Current trends within print head design involve increasing the jet packing density and jet count while simultaneously reducing the cost of the print head. The ‘jets,’ also referred to as nozzles, drop emitters or ejection ports, generally consist of apertures or holes in a plate through which ink is expelled onto a print surface. Higher density and higher counts of jets results in higher resolution and higher quality print images.
Each jet has a corresponding actuator, some sort of transducer that translates an electrical signal to a mechanical force that causes ink to exit the jet. The electrical signals generally result from image data and a print controller that dictates which jets need to expel ink during which intervals to form the desired image. Examples of transducers include piezoelectric transducers, electromechanical transducers, heat generating elements such as those that cause bubbles in the ink for ‘bubble jet’ printers, etc.
Some of the transducer elements act against a membrane that resides behind the ‘jet stack,’ a series of plates through which ink is transferred to the nozzle or jet plate. The actuation of the transducers causes the membrane to push against the chambers of the jet stack and ultimately force ink out of the nozzles.
The increased jet packing density and jet count introduce the need for significant reductions in the size and spacing between the actuators, electrical traces, and electromechanical interconnects. The electromechanical interconnect of the most interest here forms the interconnect between the single jet actuators and their corresponding drive electronics through which they receive the signals mentioned above. Current methods make the interconnect between the drive circuitry and the transducers/actuators expensive, and may not have the capability of achieving manufacturable and reliable interconnects at the increased density and reduced sizes desired. Some potential solutions include chip on flex (COF) and tape automated bonding (TAB) technologies where the driving circuitry resides on flexible substrates.
Some approaches have begun to use flexible circuitry substrates such as by mounting the drive chips onto a flexible circuitry using something like tape automated bonding (TAB) or chip on flex (COF). These approaches provide possible solutions to the limited pitch densities and high cost associated with multilayer flex circuits. Another solution or part of a solution is to emboss the flex circuitry substrate such that the contact pads that connect between the flex circuit and the transducers extend out of the plane of the flexible circuit substrate, making a more robust connection.
An arrayed punch 38 is then arranged over the flex circuit 36. The arrayed punch has an array of individual punches and is aligned such that each individual punch lines up with a contact pad on the flexible circuit substrate. Pressure is then applied to the press, causing the punches to push the contact pads out of the plane of the flexible circuit substrate.
In an alternative method, an arrayed die is used instead of an arrayed punch. In the embodiment of
In any of the above embodiments, the characteristics of the dimple formed on the contact pads can be adjusted by the size, height and shape of the punch and die elements, the stiffness of the compliant pad, as well as the pressure applied by the press. By adjusting these parameters, important aspects of the dimples can be optimized to fit the needs of a particular application.
The punch height was the dominant factor in determining dimple height for the factors studied. One should note that the use of arrayed elements in the above embodiments may be replaced with a single punch, a single die or an arrayed element.
Once the flexible circuit is embossed, several options exist for how to form the interconnect between the flex circuit substrate and the transducer array. For example, one approach uses anisotropic conductive adhesive film (ACF)—also referred to as z-axis tape (ZAT). A second approach uses stenciled or otherwise patterned conductive adhesive with or without a standoff layer. A third approach employs a non-conductive adhesive layer between the flexible circuit substrate and the transducer array with the electrical continuity established by an asperity contact.
Anisotropic conductive film generally consists of conductive particles enclosed in a polymer adhesive layer. The tape is generally nonconductive until application of heat and pressure causes the particles to move within the adhesive to form a conductive path. The below discussion uses two different approaches of forming the interconnect with anisotropic conductive film. In a first approach using anisotropic conductive film, a mask or coverlay layer is used on the flexible circuit substrate. The coverlay is patterned to selectively expose portions of the flexible circuit substrate where interconnection is desired.
Patterning of the coverlay can be accomplished in different ways. For example, an additive method of patterning the coverlay involves patterning the mask when it is created. The pre-patterned mask is then attached to the flex circuit or the flex circuit is manufactured with the patterned mask as part of the manufacturing process. In a subtractive method, a mask covers the entire surface of the flex circuit. Selected areas of the coverlay are then removed, using laser ablation or photolithography. In one embodiment, scanned CO2 lasers or excimer lasers perform the removal process. In the scanned CO2 embodiment, the laser beam may be shuttered and scanned across the flexible circuit substrate and its coverlay to remove the coverlay material from each pad. With an excimer laser process, the laser illuminates the mask and is imaged onto the pads. In higher pad densities, the excimer layer process may result in cleaner and precisely aligned pad openings.
The resulting coverlay covers the bulk of the traces on the flexible circuit substrate and only pad areas where interconnect is desired are exposed. The flexible circuit is then embossed to cause the contact pads to extend out of the plane of the flexible circuit substrate. This extension may or may not cause the contact pads to extend beyond the coverlay.
In a second approach, the flexible circuit substrate does not use a coverlay. All traces and the pads on the flexible circuit substrate remain exposed. In this approach, only those portions for which connection is desired are embossed, and only those embossed portions form electrical connection.
In either approach, the flexible circuit substrate is placed embossed side down over the anisotropic conductive film such that the embossed pads are aligned with the individual transducer elements. Suitable pressure and temperature are then applied. The regions of the anisotropic conductive film that are in contact with the embossed pads experience localized flow, resulting in the conductive particles within the anisotropic conductive film to come into contact with each other, as well as the transducer element and the embossed pad. This chain of conductive particles creates an electrical interconnect between the transducer element and the flex pad. The adhesive portion of the film also creates a permanent mechanical bond at this point. This process will result in the electrical interconnection to be formed, whether the flexible circuit has the coverlay or not.
The application of the embossed flexible circuit does not require the use of anisotropic conductive film. One can use more traditional means of forming the interconnect.
A standoff layer 54 resides on the transducer layer such that openings in the standoff layer align with the transducers. A conductive adhesive 56 resides in the openings, having been deposited into the openings such as by stenciling or other patterning. The conductive adhesive forms the electrical interconnect between the embossed portions of the flexible circuit substrate and the transducer. In one embodiment, the conductive adhesive is dispensed into the openings and then the flexible circuit substrate can be aligned such that the embossed portions of the flexible circuit substrate extend into the openings.
In another embodiment, a nonconductive adhesive can reside between the embossed flexible circuit substrate and the transducer array. Enough pressure is applied to the flexible circuit array such that the embossed portions push through the nonconductive adhesive and make contact with the transducer directly. When the adhesive cures, it holds the contact regions in place.
In the embodiment of
Other variations and modifications exist. The arrays of transducers, jets and dimples may consist of one-dimensional or two-dimensional arrays. The size, shape, and height of dimples may vary by the embossing processes as desired by the particular application, jet density and jet count. The manner and composition of the conductive adhesive, the nonconductive adhesive, the coverlay and the standoff layers may change as needed by a particular application or mix of materials and their compatibilities.
In this manner, the embodiments disclose a robust interconnect architecture that has flexible manufacturing processes and structures. These interconnect embodiments provide this robustness even in view of increased jet density and higher jet counts.
It will be appreciated that several of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Also that various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
This application is a divisional of U.S. patent application Ser. No. 12/795,605, filed on Jun. 7, 2010, now U.S. Pat. No. 8,628,173, entitled “Electrical Interconnect Using Embossed Contacts on a Flex Circuit”, which is incorporated herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5764267 | Akutsu et al. | Jun 1998 | A |
5889539 | Kamoi et al. | Mar 1999 | A |
5984447 | Ohashi | Nov 1999 | A |
6161270 | Ghosh et al. | Dec 2000 | A |
6241340 | Watanabe et al. | Jun 2001 | B1 |
6270193 | Hiwada | Aug 2001 | B1 |
6641254 | Boucher et al. | Nov 2003 | B1 |
6891314 | Sato et al. | May 2005 | B2 |
6905342 | Swier et al. | Jun 2005 | B2 |
RE39474 | Hashizume et al. | Jan 2007 | E |
7475964 | Benson et al. | Jan 2009 | B2 |
20060042826 | Kondo | Mar 2006 | A1 |
20080170102 | Kim et al. | Jul 2008 | A1 |
20080313895 | Higuchi et al. | Dec 2008 | A1 |
20130061469 | Dolan et al. | Mar 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20140090248 A1 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12795605 | Jun 2010 | US |
Child | 14098122 | US |