This application claims priority to European Patent Application No. 16166285.3 filed Apr. 20, 2016, which is incorporated herein by reference.
The subject technology relates to a method of manufacturing a strain gage based pressure sensor for measuring a fluid pressure in a device. More particularly, the subject technology relates to method for determining the positions of strain gages on a circular membrane with a fluid sensing side and a strain sensing side. The subject technology further relates to a pressure sensor with strain gages attached to a circular membrane.
Strain gage based pressure transducers are used to measure pressures, such as the pressure of fluids in a vehicle. A strain gage based pressure transducer that utilizes an integrated Wheatstone bridge exhibits a high over pressure capability, high output, low offset and linear output.
Conventional pressure transducers typically utilize four strain gages bonded to the membrane of a metal pressure port element. The membrane has a fluid side to be exposed to the fluid pressure and a strain sensing side. As is well known in the art, the gages are positioned on the strain sensing side of the membrane in such a way that two strain gages are put into compression and two strain gages are put into tension when pressure is applied to the diaphragm.
European patent no. EP2735855 discloses that it is possible to position one strain gage of a half Wheatstone bridge on a first distance from the center of the membrane with compressive strain and the other strain gage of the half Wheatstone bridge on a second distance from the center of the membrane with tensile strain to improve the accuracy of the electrical signal derived from the resistance values of the pair of strain gages.
However, after mounting the pressure sensor in a device, parasitic forces acting on the metal pressure port element introduce errors in the output signal of the sensor. Parasitic forces are forces other than fluid pressure acting on the metal pressure port and can consist of for instance mounting forces, thermal-mismatch forces and package forces. The error depends on the magnitude of the parasitic force and the position and orientation of force acting on the metal pressure port. The metal pressure port element comprises a sealing surface to provide a hermetic seal between the sensor and the device. The parasitic force could be in the form of a uniform force, point force or a combination of uniform force and point force acting on the sealing surface or other location of the port. The error in the output signal of the sensor due to parasitic forces could be significant.
It is an object of the present technology to provide a method of manufacturing a strain gage based pressure sensor for measuring a fluid pressure in a device with decreased sensitivity in the output signal due to forces acting on the membrane other than the fluid pressure.
According to a first aspect of the subject technology, this object is achieved by a method of manufacturing a pressure sensor for measuring a fluid pressure in a device having the features of claim 1. Advantageous embodiments and further ways of carrying out the subject technology may be attained by the measures mentioned in the dependent claims.
In one embodiment, the subject technology is directed to a method of manufacturing a pressure sensor for measuring a fluid pressure in a device according to the subject technology comprises: providing a port element, the port element comprises a sealing structure and a membrane with a fluid side to be exposed to the fluid pressure and, a strain sensing side and a central axis, the sealing structure providing a seal when the port element is attached in an opening of the device, the membrane having a membrane central axis and the port element having a port central axis; positioning four strain gages to the strain sensing side in such a way that two strain gages are put in compressive strain and two strain gages are put into tensile strain when fluid pressure is applied to the circular membrane; and connecting the four strain gages to form a Wheatstone bridge circuit.
The method is further characterized in that the method further comprises a position determining action comprising the steps: generating a mathematical model of the port element; a first finite element action determining on the sensing side of the circular membrane with a finite element algorithm using the mathematical model a first circle with a first radius or contour with equal first strain sensitivity for pressure around the membrane central axis and a second circle with a second radius or contour with equal second strain sensitivity (with opposite sign) for pressure around the membrane central axis, wherein when fluid pressure simulation is applied to the membrane the degree of compression of the surface on the first circle or contour is equivalent to the degree of stretching of the surface on the second circle or contour; and, a second finite element action determining with a finite element algorithm using the mathematical model on the first circle or contour a first position for a first strain gage of the four strain gages and a fourth position for a fourth strain gage of the four strain gages and on the second circle or contour a second position for a second strain gage of the four strain gages and a third position for a third strain gage of the four strain gages, wherein when a characteristic parasitic force is applied to any location on the sealing structure or any other location of the port element the difference between the highest error signal and the lowest error signal measured by the a simulated Wheatstone bridge comprising the four strain gages attached to the corresponding determined four positions is minimal.
When attaching the four strain gages on the strain sensing side of the membrane two of the four strain gages are positioned on the first and fourth position on the first circle or contour and the other two strain gages are positioned on the second and third position on the second circle or contour.
European patent no. EP2735855 teaches that the position of the strain gages put in compressive strain have a first distance R1 from the center of a concentric membrane and the position of the strain gages put in tensile strain have a second distance R2 from the center of the concentric membrane. Accordingly, the positions of the two strain gages put in compressive strain can be anywhere on a circle with radius R1 and the two strain gages put in tensile strain can be anywhere on a circle with a radius R2. This is due to the circular symmetric dimensions of the membrane. That is why in literature configurations can be found where the two configurations of two strain gages forming a half-bridge are positioned at 180° and 90° as disclosed in U.S. Pat. No. 7,412,892.
The subject technology is based on the effect that when applying a parasitic force at the circumference of the port element the error introduced in the output signal of the full Wheatstone bridge formed by the four strain gages depends on the location where parasitic forces are applied on the port element and where the strain gages are positioned on the membrane and what the strain sensitive direction of the respective strain gages on the membrane is. Each half bridge gages combination has its own parasitic force error characteristic curves. It has been found that by selecting the proper rotation angle between the two half bridge gages around the centre of the membrane given a predefined parasitic force, the variation between the maximum error and minimum error due to the parasitic force in the output signal of the full Wheatstone bridge could be minimized for pressure sensors. Furthermore, in case of discrete rotational symmetric port element of the 6th order pressure port element, known as a hexagonal port plug, the present method could also be used to find the positions for the four strain gages on the membrane with the least variation in the error due to any parasitic force acting on the outside of the port element and a good sensitivity for measuring pressure of the fluid. For concentric or circular membranes the contour on the sensing side with equal strain given a fluid force acting on the membrane is a circle. Pressure sensors manufactured by for instance MEMS technology could have a membrane with a non-circular circumference. In case of a membrane with a non-circular circumference the contour has a shape between the shape of the membrane circumference and a circle.
In an embodiment, the first finite element action uses the degree of radial compressive strain on the sensing side to determine the first contour and the degree of radial tensile strain on the sensing side to determine the second contour. In an alternative embodiment, the first finite element action uses the degree of radial compressive strain on the sensing side to determine the first contour and the degree of tangential tensile strain on the sensing side to determine the second contour. These features allows to find a first and second contour for positioning the gages which provides the best sensitivity for fluid pressure acting on the membrane. The contour is then used as a starting point to find the combination positions for the strain gages on the contours which are the least sensitive for parasitic forces acting on the port element.
The second finite element action may further determine with the finite element algorithm the first to fourth position of the four strain gages by simulating a uniform force acting on the sealing structure and the highest error signal measured by the simulated Wheatstone bridge is minimal. This feature enables to reduce the influence of unpredictable mounting forces in the output signal of the pressure sensor further.
In a second aspect, there is provided a pressure sensor for measuring a fluid pressure in a device. The sensor comprises a metal port element. The port element comprises a sealing structure and a membrane with a fluid side to be exposed to the fluid pressure and a strain sensing side. The membrane further comprises a central axis. The sealing structure provides a seal when the port element is affixed in an opening of a device. Four strain gages are attached to the strain sensing side at a position such that two strain gages are put in compression and two strain gages are put into tension when fluid pressure is applied to the circular membrane. The four strain gages are electronically connected to form a Wheatstone bridge circuit. The position of the four strain gages is determined by a position determining action as defined by any of the appended method claims. By determining in advance the optimal positions of the four strain gages by the method described in the present application, the best positions could be found for each specific application such that the sensitivity for parasitic forces is minimal. For example, low pressure sensing applications, high pressure sensing applications, auto motive applications, home applications, etc.
Other features and advantages will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, various features of embodiments. It should be appreciated that the subject technology can be implemented and utilized in numerous ways, including without limitation as a process, an apparatus, a system, a device, a method for applications now known and later developed.
these and other aspects, properties and advantages will be explained hereinafter based on the following description with reference to the drawings, wherein like reference numerals denote like or comparable parts, and in which:
The subject technology overcomes many of the prior art problems associated with manufacturing pressure sensors. The advantages, and other features of the technology disclosed herein, will become more readily apparent to those having ordinary skill in the art from the following detailed description of certain preferred embodiments taken in conjunction with the drawings which set forth representative embodiments of the present invention and wherein like reference numerals identify similar structural elements.
As is understood by one of ordinary skill in the art, a strain gage based pressure sensor comprises a port element and four strain gages attached to a fluid pressure sensitive part of the port element. The four strain gages are electrically connected to form a Wheatstone bridge. The four strain gages have a position on a strain sensing side such that two strain gages are put in compressive strain and two strain gages are put in tensile strain when fluid pressure is applied to a fluid pressure side of the fluid pressure sensitive part of the port element.
Physical phenomena, such as a change in strain applied to a specimen or a temperature shift, changes the resistance of the sensing elements in the Wheatstone bridge. The Wheatstone bridge configuration is used to help measure the small variations in resistance that the sensing elements produce corresponding to a physical change in the specimen.
When a fluid pressure is applied gages G2 and G3 are put in tensile strain and gages G1 and G4 are put in compressive strain. An increase of compressive strain results in decrease of the resistance value of a strain gage and an increase of tensile strain results in increase of the resistance value of a strain gage. Strain gages G1 and G2 form a half bridge of the Wheatstone bridge and strain gages G3 and G4 form the other half bridge. The series connection of G1 and G2 and the series connection G3 and G4 are coupled at one side to voltage VB and at the other side to ground. The two strain gages forming a half bridge could be in the form of individual strain gages attached to the port element. In another embodiment, the two strain gages are combined to form one strain sensing element, also known as half bridge strain gage. When the fluid pressure increase, the voltage at the middle node VP increases and the voltage at the middle node VN decreases and consequently the voltage between VP and VN increases.
The pressure sensor comprises a port element 10. The port element comprises a fluid pressure sensitive part with a circular membrane 12 and a sealing structure 14. Via pressure port 13 fluid pressure in the device exerts pressure force on the fluid pressure side of the membrane. Opposite to the fluid pressure side the circular membrane comprises a strain sensing side. The strain gages are attached to the port element in a commonly known way, for example as disclosed in U.S. Pat. No. 7,412,892B1.
The sealing structure 14 provides a seal when the port element 10 is attached in an opening of the device. The circular membrane 12 has a membrane central axis 30 and the port element has a port central axis 20. The sealing structure 14 is concentric and has a sealing central axis that coincides with the port central axis 20. The membrane central axis 20 does not coincide with the port central axis 20.
When fluid pressure is applied to the fluid pressure side of the membrane, the surfaces below gages G1 and G4 on circle C1 with radius R1 are put in radial direction in compressive strain and the surfaces below gages G2 and G3 on circle C2 with radius R2 are put in radial direction in tensile strain. This will be elucidated by means of
The working principle of the strain based pressure sensors is that both strain gauges of the sensing electrical element measure radial strain but at two different radiuses. A characteristic of a strain gage is that the gage is sensitive for strain in a specific direction. By positioning a strain gage in such a way that the specific direction coincides a radius of the membrane, said strain gage will sense strain in radial direction and a change in resistance value of the strain gage depends substantially to a change in strain in radial direction of the membrane. In
One method to determine the positions of the strain gages comprises the following actions. First a mathematical model of the port element for use in a finite element algorithm is generated in a way known to the person skilled in the art. In a second action, a finite element algorithm is used to determine on the sensing side of the circular membrane by using the mathematical model of the port element to determine a first circle C1 around the membrane central axis 30 with a radius R1 and a second circle C2 around the membrane central axis 30 with a radius R2 wherein when fluid pressure is simulated to the circular membrane the degree of radial compression of the surface at the first circle C1 is equivalent to the degree of stretching of the surface at the second circle. The result of the second action is providing one combination of R1 and R2 which provides the positions for the two resistors of a half Wheatstone bridge with the best sensitivity in the output signal of the half Wheatstone bridge for measuring radial strain.
Subsequently, the finite element algorithm is used to determine on the first circle C1 a first position G1 and a fourth position G4 and on the second circle C2 a second position G2 and a third position G3 wherein when a parasitic force is applied to any location on the sealing structure the difference between the highest error signal and the lowest error signal measured by a simulated Wheatstone bridge comprising the four strain gages attached to the corresponding determined four positions is minimal. By this second finite element action, the best positions for the strain gages will be found on the circles with radii R1 and R2 which are the least sensitive for parasitic forces acting on for instance the sealing structure of the port element. This feature is important as normally the total mounting force acting on the port element is globally known, but how the mounting force is distributed along the sealing structure depends on a lot of factors, for example the flatness of the sealing surface of the port element and the flatness of the opposite sealing surface of the device. Furthermore, in practice the point on the sealing structure with the highest mounting force is unknown and consequently the error at the output of the Wheatstone bridge. It might be possible that by a little increase of total mounting force by screwing the pressure sensor more tightly in the device, the point with the highest force acting on the port element changes to another position on the sealing surface. The effect that the error in the output signal of the Wheatstone bridge due to a specified parasitic force varies along the sealing surface, gave us the insight that other angular positions of the half bridge strain gages might result is pressure sensors which are less sensitive for non-uniform mounting forces. This will be elucidated by two examples here below.
The curve of the error Delta VN has also a sinusoidal course. The highest error value is at about 15° and another top is at about 195°. The lowest error value is at about 100° and another minimum is at 280°. The error at the output of the Wheatstone bridge corresponds to the solid line with squared markers and the name “Error point force”. This error can be obtained by equation (1) as follows:
Error point force(x)=Delta VP(x)−Delta VN(x) (1)
wherein x is the angle of the point force at the sealing surface and has a value 0≤x<360.
Furthermore, in the graph of
When comparing the curves in
The examples given above demonstrate that by using the second finite element action which calculates for different positions of the first gage G1 and fourth gage G4 both measuring radial strain on the first circle C1 and different positions of the second gage G2 and the third gage G3 both measuring radial strain on the second circle C2 the corresponding curve of the error at the output of the Wheatstone bridge, it is possible to reduce the sensitivity of the pressure sensor for parasitic forces by attaching the four strain gages at the determined corresponding four positions.
However, it is also possible to use this method to determine better radial positions for the half bridge gages wherein one of the two strain gages of a half bridge gage measures radial strain and the other measures tangential strain. Tangential strain is strain in a direction perpendicular to a radius of the concentric membrane.
The examples given above only take into account the mounting forces acting on the sealing surface to determine the positions on the first and second circle. Next to the mounting forces other parasitic forces could be taken into account. For example a part of the pressure sensor could be welded, pressed or crimped to the port element. This results in characteristic stress (=strain) in the membrane which differs over the manufactured products. This characteristic stress could be modelled as characteristic point forces acting on specific surfaces or locations of the port element. When also the magnitude of the different sources of parasitic forces is modelled, the positions on the first and second circle could be determined which are the least sensitive for the combination of all these parasitic force variations.
The examples given above to elucidate the method of the present application comprise a circular membrane. The first circle C1 with radius R1 and the second circle C2 with radius R2 are contours around the centre of the membrane with equal strain sensitivity due to fluid pressure acting on the membrane. The strain sensitivity of the surface on the strain sensing side at the first circle C1 has a value which is opposite to the strain sensitivity of the surface at the second circle C2. However, when the membrane has a non-circular circumference, for example a squared, rectangular of elliptical, the contours with equal sensitivity for pressure are not circular but have a shape between a circle and the shape of the circumference of the membrane. MEMS is for instance a technology that allows producing membranes with any shape of circumference. In that case, with the first finite element action, contours with equal strain sensitivity around the centre of the membrane are determined and subsequently the first contour and the second contour such that the sensitivity at the output of the Wheatstone bridge for fluid pressure is optimal. A constraint to find the first and second contour could be the distance between the centre of the measuring surface of the first strain gage and the centre of the measuring surface of the second strain gage of a half bridge strain gage. The first and second contour are used in the second finite element action to determine the positions for the strain gages on the two contours which are the least sensitive for any known parasitic force acting on the outside of the port element. By means of this method batches of fluid pressure sensors are manufactured which have the least spread in variation of the output signal of the pressure sensor due to mounting forces and/or stress in the port element due to attaching components of pressure sensor to the port element.
It will be appreciated by those of ordinary skill in the pertinent art that the functions of several elements may, in alternative embodiments, be carried out by fewer elements, or a single element. Similarly, in some embodiments, any functional element may perform fewer, or different, operations than those described with respect to the illustrated embodiment. Also, functional elements (e.g., components, modules, and the like) shown as distinct for purposes of illustration may be incorporated within other functional elements in a particular implementation.
While the subject technology has been described in terms of several embodiments, it is contemplated that alternatives, modifications, permutations and equivalents thereof will become apparent to those skilled in the art upon reading the specification and upon study of the drawings. All patents, patent applications and other references disclosed herein are hereby expressly incorporated in their entireties by reference. The subject technology is not limited to the illustrated embodiments. Changes can be made without departing from the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
16166285 | Apr 2016 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
4131088 | Reddy | Dec 1978 | A |
4287772 | Mounteer et al. | Sep 1981 | A |
4347745 | Singh | Sep 1982 | A |
4400681 | Brown et al. | Aug 1983 | A |
4771427 | Tulpule et al. | Sep 1988 | A |
4825876 | Beard | May 1989 | A |
4888662 | Bishop | Dec 1989 | A |
4903164 | Bishop et al. | Feb 1990 | A |
5060108 | Baker et al. | Oct 1991 | A |
5101659 | Takeuchi | Apr 1992 | A |
5101665 | Mizuno | Apr 1992 | A |
5144843 | Tamura et al. | Sep 1992 | A |
5173766 | Long et al. | Dec 1992 | A |
5181417 | Nishida et al. | Jan 1993 | A |
5184107 | Maurer | Feb 1993 | A |
5184515 | Terry et al. | Feb 1993 | A |
5209121 | Hafner | May 1993 | A |
5222397 | Kodama | Jun 1993 | A |
5231301 | Peterson et al. | Jul 1993 | A |
5284107 | Milne et al. | Feb 1994 | A |
5331857 | Levine et al. | Jul 1994 | A |
5349865 | Kavli et al. | Sep 1994 | A |
5425371 | Mischenko | Jun 1995 | A |
5448444 | Provenzano et al. | Sep 1995 | A |
5457988 | Delatorre | Oct 1995 | A |
5587535 | Sasaki et al. | Dec 1996 | A |
5625151 | Yamaguchi | Apr 1997 | A |
5629486 | Viduya et al. | May 1997 | A |
5665921 | Gerst et al. | Sep 1997 | A |
5741975 | Vaughn, II et al. | Apr 1998 | A |
5802912 | Pitzer et al. | Sep 1998 | A |
5866822 | Willig | Feb 1999 | A |
5869766 | Cucci et al. | Feb 1999 | A |
6033544 | Demers et al. | Mar 2000 | A |
6050145 | Olson et al. | Apr 2000 | A |
6070883 | Marto | Jun 2000 | A |
6119524 | Kobold | Sep 2000 | A |
6204594 | Ingham | Mar 2001 | B1 |
6351998 | Hohnstadt | Mar 2002 | B1 |
6389903 | Oba et al. | May 2002 | B1 |
6411038 | Murai et al. | Jun 2002 | B2 |
6439058 | Aratani et al. | Aug 2002 | B1 |
6453747 | Weise et al. | Sep 2002 | B1 |
6487911 | Frackelton et al. | Dec 2002 | B1 |
6536287 | Beekhuizen et al. | Mar 2003 | B2 |
6539787 | Murai et al. | Apr 2003 | B1 |
6568276 | Ciminelli | May 2003 | B1 |
6700174 | Miu et al. | Mar 2004 | B1 |
6715357 | Ishiguro et al. | Apr 2004 | B2 |
RE38557 | Englund et al. | Jul 2004 | E |
6763724 | DiPaola et al. | Jul 2004 | B2 |
6876943 | Wegerich | Apr 2005 | B2 |
6945118 | Maitland, Jr. et al. | Sep 2005 | B2 |
6952042 | Stratton et al. | Oct 2005 | B2 |
7021147 | Subramanian | Jan 2006 | B1 |
7032456 | Amin | Apr 2006 | B1 |
7114396 | Oda et al. | Oct 2006 | B2 |
7197937 | Amore et al. | Apr 2007 | B2 |
7207214 | Wlodarczyk | Apr 2007 | B1 |
7302855 | Oda | Dec 2007 | B2 |
7316164 | Toyoda et al. | Jan 2008 | B2 |
7383737 | Lin et al. | Jun 2008 | B1 |
7412894 | Ueyanagi et al. | Aug 2008 | B2 |
7518234 | Okojie | Apr 2009 | B1 |
7555957 | Toyoda | Jul 2009 | B2 |
7570065 | Harish et al. | Aug 2009 | B2 |
7578194 | Hadjiloucas et al. | Aug 2009 | B1 |
7726197 | Selvan et al. | Jun 2010 | B2 |
7739922 | Inamori | Jun 2010 | B2 |
7775119 | Suminto et al. | Aug 2010 | B1 |
8024978 | Khemet et al. | Sep 2011 | B2 |
8056752 | Carnevali | Nov 2011 | B2 |
8104357 | Schlitzkus et al. | Jan 2012 | B2 |
8129624 | Willner et al. | Mar 2012 | B2 |
8156816 | Willner et al. | Apr 2012 | B2 |
8164007 | Speldrich et al. | Apr 2012 | B2 |
8215176 | Ding et al. | Jul 2012 | B2 |
8250909 | Kern et al. | Aug 2012 | B2 |
8297115 | Borgers et al. | Oct 2012 | B2 |
8429956 | Borgers et al. | Apr 2013 | B2 |
8516897 | Jones et al. | Aug 2013 | B1 |
8627559 | Suminto et al. | Jan 2014 | B2 |
8671767 | Kaiser et al. | Mar 2014 | B2 |
8950247 | Borgers et al. | Feb 2015 | B2 |
8984949 | Staiger et al. | Mar 2015 | B2 |
9003897 | Wade et al. | Apr 2015 | B2 |
9046436 | Schlitzkus et al. | Jun 2015 | B2 |
9063033 | Mayer et al. | Jun 2015 | B2 |
20010015402 | Murai et al. | Aug 2001 | A1 |
20010039837 | Tanizawa et al. | Nov 2001 | A1 |
20020029639 | Wagner et al. | Mar 2002 | A1 |
20020073533 | Park | Jun 2002 | A1 |
20020100948 | Yoshihara | Aug 2002 | A1 |
20030033884 | Beekhuizen et al. | Feb 2003 | A1 |
20030150275 | Wagner et al. | Aug 2003 | A1 |
20040007073 | Weise | Jan 2004 | A1 |
20040007074 | DiPaola et al. | Jan 2004 | A1 |
20040007075 | Ishiguro et al. | Jan 2004 | A1 |
20040015282 | Babala et al. | Jan 2004 | A1 |
20040020300 | Boehler et al. | Feb 2004 | A1 |
20040132900 | Sachdev et al. | Jul 2004 | A1 |
20040146719 | Baney et al. | Jul 2004 | A1 |
20040147140 | Fan et al. | Jul 2004 | A1 |
20040200286 | Mast | Oct 2004 | A1 |
20050011273 | Sasaki et al. | Jan 2005 | A1 |
20050103111 | Imai et al. | May 2005 | A1 |
20050252300 | Miller | Nov 2005 | A1 |
20060000289 | Jonsson | Jan 2006 | A1 |
20060042393 | Kaneko et al. | Mar 2006 | A1 |
20060042394 | Kosh et al. | Mar 2006 | A1 |
20060042395 | Lepine et al. | Mar 2006 | A1 |
20060053894 | Kunda et al. | Mar 2006 | A1 |
20060090566 | Oda | May 2006 | A1 |
20060123887 | Dordet | Jun 2006 | A1 |
20060214202 | Zorich et al. | Sep 2006 | A1 |
20060278012 | Fujimoto et al. | Dec 2006 | A1 |
20070148788 | Hsieh et al. | Jun 2007 | A1 |
20070154631 | Sachdev et al. | Jul 2007 | A1 |
20070202628 | Wuertz | Aug 2007 | A1 |
20070205776 | Harish et al. | Sep 2007 | A1 |
20080148860 | Murakami et al. | Jun 2008 | A1 |
20080222884 | Bradley et al. | Sep 2008 | A1 |
20080262584 | Bottomley et al. | Oct 2008 | A1 |
20090071260 | Speldrich | Mar 2009 | A1 |
20090075529 | Johnston et al. | Mar 2009 | A1 |
20090282926 | Hauer et al. | Nov 2009 | A1 |
20090315864 | Silverbrook et al. | Dec 2009 | A1 |
20090320576 | Borgers et al. | Dec 2009 | A1 |
20100052578 | Kim | Mar 2010 | A1 |
20100192696 | Schlitzkus et al. | Aug 2010 | A1 |
20100219487 | Donis | Sep 2010 | A1 |
20100239109 | Lutz et al. | Sep 2010 | A1 |
20100267291 | Chabineau-Lovgren et al. | Oct 2010 | A1 |
20100281994 | Brown et al. | Nov 2010 | A1 |
20110088480 | Koehler et al. | Apr 2011 | A1 |
20110108322 | Kaiser | May 2011 | A1 |
20110153277 | Morath | Jun 2011 | A1 |
20110290030 | Willner et al. | Dec 2011 | A1 |
20110320158 | Steckenreiter et al. | Dec 2011 | A1 |
20120067130 | Kaiser et al. | Mar 2012 | A1 |
20120227477 | Borgers et al. | Sep 2012 | A1 |
20130052936 | Jordan | Feb 2013 | A1 |
20130073189 | Korenaga et al. | Mar 2013 | A1 |
20130192379 | Petrarca | Aug 2013 | A1 |
20130248024 | Dunn et al. | Sep 2013 | A1 |
20130264664 | Nimura et al. | Oct 2013 | A1 |
20130336511 | Underbrink et al. | Dec 2013 | A1 |
20140130585 | Borgers et al. | May 2014 | A1 |
20140130586 | Zwollo et al. | May 2014 | A1 |
20140144206 | Uehlin et al. | May 2014 | A1 |
20140219713 | Balsells et al. | Aug 2014 | A1 |
20140260648 | Aoyama et al. | Sep 2014 | A1 |
20140338448 | Ashino | Nov 2014 | A1 |
20150135853 | McNeal et al. | May 2015 | A1 |
20150377729 | Hio et al. | Dec 2015 | A1 |
20160025581 | Kazama et al. | Jan 2016 | A1 |
20160133762 | Blasco Claret | May 2016 | A1 |
20160265998 | Lavado et al. | Sep 2016 | A1 |
20160282205 | Huo et al. | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
103454032 | Dec 2013 | CN |
4234289 | Nov 1993 | DE |
4407212 | Aug 1995 | DE |
102004048367 | Apr 2006 | DE |
085584 | Aug 1983 | EP |
1074827 | Feb 2001 | EP |
1211497 | Jun 2002 | EP |
1560012 | Aug 2005 | EP |
1826543 | Aug 2007 | EP |
2390641 | Nov 2011 | EP |
2620757 | Jul 2013 | EP |
2848908 | Mar 2015 | EP |
2791430 | Sep 2000 | FR |
2066590 | Jul 1981 | GB |
406037334 | Feb 1994 | JP |
2010256187 | Nov 2010 | JP |
WO-0242720 | May 2002 | WO |
WO-2003100371 | Dec 2003 | WO |
WO-2006102460 | Sep 2006 | WO |
WO-2011155054 | Dec 2011 | WO |
WO-2013083320 | Jun 2013 | WO |
WO-2013110045 | Jul 2013 | WO |
WO-2014132730 | Sep 2014 | WO |
Entry |
---|
European Search Report for European Patent Application No. 16166285.3 dated Oct. 7, 2016, 12 pages. |
Number | Date | Country | |
---|---|---|---|
20170307457 A1 | Oct 2017 | US |