for electronic circuitry such as an integrated circuit embodying the power converter to power the microprocessor. Often, the electronic circuitry can be encapsulated or “molded,” wherein an encapsulant is formed about the electronic circuitry to yield a unitary, board mountable package. One well known configuration for a board mountable package is a so called dual in-line package, wherein electrical leads protrude from opposing sidewalls of the package. The leads are advantageously so arranged to allow the package to be mounted to a circuit board by various conventional soldering processes. The dual in-line packages are widely used for packaging integrated circuits, most often in computer-related environments.


It has been long felt that power converters would greatly benefit from such encapsulation. However, in the pursuit of producing encapsulated, power converter packages (also referred to as “power modules”), it was discovered that the normally effective operation of encapsulating the power conversion circuitry with a conventional thermosetting epoxy molding compound through a conventional transfer molding process can degrade the magnetic performance and efficiency of the magnetic devices. As a result, an overall efficiency of the power converter suffered well below an acceptable level.


More specifically, an underlying effect that occurs when magnetic devices are encapsulated (causing the magnetic performance of the devices to degrade) is magnetostriction. Magnetostriction (and a related effect of strain pinning of the domain walls of the magnetic cores) occurs as a result of molding pressures and post-molding stresses on the magnetic cores within the power conversion circuitry. Magnetostriction in the magnetic material causes degradation of magnetic properties when placed under tensile or compressive stress. The magnetostriction and strain pinning causes the permeability of the magnetic core to decrease and coercivity thereof to increase. As a result, the electrical design of the power conversion circuitry suffers from both reduced inductance values and reduced quality factors (e.g., higher magnetic core losses).


In the past, work around solutions emerged to address this impasse. First, most designs for power converters simply avoided the problem by remaining unencapsulated. Unfortunately, the power converters were unable to take advantage of the physical protection and additional heat dissipating capacity that encapsulation provides. The unencapsulated power converters were also difficult to mount on a circuit board due to a lack of suitable soldering processes and handling surfaces. The power conversion circuitry of the unencapsulated power converters were also subject to detrimental exposure to washing processes during the manufacture thereof and to potentially damaging conditions in inhospitable environments.


Another solution revolved around employing compliant material disposed about at least a portion of the magnetic core of the magnetic device as disclosed in U.S. Pat. No. 5,787,569, entitled “Encapsulated Package for Power Magnetic Devices and Method of Manufacture Therefor,” to Lotfi, et al. (“Lotfi”), issued on Aug. 4, 1998, which is incorporated herein by reference. Lotfi discloses a package for a power magnetic device with a magnetic core subject to magnetostriction when placed under stress. The package includes a compliant material disposed about the magnetic core and an encapsulant surrounding the compliant material and the magnetic core. The compliant material provides a medium for absorbing stress between the encapsulant and the magnetic core. The compliant material reduces the magnetostriction upon the magnetic core caused by the stress from the encapsulant. The package also includes a vent that allows for a displacement of the compliant material thereby providing further stress relief for the power magnetic device. While Lotfi provides a viable alternative to dealing with the stress upon a magnetic core from the encapsulant, it may be cumbersome to deposit the compliant material about the magnetic core in some applications.


Yet another solution was disclosed in U.S. Pat. No. 5,578,261 entitled “Method of Encapsulating Large Substrate Devices Using Reservoir Cavities for Balanced Mold Filling,” to Manzione, et al. (“Manzione”), issued Nov. 26, 1996, which is incorporated herein by reference. Manzione uses reservoir cavities to balance the flow in a mold cavity between the flow fronts above and below a large area substrate. The reservoir cavities are external to the molded plastic package for an electronic device substrate to direct a flow of the molding compound away therefrom. While Manzione provides an alternative to direct excess molding compound away from the electronic device substrate, it may not viable to employ such a solution in some applications.


Accordingly, what is first needed in the art is an understanding of the underlying effect that occurs when magnetic devices are encapsulated, causing the magnetic performance of the magnetic devices to degrade. Further, what is needed (once the effect is understood) is an encapsulated package for magnetic devices and a power module, and an associated highly economical and feasible method of manufacture for such encapsulated packages that does not substantially hinder the magnetic performance thereof.


SUMMARY OF THE INVENTION

These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention which includes a method of manufacturing a power module on a substrate. In one embodiment, the method includes providing power conversion circuitry including providing a magnetic device having a magnetic core and at least one switch on the substrate. The method also includes placing a shielding structure over the magnetic core to create a chamber thereabout. The method also includes depositing an encapsulant about the power conversion circuitry. The shielding structure limits the encapsulant entering the chamber thereby allowing the encapsulant to surround a portion of the magnetic core within the chamber.


In yet another aspect, the present invention provides a method of manufacturing a power module on a substrate. The method includes providing power conversion circuitry including providing a magnetic device having a magnetic core. The method also includes placing a shielding structure with a baffle over the magnetic core to create a chamber thereabout. The method also includes depositing an encapsulant about the power conversion circuitry. The shielding structure limits the encapsulant entering the chamber and the baffle directs the encapsulant away from the magnetic core thereby allowing the encapsulant to surround a portion of the magnetic core within the chamber.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates a graphical representation of a complex permeability of a magnetic device under compressive stress;



FIG. 2 illustrates a dynamic hysteresis loop of the magnetic device of FIG. 1 under substantially stress free conditions;



FIG. 3 illustrates a dynamic hysteresis loop of the magnetic device of FIG. 1 molded in an encapsulant such as a thermosetting epoxy molding compound and placed under compressive stress;



FIG. 4 illustrates a dynamic hysteresis loop of the magnetic device of FIG. 1 compensating for the losses associated with the conditions demonstrated with respect to FIG. 3;



FIG. 5 illustrates a cross sectional view of an embodiment of an encapsulatable package for a magnetic device constructed according to the principles of the present invention;



FIG. 6 illustrates a cross sectional view of an embodiment of an encapsulated package for a magnetic device constructed according to the principles of the present invention;



FIG. 7 illustrates a cross sectional view of another embodiment of an encapsulated package for a magnetic device constructed according to the principles of the present invention;



FIG. 8 illustrates a cross sectional view of an embodiment of a power module constructed according to the principles of the present invention; and



FIG. 9 illustrates a diagram of an embodiment of a power converter including power conversion circuitry constructed according to the principles of the present invention.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of the presently preferred embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


The present invention will be described with respect to preferred embodiments in a specific context, namely, an encapsulatable package for a magnetic device, a power module and a method of manufacture thereof. While the principles of the present invention will be described in the environment of a power converter, any application that may benefit from an encapsulatable package for a magnetic device is well within the broad scope of the present invention.


As will become more apparent, the encapsulatable package for the magnetic device includes a magnetic core and at least one conductive winding. The magnetic core has magnetic properties that can be compromised by mechanical stress produced by an encapsulant in contact with a sufficient surface area of the magnetic core. The magnetic core is protected from wide area contact with the encapsulant by a shielding structure that creates a chamber about at least a portion of the magnetic core. The shielding structure may be open at one end thereof for positioning over the magnetic core. The shielding structure makes an incomplete, imperfect or partial seal about the magnetic core against intrusion of the encapsulant during an application thereof. During encapsulation, while a limited amount or a portion of the encapsulant penetrates the seal, the encapsulant does not make contact with a sufficient surface area of the magnetic core to substantially compromise the magnetic performance thereof.


Referring initially to FIG. 1, illustrated is a graphical representation 100 of a complex permeability of a magnetic device under compressive stress. In high frequency switch mode power modules, manganese zinc ferrites are often used as the magnetic core material in magnetic devices such as energy storage inductors and transformers. In these and other applications, the magnetic cores cannot be directly encapsulated with a rigid material since the resulting stress causes a loss of permeability, and resulting magnetic core losses in both manganese zinc and nickel zinc ferrites. Again, the compressive stress on the magnetic material causes a phenomenon called magnetostriction, thereby causing an overall degradation of the magnetic properties of the magnetic device. For instance, the saturation magnetostriction coefficient λs for most manganese zinc ferrites is about 1×10−6 to 5×10−6 and for most nickel zinc ferrites (due to the presence of the nickel) is about 15×10−6 to 20×10−6. The addition of small amounts of cobalt can reduce the saturation magnetostriction coefficient λs.


As an example, to measure the level of magnetostriction in the manganese zinc ferrite, a toroidal shaped magnetic core is subject to external lateral and normal compressive forces. While toroidal ferrite cores are used in the illustrated embodiment for material measurements and characterization because of the symmetry, flux uniformity and consistent cross sectional areas associated therewith, magnetostrictive effects are equally applicable to other types of magnetic materials and magnetic core configurations. The complex permeability provides a criterion for characterizing a magnetic material because it is directly related to an electrical impedance of a conductive winding associated with the magnetic core.


The complex permeability can be derived from a real permeability (represented by line 110) and an imaginary permeability (represented by line 120), of an impedance associated with the magnetic core. The real permeability 110 corresponds to an inductance resulting from the magnetization available in the magnetic core. The imaginary permeability 120 measures the dissipation within the magnetic core material. The toroidal ferrite core is subject to variable pressure to fully characterize the stress dependence thereof. The variable pressure on the toroidal ferrite core results in changes in the complex permeability under dynamic conditions (e.g., 500 kilohertz). A drop in real permeability 110 is accompanied by an increase in the imaginary permeability 120, signaling a loss of inductance and an increase in magnetic core dissipation. Even under the smallest stress (e.g., less than 500 pounds per square inch or 34.5 bar), where the magnetic core loss does not increase, permeability drops by five percent.


However, the difference in the coefficient of thermal expansion (and contraction) induced stress over a wide range of operating temperatures is far greater (e.g., greater than 2000 pounds per square inch or 138 bar) leading to a drop of real permeability 110 in the range of 16 percent, a rise in imaginary permeability 120 in the range of 32 percent and a substantial decrease in the overall permeability for the magnetic device. While the illustrated embodiment exhibits the stress dependence of complex permeability for a toroidal ferrite core, the same or analogous principles apply to any magnetic device under compressive stresses. Simply stated, the magnetostrictive effects on magnetic materials under stress induce unacceptable reductions of the magnetic properties in the magnetic device.


Turning now to FIG. 2, illustrated is a dynamic hysteresis loop 200 of the magnetic device of FIG. 1 under substantially stress free conditions. The hysteresis loop 200 demonstrates a steady state relation between a magnetic induction in the magnetic material of the magnetic device and the steady state alternating magnetic intensity that produces it. For each value of magnetizing force (in oersteds) applied to the magnetic device, two values of magnetic flux density (in gauss) are illustrated in the hysteresis loop 200. The illustrated embodiment demonstrates a 500 kilohertz hysteresis loop 200 with a three oersteds drive into saturation. Under stress free conditions, the amplitude permeability is 1424 and the coercivity is 0.64 oersteds. The domains of the magnetic field, therefore, have been aligned resulting in a flux density with an upper limit of about 4430 gauss.


Turning now to FIG. 3, illustrated is a dynamic hysteresis loop 300 of the magnetic device of FIG. 1 molded in an encapsulant such as a thermosetting epoxy molding compound and placed under compressive stress. The magnetic device is illustrated as being molded in a thermosetting epoxy molding compound at 170 degrees Celsius and subsequently cooled to room temperature. The thermally induced stress is established and, as displayed in the illustrated embodiment, the hysteresis loop 300 is substantially deformed. Under these conditions, the amplitude permeability (from the average slope) is about 1100 and the coercivity has increased three fold to about 1.85 oersteds, indicating large strain energy that induces significant domain wall pinning. Under the same driving field of three oersteds, alignment of domains is very difficult since the flux density is only about 3380 gauss. The excessive stress, therefore, limits alignment of the domains to 76 percent and increases the magnetic core dissipation to virtually 45 percent higher than the original unstressed state.


Turning now to FIG. 4, illustrated is a dynamic hysteresis loop 400 of the magnetic device of FIG. 1 compensating for the losses associated with the conditions demonstrated with respect to FIG. 3. In the illustrated embodiment, the field drive of the magnetic device is doubled to align the remaining pinned domains left unaligned from the conditions described above. Alignment is limited to 92 percent, resulting in an increased magnetic core dissipation of about 108 percent. This outcome demonstrates the magnitude of external energy needed to overcome the strain energy barrier. Clearly, it is not practical to design a magnetic device to compensate for these unacceptable losses, and the energy necessary to overcome these losses is intolerable.


Therefore, before it becomes practical to encapsulate power modules in encapsulants such as a thermosetting epoxy molding compounds or the like, it is necessary to determine methods of protecting the magnetic cores such as a ferrite core of magnetic devices. In connection therewith, several criteria should be addressed. First, the magnetic properties of the magnetic device should be preserved through the post molded stress relief period as the magnetic device cools from the molding temperature to room temperature. Second, the thermal characteristics of the magnetic device to operate efficiently over a specified range should be maintained. Finally, manufacturing costs should be maintained at a competitive level.


Turning now to FIG. 5, illustrated is a cross sectional view of an embodiment of a partially completed encapsulatable package for a magnetic device (also referred to as a “packagable magnetic device”) constructed according to the principles of the present invention. The packagable magnetic device may be employed in a power module or module employing a magnetic device to advantage. The packagable magnetic device includes a magnetic core (e.g., a ferrite core) 510 with surrounding electrically conductive windings 520 (i.e., at least one conductive winding) thereabout. The magnetic core 510 is located (e.g., mounted) on a substrate 540 such as a printed wiring board, and may be separated from the substrate by stand offs 550.


To protect the magnetic core 510 from an encapsulant such as an overlying molding compound like an epoxy molding compound applicable during a manufacturing process and with a potentially different coefficient of thermal expansion from the magnetic material thereof, a shielding structure such as a protective cap 530 is placed about the magnetic core 510 and conductive windings 520 that creates an incomplete, imperfect or partial seal via an opening 560 with the underlying substrate 540. The protective cap 530 creates a chamber 535 about the magnetic core 510 and conductive windings 520 and may be substantially free of any material therein. The protective cap 530 may be formed from a material such as a ceramic material, aluminum, copper, molded plastic material, or other suitable sufficiently rigid material.


While the shielding structure is embodied in a protective cap 530 in the illustrated embodiment, any structure capable of protecting the magnetic core 510 from the encapsulant while creating an incomplete, imperfect or partial seal thereabout is well within the broad scope of the present invention. The packagable magnetic device further includes electrical leads 570 protruding from, for instance, opposing sidewalls of the substrate 540 to allow the packagable magnetic device to be mounted to another substrate or circuit board. The electrical leads 570 are thus available for conventional soldering processes. The electrical leads 570 may be configured for a through hole arrangement (as illustrated in FIG. 5) or may be configured as surface mount pads or as any other attachment arrangement.


Molded plastic packages for conventional integrated circuits are obviously not a new notion, but applying molded plastic packages to magnetic devices or power modules, in general, for the aforementioned reasons offers unique challenges due to stress induced performance degradations due to overmolding, potting, or similar packaging processing. Although the encapsulating processes described herein reference heat cured epoxy compounds, other thermal setting compounds or other molding, casting, or potting compounds that exhibit a coefficient of thermal expansion mismatch or other stress inducing effect on a magnetic core 510, such as may result from a curing operation or from aging, are included herein without limitation such as ultraviolet, infrared, oven cured, or room temperature cured materials, including multi-part materials, rubber-based, silicone-based, or further potting materials of other compositions.


During application of the overlying molding compound, a limited amount of compound penetrates through the opening 560 and contacts only a small portion of the magnetic core 510. Thus, the protective cap 530 limits the amount of the molding compound that enters the chamber 535 to limit the amount of molding compound that surrounds the magnetic core 510. Stated another way, the chamber 535 is partially filled with the molding compound and the molding compound contacts (or is about) a portion of the magnetic core 510. The limited penetration provides protection for the magnetic core 510. The conductive windings 520 and any further obstructions to the molding compound contacting the magnetic core 510 such as insulating tape around the conductive windings 520 or a rigid or compliant barrier provide further protection for the magnetic core 510. Thus, the packagable magnetic device provides a magnetic core 510 with reduced exposure to the overlying molding compound, avoiding a substantial portion of the stress induced performance degradation as herein described.


More specifically, the effects of magnetostriction (and a related effect of strain pinning of the domain walls of the magnetic cores) are reduced as a result of molding pressures and post-molding stresses on the magnetic core 510. Again, magnetostriction in a magnetic core 510 causes degradation of magnetic properties when placed under tensile or compressive stress. The magnetostriction and strain pinning causes the permeability of the magnetic core 510 to decrease and coercivity thereof to increase. By decreasing the amount of encapsulant about the magnetic core 510, not only are the molding pressures reduced but the post-molding stresses resulting from, for instance, when the molding compound cures are significantly reduced. In accordance therewith, the opening 560 allows the molding compound (or at least a portion thereof) to exit the chamber 535, if necessary, as the molding compound cures.


Turning now to FIG. 6, illustrated is a cross sectional view of an embodiment of an encapsulated package for a magnetic device (also referred to as a “packaged magnetic device”) following application of an encapsulant such as a molding compound constructed according to the principles of the present invention. The packaged magnetic device includes a magnetic core (e.g., a ferrite core) 610 with surrounding electrically conductive windings 620 (i.e., at least one conductive winding) thereabout. The magnetic core 610 is mounted on a substrate 640 and may be separated from the substrate by stand offs 650.


To protect the magnetic core 610 from an overlying molding compound 680 such as an epoxy molding compound applicable during a manufacturing process and with a potentially different coefficient of thermal expansion from the magnetic material thereof, a shielding structure such as protective cap 630 is placed about the magnetic core 610 and conductive windings 620 that create an incomplete, imperfect or partial seal via an opening 660 with the underlying substrate 640. The protective cap 630 creates a chamber 635 about the magnetic core 610 and conductive windings 620. The packaged magnetic device further includes electrical leads 670 protruding from, for instance, opposing sidewalls of the substrate 640 to allow the packaged magnetic device to be mounted to another substrate or circuit board.


The molding compound 680 is applied about the protective cap 630 and forms a portion of an external surface of the packaged magnetic device. The molding compound 680 provides protection from environmental elements including later manufacturing steps such as washing as well as providing an improved heat conducting medium for internal components of the packaged magnetic device. The molding compound 680 penetrates the opening 660 at a junction between the protective cap 630 and the substrate 640. The protective cap 630 limits the amount of the molding compound 680 that enters the chamber 635 to limit the amount of molding compound 680 that contacts (or surrounds) the magnetic core 610. Thus, a portion of the molding compound 680 contacts (or is about) the magnetic core 610, thereby providing only limited mechanical stress thereupon.


An embodiment of manufacturing (constructing or forming) the packaged magnetic device will hereinafter be described. First, a substrate with a plurality of electrical leads is provided as a foundation for the packaged magnetic device. For an example of a substrate having a plurality of leads protruding therefrom, see U.S. Pat. No. 5,345,670 entitled “Method of Making a Surface-Mount Power Magnetic Device,” to Pitzele, et al., issued Sep. 13, 1994, which is incorporated herein by reference. A plurality of stand offs are then located on the substrate followed by placing a magnetic core with at least one conductive winding thereabout on the plurality of stand offs. The conductive winding(s) may be wound about the magnetic core or placed about the magnetic core employing planar magnetics such as disclosed in Pitzele, et al. Then, a protective cap is placed over the magnetic core to create a chamber thereabout and a partial seal thereabout (and with the substrate). The substrate with the magnetic core and protective cap are placed in a mold cavity. An encapsulant is then incorporated (e.g., deposited) by, for instance, flowing an epoxy molding compound that has been heated within a range of about 165 to 190 degrees Celsius, or other suitable encapsulant over and about the protective cap, thereby providing substantially complete encapsulation. As mentioned above, a portion of the molding compound penetrates the partial seal via an opening at the junction of the protective cap and the substrate. A portion of the molding compound contacts the magnetic core, thereby providing only limited mechanical stress thereupon. Thus, only a portion of the magnetic core is in contact with (or surrounded by) the molding compound.


The magnetic core experiences an increase in stress as the molding compound cools to room temperature thereby shrinking around the magnetic core (i.e., when the molding compound cures). The shrinkage that occurs during the cooling of the molding compound around the magnetic core creates the principal stress thereto. The stress induces magnetostrictive effects that may degrade a performance of the magnetic core. Although a velocity pressure head of the molding compound flow front and a static packing pressure may vary from 40 to 50 pounds per square inch and 350 to 500 pounds per square inch, respectively, during the molding process of the packaged magnetic device as described herein, the velocity pressure head does not create a large enough stress on the magnetic core to induce substantial magnetostrictive effects. A major portion of the stress on the magnetic core occurs during a cooling period after molding. The stress is produced by the differences in the coefficient of thermal expansion (or other aging- or curing-related effects) between the epoxy or other molding compound and in the magnetic material of the magnetic core. The amount of stress on the magnetic core may be approximately 13,000 pounds per square inch on some portions of the magnetic core and three times that value in corners of the magnetic core. The large increase in stress in corners of the magnetic core is generated at sharp radii of the corners. Also, the opening in the protective cap allows the molding compound (or at least a portion thereof) to exit the chamber, if necessary, as the molding compound cures.


Turning now to FIG. 7, illustrated is a cross sectional view of another embodiment of an encapsulated package for a magnetic device (also referred to as a “packaged magnetic device”) following application of an encapsulant such as a molding compound constructed according to the principles of the present invention. The packaged magnetic device includes a magnetic core (e.g., a ferrite core) 710 with surrounding electrically conductive windings 720 (i.e., at least one conductive winding) thereabout. The magnetic core 710 is mounted on a substrate 740 and may be separated from the substrate by stand offs 750.


To protect the magnetic core 710 from an overlying molding compound 780 such as an epoxy molding compound applicable during a manufacturing process and with a potentially different coefficient of thermal expansion from the magnetic material thereof, a shielding structure such as a protective cap 730 including a baffle 790 (e.g., plate(s), wall(s) or screen(s)) is placed about the magnetic core 710 and conductive windings 720 that creates an incomplete, imperfect or partial seal via an opening 760 with the underlying substrate 740. The protective cap 730 creates a chamber 735 about the magnetic core 710 and conductive windings 720. The packaged magnetic device further includes electrical leads 770 protruding from, for instance, opposing sidewalls of the substrate 740 to allow the packaged magnetic device to be mounted to another substrate or circuit board.


The baffle 790 (which is coupled to a sidewall of the protective cap 730) directs the flow of the molding compound 780 to a region within the chamber 735 away from the magnetic core 710, at least to a region where the induced stress on the magnetic core 710 will have a reduced effect on the magnetic properties thereof. The baffle 790 may be formed integrally with the protective cap 730, of the same or different materials, or may be left unattached, or may be coupled to the substrate 740 or elsewhere. The intent is to create a region separated from the magnetic core 710 to contain the molding compound 780 that penetrates the opening 760 that is formed between the protective cap 730 and the substrate 740 or other portion of the packaged magnetic device.


Turning now to FIG. 8, illustrated is a cross sectional view of an embodiment of a power module following application of an encapsulant constructed according to the principles of the present invention. The power module includes power conversion circuitry including a magnetic device and other power conversion circuitry 805 such as a power train (with at least one switch), a driver and a controller. An example of the power conversion circuitry is illustrated and described with respect to FIG. 9.


The magnetic device is embodied in a packaged magnetic device including a magnetic core 810 with surrounding electrically conductive windings 820 thereabout. The magnetic core 810 is mounted on a substrate 840 and may be separated from the substrate by stand offs 850. To protect the magnetic device and other power conversion circuitry 805 from environmental conditions and the like, an encapsulant 880 is deposited thereabout. To protect the magnetic device from the encapsulant 880, however, a shielding structure 830 including a baffle 890 is placed about the magnetic core 810 and conductive windings 820 that creates an incomplete, imperfect or partial seal via an opening 860 with the underlying substrate 840. The shielding structure 830 creates a chamber 835 about the magnetic core 810 and conductive windings 820. The baffle 890 directs the flow of the encapsulant 880 to a region within the chamber 835 away from the magnetic core 810. The power module further includes electrical leads 870 protruding from, for instance, opposing sidewalls of the substrate 840 to allow the power module to be mounted to another substrate or circuit board.


When manufacturing the power module, in addition to the steps described above, the other power conversion circuitry such as the power train is located (e.g., mounted) on the substrate in addition to the magnetic device (which may be pre-packaged). An encapsulant is then applied over the power conversion circuitry to form a protective, heat dissipating package for the power module.


Turning now to FIG. 9, illustrated is a diagram of an embodiment of a power converter including power conversion circuitry constructed according to the principles of the present invention. The power converter includes a power train 910, a controller 920 and a driver 930, and provides power to a system such as a microprocessor. While in the illustrated embodiment, the power train 910 employs a buck converter topology, those skilled in the art should understand that other converter topologies such as a forward converter topology are well within the broad scope of the present invention.


The power train 910 receives an input voltage Vin from a source of electrical power (represented by a battery) at an input thereof and provides a regulated output voltage Vout to power, for instance, a microprocessor at an output thereof. In keeping with the principles of a buck converter topology, the output voltage Vout is generally less than the input voltage Vin such that a switching operation of the power converter can regulate the output voltage Vout. A switch (e.g., a main switch Qmn) is enabled to conduct for a primary interval (generally co-existent with a primary duty cycle “D” of the main switch Qmn) and couples the input voltage Vin to an output filter inductor Lout. During the primary interval, an inductor current ILout flowing through the output filter inductor Lout increases as a current flows from the input to the output of the power train 910. An AC component of the inductor current ILout is filtered by the output capacitor Cout.


During a complementary interval (generally co-existent with a complementary duty cycle “1-D” of the main switch Qmn), the main switch Qmn is transitioned to a non-conducting state and another switch (e.g., an auxiliary switch Qaux) is enabled to conduct. The auxiliary switch Qaux provides a path to maintain a continuity of the inductor current ILout flowing through the output filter inductor Lout. During the complementary interval, the inductor current ILout through the output filter inductor Lout decreases. In general, the duty cycle of the main and auxiliary switches Qmn, Qaux may be adjusted to maintain a regulation of the output voltage Vout of the power converter. Those skilled in the art should understand, however, that the conduction periods for the main and auxiliary switches Qmn, Qaux may be separated by a small time interval to avoid cross conduction therebetween and beneficially to reduce the switching losses associated with the power converter.


The controller 920 receives a desired characteristic such as a desired system voltage Vsystem from an internal or external source associated with the microprocessor, and the output voltage Vout of the power converter. The controller 920 is also coupled to the input voltage Vin of the power converter and a return lead of the source of electrical power (again, represented by a battery) to provide a ground connection therefor. While only a single ground connection is illustrated in the present embodiment, those skilled in the art should understand that multiple ground connections may be employed for use within the controller 120. A decoupling capacitor Cdec is coupled to the path from the input voltage Vin to the controller 120. The decoupling capacitor Cdec is configured to absorb high frequency noise signals associated with the source of electrical power to protect the controller 920.


In accordance with the aforementioned characteristics, the controller 920 provides a signal (e.g., a pulse width modulated signal SPWM) to control a duty cycle and a frequency of the main and auxiliary switches Qmn, Qaux of the power train 910 to regulate the output voltage Vout thereof. The controller 920 may also provide a complement of the signal (e.g., a complementary pulse width modulated signal S1-PWM) in accordance with the aforementioned characteristics. Any controller adapted to control at least one switch of the power converter is well within the broad scope of the present invention. As an example, a controller employing digital circuitry is disclosed in U.S. Pat. No. 7,038,438, entitled “Controller for a Power Converter and a Method of Controlling a Switch Thereof,” to Dwarakanath, et al., and U.S. Pat. No. 7,019,505, entitled “Digital Controller for a Power Converter Employing Selectable Phases of a Clock Signal,” to Dwarakanath, et al., which are incorporated herein by reference.


The power converter also includes the driver 930 configured to provide drive signals SDRV1, SDRV2 to the main and auxiliary switches Qmn, Qaux, respectively, based on the signals SPWM, S1-PWM provided by the controller 920. There are a number of viable alternatives to implement a driver 930 that include techniques to provide sufficient signal delays to prevent crosscurrents when controlling multiple switches in the power converter. The driver 930 typically includes switching circuitry incorporating a plurality of driver switches that cooperate to provide the drive signals SDRV1, SDRV2 to the main and auxiliary switches Qmn, Qaux. Of course, any driver 930 capable of providing the drive signals SDRV1, SDRV2 to control a switch is well within the broad scope of the present invention. As an example, a driver is disclosed in U.S. Pat. No. 7,330,017, entitled “Driver for a Power Converter and Method of Driving a Switch Thereof,” to Dwarakanath, et al., which is incorporated herein by reference. Also, an embodiment of a semiconductor device that may embody portions of the power conversion circuitry is disclosed in U.S. Pat. No. 7,230,302, entitled “Laterally Diffused Metal Oxide Semiconductor Device and Method of Forming the Same,” to Lotfi, et al., which is incorporated herein by reference, and an embodiment of an integrated circuit embodying power conversion circuitry, or portions thereof, is disclosed in U.S. Pat. No. 7,015,544, entitled “Integrated Circuit Employable with a Power Converter,” to Lotfi, et al., which is incorporated by reference.


Thus, an encapsulatable package for a magnetic device, a power module and a method of manufacture thereof with readily attainable and quantifiable advantages has been introduced. Those skilled in the art should understand that the previously described embodiments of the magnetic device and power module are submitted for illustrative purposes only. In addition, other embodiments capable of producing an encapsulatable package for a magnetic device and a power module while addressing the effects of magnetostriction and the like are well within the broad scope of the present invention. While the magnetic device has been described in the environment of a power converter, the magnetic device may also be incorporated into other systems or assemblies such as a communication or computing devices or other power processing devices.


As mentioned above, the present invention provides an encapsulatable package for a magnetic device with a magnetic core whose magnetic properties can be compromised by external mechanical stress. The magnetic core is surrounded by at least one conductive winding and is protected from stress induced by an encapsulant by a shielding structure that creates a chamber about at least a portion of the magnetic core. The shielding structure may be open at one end (such as at a junction between the magnetic core and an underlying substrate) such that the shielding structure can be readily positioned over the magnetic core. The shielding structure makes an incomplete, imperfect or partial seal about the magnetic core and preferably with an underlying surface against intrusion of an encapsulant. During encapsulation, a limited quantity of the encapsulant penetrates the seal, but does not make contact with sufficient surface area of the magnetic core to substantially compromise the magnetic performance thereof. In a further embodiment, the shielding structure includes a baffle to direct the penetrating encapsulant away from the magnetic core.


For a better understanding of power converters, see “Modern DC-to-DC Switchmode Power Converter Circuits,” by Rudolph P. Sevems and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991). For a better understanding of magnetic devices, see “Soft Ferrites: Properties and Applications,” by E. C. Snelling, published by Butterworth-Heinemann, Second Edition, 1989. The aforementioned references are incorporated herein by reference in their entirety.


Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.


Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A method of manufacturing a power module on a substrate, comprising: providing power conversion circuitry, including:providing a magnetic device having a magnetic core on said substrate,placing a shielding structure with a baffle over said magnetic core to create a chamber thereabout, andproviding at least one switch on said substrate; anddepositing an encapsulant about said power conversion circuitry, said shielding structure limiting said encapsulant entering said chamber and said baffle directing said encapsulant away from said magnetic core thereby limiting an amount of said encapsulant that contacts said magnetic core within said chamber.
  • 2. The method as recited in claim 1 further comprising allowing at least a portion of said encapsulant to exit said chamber via said shielding structure as said encapsulant cures.
  • 3. The method as recited in claim 1 wherein said baffle is coupled to a sidewall of said shielding structure.
  • 4. The method as recited in claim 1 wherein said shielding structure creates a partial seal about said magnetic core.
  • 5. The method as recited in claim 1 wherein said shielding structure creates an opening between a junction of said shielding structure and said substrate.
  • 6. The method as recited in claim 1 wherein said shielding structure is a protective cap.
  • 7. The method as recited in claim 1 wherein said shielding structure is formed from a material selected from the group consisting of: a ceramic material,aluminum,copper, andmolded plastic.
  • 8. The method as recited in claim 1 further comprising locating a stand off on said substrate, said stand off being between said magnetic core and said substrate.
  • 9. The method as recited in claim 1 further comprising providing electrical leads protruding from sidewalls of said substrate.
  • 10. The method as recited in claim 1 further comprising placing at least one conductive winding about said magnetic core.
  • 11. The method as recited in claim 1 further comprising placing at least one planar conductive winding about said magnetic core.
  • 12. The method as recited in claim 11 further comprising providing electrical leads protruding from sidewalls of said substrate to accommodate through hole mounting or surface mounting of said magnetic device to another substrate.
  • 13. The method as recited in claim 1 wherein said shielding structure is configured to limit an exposure of said magnetic core to said encapsulant.
  • 14. The method as recited in claim 1 wherein said magnetic core is formed from ferrite.
  • 15. The method as recited in claim 1 wherein said substrate is a printed wiring board.
  • 16. The method as recited in claim 1 wherein said encapsulant is an epoxy molding compound.
  • 17. The method as recited in claim 1 further comprising providing electrical leads protruding from opposing sidewalls of said substrate to allow said magnetic device to be mounted to another substrate.
  • 18. The method as recited in claim 1 wherein said baffle is selected from the group consisting of: a plate,a wall, anda screen.
  • 19. The method as recited in claim 1 wherein said baffle is located on a side of said magnetic core and said shielding structure comprises another baffle located on another side of said magnetic core with respect to said baffle.
  • 20. The method as recited in claim 1 wherein said baffle is coupled to said substrate.
Parent Case Info

This application is a divisional of patent application Ser. No. 10/985,150, entitled “Method of Manufacturing a Power Module,” filed on Nov. 10, 2004, now U.S. Pat. No. 7,426,780, issued Sep. 23, 2008, which application is incorporated herein by reference.

US Referenced Citations (211)
Number Name Date Kind
1889398 Bishop Nov 1932 A
2600473 Brockman Jun 1952 A
3210707 Constantakes Oct 1965 A
3691497 Bailey et al. Sep 1972 A
3762039 Douglass et al. Oct 1973 A
3902148 Drees et al. Aug 1975 A
3908264 Friberg et al. Sep 1975 A
3947699 Whitmer Mar 1976 A
4101389 Uedaira Jul 1978 A
4103267 Olschewski Jul 1978 A
4187128 Billings et al. Feb 1980 A
4199743 Martincic Apr 1980 A
4349862 Bajorek et al. Sep 1982 A
4433927 Cavallari Feb 1984 A
4455545 Shelly Jun 1984 A
4586436 Denney et al. May 1986 A
4636752 Saito Jan 1987 A
4668310 Kudo et al. May 1987 A
4681718 Oldham Jul 1987 A
4751199 Phy Jun 1988 A
4754317 Comstock et al. Jun 1988 A
4777465 Meinel Oct 1988 A
4808118 Wilson et al. Feb 1989 A
4847986 Meinel Jul 1989 A
4870224 Smith et al. Sep 1989 A
4878291 Suguri Nov 1989 A
4916522 Cohn Apr 1990 A
4967156 Seitz Oct 1990 A
4975671 Dirks Dec 1990 A
5056214 Holt Oct 1991 A
5059278 Cohen et al. Oct 1991 A
5096513 Sawa et al. Mar 1992 A
5118298 Murphy Jun 1992 A
5161098 Balakrishnan Nov 1992 A
5187119 Cech et al. Feb 1993 A
5262296 Ogawa et al. Nov 1993 A
5279988 Saadat et al. Jan 1994 A
5285369 Balakrishnan Feb 1994 A
5345670 Pitzele et al. Sep 1994 A
5353001 Meinel et al. Oct 1994 A
5428245 Lin et al. Jun 1995 A
5430613 Hastings et al. Jul 1995 A
5436409 Sawada et al. Jul 1995 A
5469334 Balakrishnan Nov 1995 A
5484494 Oda et al. Jan 1996 A
5524334 Boesel Jun 1996 A
5543773 Evans et al. Aug 1996 A
5561438 Nakazawa et al. Oct 1996 A
5574273 Nakagawa et al. Nov 1996 A
5574420 Roy et al. Nov 1996 A
5578261 Manzione et al. Nov 1996 A
5692296 Variot Dec 1997 A
5751528 Nepela et al. May 1998 A
5783025 Hwang et al. Jul 1998 A
5787569 Lotfi et al. Aug 1998 A
5788854 Desaigoudar et al. Aug 1998 A
5802702 Fleming et al. Sep 1998 A
5807959 Wu et al. Sep 1998 A
5834691 Aoki Nov 1998 A
5835350 Stevens Nov 1998 A
5837155 Inagaki et al. Nov 1998 A
5846441 Roh Dec 1998 A
5898991 Fogel et al. May 1999 A
5920249 Huss Jul 1999 A
5973923 Jitaru Oct 1999 A
5998925 Shimizu et al. Dec 1999 A
6005377 Chen et al. Dec 1999 A
6005467 Abramov Dec 1999 A
6060176 Semkow et al. May 2000 A
6081997 Chia et al. Jul 2000 A
6087920 Abramov Jul 2000 A
6087921 Morrison Jul 2000 A
6094123 Roy Jul 2000 A
6101218 Nagano Aug 2000 A
6118351 Kossives et al. Sep 2000 A
6118360 Neff Sep 2000 A
6143157 Andrus et al. Nov 2000 A
6160721 Kossives et al. Dec 2000 A
6165340 Andrus et al. Dec 2000 A
6246311 Finnemore et al. Jun 2001 B1
6255714 Kossives et al. Jul 2001 B1
6317948 Kola et al. Nov 2001 B1
6353379 Busletta et al. Mar 2002 B1
6362714 Rice et al. Mar 2002 B1
6366486 Chen et al. Apr 2002 B1
6384706 Iwanami May 2002 B1
6440750 Feygenson et al. Aug 2002 B1
6466454 Jitaru Oct 2002 B1
6479981 Schweitzer, Jr. et al. Nov 2002 B2
6495019 Filas et al. Dec 2002 B1
6541819 Lotfi et al. Apr 2003 B2
6549409 Saxelby, Jr. et al. Apr 2003 B1
6552629 Dixon et al. Apr 2003 B2
6560860 Shepherd May 2003 B2
6578253 Herbert Jun 2003 B1
6608332 Shimizu et al. Aug 2003 B2
6621137 Ma et al. Sep 2003 B1
6624498 Filas et al. Sep 2003 B2
6649422 Kossives et al. Nov 2003 B2
6691398 Gutierrez Feb 2004 B2
6693805 Steigerwald et al. Feb 2004 B1
6731002 Choi May 2004 B2
6747538 Kuwata et al. Jun 2004 B2
6750403 Peterson Jun 2004 B2
6775901 Lee et al. Aug 2004 B1
6790379 Aoki et al. Sep 2004 B2
6912781 Morrison et al. Jul 2005 B2
6922130 Okamoto Jul 2005 B2
6989121 Thummel Jan 2006 B2
6998952 Zhou et al. Feb 2006 B2
6998953 Yeo et al. Feb 2006 B2
7009486 Goeke et al. Mar 2006 B1
7015544 Lotfi et al. Mar 2006 B2
7019505 Dwarakanath et al. Mar 2006 B2
7020295 Hamada et al. Mar 2006 B2
7021518 Kossives et al. Apr 2006 B2
7023315 Yeo et al. Apr 2006 B2
7038438 Dwarakanath et al. May 2006 B2
7057486 Kiko Jun 2006 B2
7101737 Cobbley Sep 2006 B2
7151228 Takase et al. Dec 2006 B2
7157984 McCorquodale et al. Jan 2007 B2
7175718 Nobutoki et al. Feb 2007 B2
7180395 Lotfi et al. Feb 2007 B2
7183622 Heck et al. Feb 2007 B2
7188530 Pedersen et al. Mar 2007 B2
7214985 Lotfi et al. May 2007 B2
7229886 Lotfi et al. Jun 2007 B2
7230302 Lotfi et al. Jun 2007 B2
7230316 Yamazaki et al. Jun 2007 B2
7232733 Lotfi et al. Jun 2007 B2
7236086 Vinciarelli et al. Jun 2007 B1
7244994 Lotfi et al. Jul 2007 B2
7250842 Johnson et al. Jul 2007 B1
7256674 Lotfi et al. Aug 2007 B2
7276998 Lotfi et al. Oct 2007 B2
7330017 Dwarakanath et al. Feb 2008 B2
7426780 Lotfi et al. Sep 2008 B2
7434306 Gardner Oct 2008 B2
7462317 Lotfi et al. Dec 2008 B2
7498522 Itoh Mar 2009 B2
7544995 Lotfi et al. Jun 2009 B2
7688172 Lotfi et al. Mar 2010 B2
7786837 Hebert Aug 2010 B2
7791440 Ramadan et al. Sep 2010 B2
7876572 Sota Jan 2011 B2
7936160 Sheehan May 2011 B1
7948772 Tung et al. May 2011 B2
7974103 Lim et al. Jul 2011 B2
8335084 Lee et al. Dec 2012 B2
20010030595 Hamatani et al. Oct 2001 A1
20010033015 Corisis Oct 2001 A1
20010041384 Ohgiyama et al. Nov 2001 A1
20020153258 Filas et al. Oct 2002 A1
20030002265 Simmons Jan 2003 A1
20030062541 Warner Apr 2003 A1
20030076662 Miehling Apr 2003 A1
20030232196 Anand et al. Dec 2003 A1
20040130428 Mignano et al. Jul 2004 A1
20040150500 Kiko Aug 2004 A1
20050011672 Alawani et al. Jan 2005 A1
20050167756 Lotfi et al. Aug 2005 A1
20050168203 Dwarakanath et al. Aug 2005 A1
20050168205 Dwarakanath et al. Aug 2005 A1
20050169024 Dwarakanath et al. Aug 2005 A1
20050212132 Hsuan et al. Sep 2005 A1
20060009023 Nair et al. Jan 2006 A1
20060038225 Lotfi et al. Feb 2006 A1
20060040449 Lotfi et al. Feb 2006 A1
20060040452 Lotfi et al. Feb 2006 A1
20060081937 Lotfi et al. Apr 2006 A1
20060096087 Lotfi et al. May 2006 A1
20060096088 Lotfi et al. May 2006 A1
20060097831 Lotfi et al. May 2006 A1
20060097832 Lotfi et al. May 2006 A1
20060097833 Lotfi et al. May 2006 A1
20060109072 Giandalia et al. May 2006 A1
20060145800 Dadafshar et al. Jul 2006 A1
20060197207 Chow et al. Sep 2006 A1
20070025092 Lee et al. Feb 2007 A1
20070074386 Lotfi et al. Apr 2007 A1
20070075815 Lotfi et al. Apr 2007 A1
20070075816 Lotfi et al. Apr 2007 A1
20070075817 Lotfi et al. Apr 2007 A1
20070210777 Cervera et al. Sep 2007 A1
20070246808 Ewe et al. Oct 2007 A1
20080001701 Gardner et al. Jan 2008 A1
20080090079 Fajardo et al. Apr 2008 A1
20080180075 Xie et al. Jul 2008 A1
20080258274 Sinaga et al. Oct 2008 A1
20080258278 Ramos et al. Oct 2008 A1
20080301929 Lotfi et al. Dec 2008 A1
20080303131 McElrea et al. Dec 2008 A1
20090004774 Lee et al. Jan 2009 A1
20090057822 Wen et al. Mar 2009 A1
20090065964 Lotfi et al. Mar 2009 A1
20090066300 Lotfi et al. Mar 2009 A1
20090066467 Lotfi et al. Mar 2009 A1
20090066468 Lotfi et al. Mar 2009 A1
20090068347 Lotfi et al. Mar 2009 A1
20090068400 Lotfi et al. Mar 2009 A1
20090068761 Lotfi et al. Mar 2009 A1
20090146297 Badakere et al. Jun 2009 A1
20100084750 Lotfi et al. Apr 2010 A1
20100087036 Lotfi et al. Apr 2010 A1
20100164449 Dwarakanath et al. Jul 2010 A1
20100164650 Abou-Alfotouh et al. Jul 2010 A1
20100176905 Lotfi et al. Jul 2010 A1
20100212150 Lotfi et al. Aug 2010 A1
20100214746 Lotfi et al. Aug 2010 A1
20110181383 Lotfi et al. Jul 2011 A1
Foreign Referenced Citations (10)
Number Date Country
10022980 Dec 2000 DE
2 041 818 Sep 1980 GB
01072517 Mar 1989 JP
1072517 Mar 1989 JP
01072517 Mar 1989 JP
2-228013 Sep 1990 JP
5-314885 Nov 1993 JP
5314885 Nov 1993 JP
6-251958 Sep 1994 JP
06-251958 Sep 1994 JP
Non-Patent Literature Citations (6)
Entry
“Technical Specification: PMF 8000 Series: POL Regulator, Input 10.8-13.2 V, Output 10 A/55 W,” EN/LZT 146 318 R1C, Sep. 2006, pp. 1-47, Ericsson Power Modules AB, Stockholm, Sweden.
Betancourt-Zamora, R.J., et al., “A 1.5 mW, 200 MHz CMOS VCO for Wireless Biotelemetry,” First International Workshop on Design of Mixed-Mode Integrated Circuits and Applications, Jul. 1997, pp. 72-74, Cancun, Mexico.
Goodman, J., et al., “An Energy/Security Scalable Encryption Processor Using an Embedded Variable Voltage DC/DC Converter,” IEEE Journal of Solid-State Circuits, Nov. 1998, pp. 1799-1809, vol. 33, No. 11, IEEE, Los Alamitos, CA.
Horowitz, P., et al., “The Art of Electronics,” Second Edition, 1989, Chapter 5: Active Filters and Oscillators, pp. 288-291, Cambridge University Press, Cambridge, MA.
Lotfi, A.W., et al., “Issues and Advances in High-Frequency Magnetics for Switching Power Supplies,” Proceedings of the IEEE, Jun. 2001, pp. 833-845, vol. 89, No. 6, IEEE, Los Alamitos, CA.
Sato, M., et al., “Influences of Molding Conditions on Die-pad Behavior in IC Encapsulation Process Analyzed by Hall Element Method,” IEEE Transactions on Advanced Packaging, Aug. 2000, pp. 574-581, vol. 23, No. 3, IEEE, Los Alamitos, CA.
Related Publications (1)
Number Date Country
20080301929 A1 Dec 2008 US
Divisions (1)
Number Date Country
Parent 10985150 Nov 2004 US
Child 12196062 US