This invention relates to a method of manufacturing a stiff engineered composite. More particularly, this invention relates to a method of producing stiff mycelium bound parts.
As is known, conventional methods for producing nonstructural boards rely on compressing wood veneer sheets, fibers, or particles and binding them together with resin to form composites like hardwood plywood and medium density fiberboard, which are used for applications such as furniture and fixtures, cabinetry, paneling, molding and athletic equipment. The ingredients for these typical non-structural boards require considerable pre-processing, and the feedstocks, especially timber and resins, are subject to considerable price volatility. Additionally, many of the resins used to produce non-structural boards are carcinogenic and can emit volatile organic compounds (VOCs).
Much like nonstructural boards, structural boards are produced by compressing wood veneer sheets, fibers, or particles and binding them together with resin to form composites like oriented strand board (OSB) and softwood plywood. OSB and softwood plywood are used for applications such as wall sheathing, floor sheathing, and concrete framework. These structural boards face the same concerns that nonstructural boards face because they use similar feedstocks and resins.
Many structural and nonstructural boards are used for applications in furniture, cabinetry, and fixtures where they must be cut, milled, and sanded to form the desired shape. Such post processing is expensive and time consuming and creates material waste as the products are shaped. Plastics are also used for these applications and require expensive tools and machines for molding in their production processes.
US Published Patent Application 2008/0145577 describes various techniques for making self-supporting composite bodies comprised of discrete particles and a network of interconnected mycelium cells bonding the particles together. As described therein, the composite bodies may be formed into panels as well as into panel systems with a composite core.
It is an object of this invention to provide an improved process for the manufacture of a compressed composite body of particle/mycelium.
Briefly, the invention provides a method of achieving adhesion between a matrix of fungal mycelium and a slurry of particles and/or fibers (natural or synthetic) through a heated compression process.
US Published Patent Application 2008/0145577 has demonstrated that fungal mycelium can bind natural (lignocellulosic and chitinous waste streams) and/or synthetic (fiberglass) particles together during a controlled incubation process. The mycelium in the latter instance serves as a grown adhesive, digesting a portion of the particles and fibers while encapsulating the slurry in a network of a vegetative tissue.
The process described within demonstrates that the extracellular matrix of mycelium, known as the matrix layer of the cell wall and comprised of polysaccharides (alpha and beta glucans), polymerized amino sugars (N-glucosamine, chitin), monoproteins, and phosopholipids, can serve as a traditional adhesive when heated and dried concurrently. The mycelium is either grown on, or mixed with, an engineered substrate of natural and/or synthetic particles and/or fibers and then compressed under heat and dried to desired geometry.
The heating of the mycelium matrix actually provides value in two places, which makes this process distinctly different from the prior art. The fungal cell wall is comprised of chitin and glucans. The glucans, when heated and saturated with the moisture embedded within the composite, begin to flow like a traditional resin and when dried stick the particles together beyond the traditional mycelium matrix.
By creating sheets of material made from particles bound together with mycelium (hereinafter “the biocomposite material”) and compressing these sheets together, bio-based nonstructural boards can be created with feedstocks. The sheets of biocomposite material can be grown together or compressed together with heat to set and dry the final product. The sheets of biocomposite material can vary in product density, fiber content, particle size, and fiber orientation to selectively promote specific mechanical properties (screw hold strength, core shear, modulus of elasticity).
Further, a large mass of mycelium can be cultivated on particles or fibers, milled to a consistent particle size and then pressed in a constrained heated tool.
Additionally, VOCs are not a concern for structural boards produced in this manner because no VOC emitting resins are used in the production process, and the cross-linking occurs between the biochemical construct of the fungal cell wall.
There are significant mechanical advantages garnered from compressing sheets of mycelium bound particles into a single cohesive product with heightened temperatures (200° F.-650° F.) while compressing the biocomposite material at a pressure of from 10 to 1500 psi. These advantages include enhanced modulus of rupture and elasticity (stiffness), and the ability to layer sheets of varying particles size to achieve greater stiffness or dimensional stability (squareness, flatness).
Other materials, including veneers, textiles, or laminates, that are comprised of wood, plastics (polyester scrim), foam, natural fibers, stone, metal, or the like can be grown and bound to the face or internal structure of the mycelium and particle sheets. These laminates can be stacked and interlaid to the mycelium colonized particle sheets, and then compressed to a desired form (flat or molded).
Structural boards can be created by compressing thick blocks of grown material or layered sheets of grown material (particles and/or fibers bound by mycelium) while drying with heat (radiation, conduction, or convective).
Orienting particles within an engineered substrate and then preliminarily binding these with mycelium creates a bio-based product that does not emit VOCs.
The compressed biocomposite material can be easily and cheaply shaped during production. The grown material can be compressed in an inexpensive mold (fiberglass, carbon fiber, composite, wooden and/or metal, e.g. aluminum), giving the material the desired shape and material properties without creating waste. The final product can be dried in the tool to promote cross-linking between the natural polymers within the mycelium, which can occur within the magnitude of minutes.
The grown material can also be compressed in a conductive tool that is heated as well to the final shape, either with a heated platen or inserted cartridges.
These and other objects and advantages of the invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings wherein:
The FIGURE schematically illustrates the steps in the method of manufacturing a stiff engineered composite in accordance with the invention.
Referring to the FIGURE, in accordance with the method of the invention, an engineered substrate bound with mycelium 10 is grown into a sheet of appropriate dimensions in step 1. In this respect, the basic steps of the method include:
1. Obtain substrate constituents, including fungal inoculum, a bulking collection of particles and/or fibers, a nutrient source or variety of nutrient sources, and water.
2. Combine the substrate constituents by mixing together in volumetric or mass ratios to obtain a solid media with the inoculum (cell and/or tissue culture) added during or following the mixing process.
3. Place the growth media in an enclosure or series of enclosures of the desired geometry.
4. Allow the mycelia to grow through the substrate, creating a composite with a geometry matching the enclosure. This may be either the final geometry or the near net geometry of the final product.
4
a. For parts that are dried in compression, the mycelium does not have to grow on the engineered substrate but could be grown in a secondary process and thoroughly intermixed to distribute culture just prior to compressive drying (conduction, convection, radiation).
5. Repeat steps 1-3 for applications where materials are layered or embedded to create the desired final composite media. Alternatively to steps 3 and 4, the growth media may be grown as a solid mass, and then ground up for later steps or placed in an enclosure of the desired shape and then be allowed to regrow into that shape.
In step 2 of the method, the engineered substrate 10 containing some residual moisture and, for example in the form of a flat rectangular plate or tile, is placed in a compression fixture 11, for example, a pinch press 11. As illustrated, the pinch press 11 has a bottom platen 12 that can be heated and that is formed with a mold body 13 of predetermined shape, for example, of semi-cylindrical shape. The pinch press 11 also has a top platen 14 for engaging on the bottom platen 12 with a cavity 15 within the platen 14 for mating about the mold body 13. Typically, when the platens 12, 14 are closed together, a semi-cylindrical gap exists between the mold body 13 and the cavity 15.
Typically, the engineered substrate 10 should contain a minimum of 10% moisture by weight. Steam may also be injected into a dry mass during compression to induce the adhesion.
Since the glucans are activated by steam, the engineered substrate 10 should contain a minimum of 40% moisture by weight so that the moisture may be transformed into steam during the heated pressing process as otherwise live steam would be injected into the dry mass during compression to induce the adhesion.
After positioning of the engineered substrate 10 on the mold body 13 of the pinch press 11, the top platen 14 is lowered onto the bottom platen 12 in order to compress, trim and dry the biocomposite material of the substrate 10.
During operation, the pinch press 11 is heated to 300° F. while compressing the biocomposite material of the substrate to between 10 psi and 1500 psi. The length of time that the biocomposite material of the substrate 10 is retained within the pinch press 11 under heat and pressure is sufficient to the reduce the moisture content of the material to less than 10% by weight and to promote cross-linking between the natural polymers within the mycelium. The biocomposite material can also be held in the pinch press 11 for a time sufficient to achieve a product stiffness that is sufficient to remove the compressed material from the pinch press 11 (“tool” or “buck”).
In step 3 of the method, with the pinch press 11 opened, a compressed monolithic body 16 is removed from the pinch press 11. As illustrated, the monolithic body 16 has a semi-cylindrical shape and is characterized as being a rigid shell.
Additional methods can also be used to produce desirable properties in the final composite.
1. The substrate of engineered particles and/or fibers (“biocomposite material”), either colonized with mycelium (bioactive) or intermixed with mycelium (inactive), can also include cation salts (divalent Na2+ and the like) that can assist with cross-linking between the polysaccharides and amino sugars. Acids (hydrochloric, acetic, lactic) can be provided as well to ensure the substrate stays protonated.
a. The cation salts can be applied during initial substrate preparation and sterilization.
b. The cations can be applied in a solution by either vacuum infusing the solution into the substrate or immersing the substrate in a cation solution for a certain period of time.
2. Surface treatments, such as laminates, veneers, or supplemental fibers, can be bound to the engineered substrate. For example, a laminate can be placed on the face of the engineered substrate during the initial growth step. This is “colonization”. Alternatively, a laminate may be applied to the engineered substrate just before pressing and bound with only the glucans.
The laminate treatments are applied to the surfaces, or in between tiles if multiple colonized blocks are used, and pressed with a heated platen until the biocomposite material is <10% moisture.
Laminations and inserts can also be pressed into the surface of a colonized engineered substrate, again using the adhesion from the glucans. The laminations can include non-woven textiles, woven products (jute, fiberglass), and Kraft paper, which become an integrated component of the final part.
Inserts can be positioned in either the lower or upper platens of the compression tooling, and can be pressed into the biological composite during the setting process.
3. The biocomposite material can also be dried to a particular moisture content with conduction, convection, and/or radiation at atmospheric pressure, and then compression dried to complete the process.
4. The biocomposite material can be dried to a moisture content of between 6% and 30% during the heated compression stage to retain enough moisture to impart electrical conductivity such that the resultant compressed monolithic body can be powder coated since a powder coating process requires the material to be electrically conductive and moisture, rather than metals salts, is used to impart this characteristic.
a. The heated compression tool, which forms the final product geometry, can include surface finishes that translate to the final part.
5. The colonized biocomposite material can be compressed and dried with a series of heated rollers that narrow in cross-section as the material is conveyed through the process.
Sheets of biocomposite material can be grown together or compressed together with heat to set and dry the final product. The sheets of biocomposite material can vary in product density, fiber content, particle size, and fiber orientation to selectively promote specific mechanical properties (screw hold strength, core shear, modulus of elasticity). Additionally, VOCs are not a concern for structural boards produced in this manner because no VOC emitting resins are used in the production process, and the cross-linking occurs between the biochemical construct of the fungal cell wall.
There are significant mechanical advantages garnered from compressing sheets of mycelium bound particles into a single cohesive product with heightened temperatures (200° F.-650° F.). These advantages include enhanced modulus of rupture and elasticity (stiffness), and the ability to layer sheets of varying particles size to achieve greater stiffness or dimensional stability (squareness, flatness). Other materials, including veneers, textiles, or laminates, that are comprised of wood, plastics (polyester scrim), foam, natural fibers, stone, metal, or the like can be grown and bound to the face or internal structure of the mycelium and particle sheets. These laminates can be stacked and interlaid to the mycelium colonized particle sheets, and then compressed to a desired form (flat or molded).
The method of the invention allows a final part to have a density between 18 and 60 lbs/ft3, an elastic modulus up to 250 ksi and a modulus of rupture as high as 2500 psi.
Where the growth media is grown as a solid mass and then ground up to produce particles or pellets with mycelium therein, the particles may be poured into an enclosure of the desired shape and then heated and pressed with the process parameters described above. In this embodiment, the final product has a Modulus of Elasticity of 111 psi and a Modulus of Rupture of 2840 psi.
The method provides for crosslinking to occur between the glucans in the mycelia that are solubilized during the compression and moisture release process. This can be further mediated with mild acids that assist in protonating and cross-linking.
1. Kenaf pith (screened over a 0.375″ screen, 42% of mass), maltodextrin (1.6% of mass), calcium sulfate (0.4% of mass), and water (56% of mass) are mixed in an autoclavable bag to form the substrate for fungal growth. For five liters of substrate, the amount of Kenaf pith is 670 grams (g).
2. The bag is sterilized in a pressure cooker at 15 psi and 240° F. for 60 minutes.
3. Millet grain spawn containing fungal tissue is mixed into the substrate (10% [m:m].
4. Plastic tool molds that are 6 inches long, 6 inches wide, and 1 inch deep are filled with inoculated substrate.
5. The substrate is allowed to colonize in the tools for 7 days at ambient laboratory conditions (75° F., 20% relative humidity, 2000 ppm CO2)
6. Wooden veneers that are 6 inches wide by 6 inches long and a square of porous plastic with same dimensions are soaked in 10% hydrogen peroxide for 30 minutes. This is a chemical disinfection method that also imparts the correct amount of water, since hydrogen peroxide oxidizes to water.
7. The substrates in the form of tiles are ejected from the mold and stacked in groups of three with a wooden veneer at each surface and interface and the porous plastic square on the side that will be next to an air inlet during compression.
8. The stack of tiles, veneers, and porous plastic is compressed to approximately 3 times density in a compression frame with an air inlet for forced aeration on one side and holes for passive ventilation on the other. For example, as described in Provisional Patent Application 61/860,386, filed Jul. 31, 2103, the disclosure of which is incorporated herein.
9. The compression frame is hooked up to an air pump and the compressed substrate is subjected to forced aeration for 5 days. Alternatively, the compressed substrate may be dried within the compression frame with convective or conductive drying.
10. The compressed composite body is ejected from the compression frame and placed in an aluminum collar of the same exterior dimensions that surrounds the periphery of the compressed composite body. This collar that has the desired features, locks and creates the features and dimensions required of the final part.
11. A heated platen press (at a force of 20 ton and 600° F.) is compressed onto the pre-compressed body for two minutes, such that the body is dried to <10% moisture content.
The resulting part has a density of 20 lbs/ft3, a modulus of elasticity around 80 ksi, a modulus of rupture around 800 psi, and a screw hold strength around 100 lbf.
In this example, the biocomposite material is subjected to compression alone to form a compressed monolithic body, e.g. as described in as described in Provisional Patent Application 61/860,386, filed Jul. 31, 2103, and then subjected to heat and pressure to promote cross-linking between the natural polymers within the mycelium.
1. Kenaf pith (screened over a 0.375″ screen, 42% of mass), maltodextrin (1.6% of mass), calcium sulfate (0.4% of mass), and water (56% of mass) are mixed in an autoclavable bag to form the substrate for fungal growth.
2. The bag is sterilized in a pressure cooker at 15 psi and 240° F. for 60 minutes.
3. Millet grain spawn containing fungal tissue is mixed into the substrate (10% [m:m].
4. Plastic tool molds that are 6 inches long, 6 inches wide, and 1 inch deep are filled with inoculated substrate.
5. The substrate is allowed to colonize in the tools (molds) for 7 days at ambient laboratory conditions (75° F., 20% relative humidity, 2000 ppm CO2)
6. The colonized substrate is ejected from the plastic tool that granted the growing mass its original structure and placed in an aluminum collar that is perforated to allow for water to escape.
The colonized substrate is placed in a heated platen press (20 ton, 600° F.) and is compressed for four minutes, such that the part is dried to <10% moisture content. The colonized substrate requires between 25 psi and 5000 psi to achieve the maximum compression required.
The resulting part has a density of 34 lbs/ft3, a modulus of elasticity around 132 ksi, a modulus of rupture around 1698 psi, and a screw hold strength around 24 lbf at half an inch thickness. By way of comparison, a composite for packaging made in accordance with the methods described in US Published Patent Application 2008/0145577 has a density of from 5 to 8 lbs/ft3.
1. Kenaf pith (screened over a 0.375″ screen, 42% of mass), maltodextrin (1.6% of mass), calcium sulfate (0.4% of mass), and water (56% of mass) are mixed in an autoclavable bag to form the substrate for fungal growth.
2. The bag is sterilized in a pressure cooker at 15 psi and 240° F. for 60 minutes.
3. Millet grain spawn containing fungal tissue is mixed into the substrate (10%) [m:m].
4. Growth enclosure molds that are fabricated out of thermoformed polyethylene plastic to the final product geometry or near net shape are filled with inoculated substrate.
5. The substrate is allowed to colonize in the tools (molds) for 7 days at ambient laboratory conditions (75° F., 20% relative humidity, 2000 ppm CO2)
6. The colonized substrate is ejected from the plastic tool that granted the growing mass its original structure and placed in a structural enclosure of the final product configuration. This second enclosure permits conductive heating and is designed to allow for the installation of embedded inserts or secondary components. The tool is perforated to allow for water to escape.
7. The colonized substrate in the second enclosure is placed in a heated platen press (20 ton, 600° F.) and is compressed for four minutes, such that the part is dried to <10% moisture content.
The resulting part has a density of 29 lbs/ft3, a modulus of elasticity around 120 ksi, a modulus of rupture around 819 psi, and a screw hold strength around 132 lbf at an inch thickness.
1. Kenaf pith (screened over a 0.375″ screen, 42% of mass), maltodextrin (1.6% of mass), calcium sulfate (0.4% of mass), and water (56% of mass) are mixed in an autoclavable bag to form the substrate for fungal growth.
2. The bag is sterilized in a pressure cooker at 15 psi and 240° F. for 60 minutes.
3. Millet grain spawn containing fungal tissue is mixed into the substrate (10% [m:m].
4. Plastic tool molds that are 18 inches long, 18 inches wide, and 1 inch deep are filled with inoculated substrate.
5. The substrate is allowed to colonize in the tools (molds) for 7 days at ambient laboratory conditions (75° F., 20% relative humidity, 2000 ppm CO2)
6. The colonized substrate, in the form of a sheet, is ejected from the plastic tool and aligned in a heated pinch press of a desired geometry.
7. The colonized part is pressed and heated (300° F.) for one minute, such that the part is dried to <10% moisture content, molded to the desired shape, and excess material trimmed from the final product.
1. Fabricate the biocomposite material into a flat blank board of 1.25″ thickness with a 0.25″ hemp nonwoven matt grown into either face.
2. Press the flat blank board into the predetermined curved shape, such as a shape for a chair back, along with surface features under a compressive force of 3000 psi and 340° F. for 10 minutes to lock the surface features and get the board to below 10% moisture.
The surface feature may be obtained by embossing at least one face of the board with a predetermined sculptured feature using an embossing surface on the face of the press that is pressed against the board.
When using a mold (tool), a mold release, such as a spray release or a parchment paper, may be used on the surfaces of the mold to enable an easy ejection of the colonized substrate from the mold.
The invention thus provides a compressed composite body of particle/mycelium that is characterized in being a rigid body having a density in the range of from 18 to 60 lbs/ft3, a modulus of elasticity of up to 250 ksi (1 k=1000 psi) and a modulus of rupture of up to 2500 psi.
The compressed composite body made in accordance with the methods described herein differs from a compressed composite body made in accordance with the methods described in Provisional Patent Application 61/860,386, filed Jul. 31, 2013, inter alia, in that due to conductive drying, the glucans are cross-linked and all the water is removed.
The composite body made in accordance with the invention may be subjected to further processing steps to achieve a desired final product. For example, the composite body may be die cut to a desired three-dimensional shape; drilled or cut to provide openings therein; and the like.
Further, an assemblage of flat sheets of biocomposite material, sheets of woven or non-woven laminations and inserts of three-dimensional contour (i.e. inserts on non-flattened shape) may be heated and pressed together to form a desired final product having an internal shape corresponding to the inserts.
This application claims the benefit of Provisional Patent Application 61/890,433, filed Oct. 14, 2013 and is a Division of U.S. Ser. No. 14/510,912 filed Oct. 9, 2014.
Number | Name | Date | Kind |
---|---|---|---|
1979176 | Schicht | Oct 1934 | A |
2509984 | Morrow | May 1950 | A |
2657647 | Rapisarda | Nov 1953 | A |
2723493 | Stoller | Nov 1955 | A |
2815621 | Carter | Dec 1957 | A |
2964070 | Linhardt | Dec 1960 | A |
3268606 | Jaeger | Aug 1966 | A |
3316592 | Forrest | May 1967 | A |
3317375 | Molinet et al. | May 1967 | A |
3421554 | Carter | Jan 1969 | A |
3477558 | Fleischauer | Nov 1969 | A |
3499261 | Hullhorst et al. | Mar 1970 | A |
3708952 | Schulze et al. | Jan 1973 | A |
3717953 | Kuhn et al. | Feb 1973 | A |
3782033 | Hickerson | Jan 1974 | A |
3810327 | Giansante | May 1974 | A |
3828470 | Stoller | Aug 1974 | A |
3961938 | Iizuka et al. | Jun 1976 | A |
4027427 | Stoller et al. | Jun 1977 | A |
4036122 | Langen | Jul 1977 | A |
4038807 | Beardsley et al. | Aug 1977 | A |
4063383 | Green | Dec 1977 | A |
4073956 | Yates | Feb 1978 | A |
4127965 | Mee | Dec 1978 | A |
4136767 | Sarovich | Jan 1979 | A |
4226330 | Butler | Oct 1980 | A |
4263744 | Stoller | Apr 1981 | A |
4265915 | MacLennan et al. | May 1981 | A |
4294929 | Solomons et al. | Oct 1981 | A |
4337594 | Hanacek et al. | Jul 1982 | A |
4370159 | Holtz | Jan 1983 | A |
4568520 | Ackermann et al. | Feb 1986 | A |
4620826 | Rubio et al. | Nov 1986 | A |
4716712 | Gill | Jan 1988 | A |
4722159 | Watanabe et al. | Feb 1988 | A |
4878312 | Shimizu | Nov 1989 | A |
4922650 | Akao et al. | May 1990 | A |
4960413 | Sagar et al. | Oct 1990 | A |
5021350 | Jung et al. | Jun 1991 | A |
5030425 | Bowers-Irons et al. | Jul 1991 | A |
5074959 | Yamanaka et al. | Dec 1991 | A |
5085998 | Lebron et al. | Feb 1992 | A |
5088860 | Stockdale et al. | Feb 1992 | A |
5123203 | Hiromoto | Jun 1992 | A |
5230430 | Kidder | Jul 1993 | A |
5306550 | Nishiyama et al. | Apr 1994 | A |
5335770 | Baker et al. | Aug 1994 | A |
5370714 | Ogawa | Dec 1994 | A |
5433061 | Hutchinson et al. | Jul 1995 | A |
5440860 | Meli et al. | Aug 1995 | A |
5475479 | Hatakeyama et al. | Dec 1995 | A |
5498384 | Volk et al. | Mar 1996 | A |
5503647 | Dahlberg et al. | Apr 1996 | A |
5511358 | Morita et al. | Apr 1996 | A |
5532217 | Silver et al. | Jul 1996 | A |
5569426 | Le Blanc | Oct 1996 | A |
5589390 | Higuchi et al. | Dec 1996 | A |
5590489 | Hattori et al. | Jan 1997 | A |
5598876 | Zanini et al. | Feb 1997 | A |
5606836 | Insalaco et al. | Mar 1997 | A |
5647180 | Billings et al. | Jul 1997 | A |
5681738 | Beelman et al. | Oct 1997 | A |
5682929 | Maginot et al. | Nov 1997 | A |
5685124 | Jandl | Nov 1997 | A |
5711353 | Ichikawa et al. | Jan 1998 | A |
5802763 | Milstein | Sep 1998 | A |
5854056 | Dschida | Dec 1998 | A |
5888803 | Starkey | Mar 1999 | A |
5897887 | Haeberli | Apr 1999 | A |
5919507 | Beelman et al. | Jun 1999 | A |
5944928 | Seidner | Aug 1999 | A |
5948674 | Mankiewicz | Sep 1999 | A |
5979109 | Sartor et al. | Nov 1999 | A |
6041544 | Kananen et al. | Mar 2000 | A |
6041835 | Price | Mar 2000 | A |
6098677 | Wegman et al. | Aug 2000 | A |
6112504 | McGregor et al. | Sep 2000 | A |
6197573 | Suryanarayan et al. | Mar 2001 | B1 |
6226962 | Eason et al. | May 2001 | B1 |
6300315 | Liu | Oct 2001 | B1 |
6306921 | Al Ghatta et al. | Oct 2001 | B1 |
6329185 | Kofod et al. | Dec 2001 | B1 |
6349988 | Foster et al. | Feb 2002 | B1 |
6402953 | Gorovoj et al. | Jun 2002 | B1 |
6425714 | Waddell | Jul 2002 | B1 |
6444437 | Sporleder et al. | Sep 2002 | B1 |
6471993 | Shastri et al. | Oct 2002 | B1 |
6475811 | Babcock | Nov 2002 | B1 |
6482942 | Vittori | Nov 2002 | B1 |
6491480 | Waddell | Dec 2002 | B2 |
6500476 | Martin et al. | Dec 2002 | B1 |
6523721 | Nomoto et al. | Feb 2003 | B1 |
6603054 | Chen et al. | Aug 2003 | B2 |
6620614 | Lüth et al. | Sep 2003 | B1 |
6660164 | Stover | Dec 2003 | B1 |
6679301 | Makino et al. | Jan 2004 | B2 |
6726911 | Jülich et al. | Apr 2004 | B1 |
7043874 | Wasser et al. | May 2006 | B2 |
7073306 | Hagaman | Jul 2006 | B1 |
7122176 | Stamets | Oct 2006 | B2 |
7179356 | Aksay et al. | Feb 2007 | B2 |
7395643 | Franchini et al. | Jul 2008 | B2 |
7514248 | Gower et al. | Apr 2009 | B2 |
7573031 | Behar et al. | Aug 2009 | B2 |
7621300 | Bonney et al. | Nov 2009 | B2 |
7661248 | Conti et al. | Feb 2010 | B2 |
7754653 | Hintz | Jul 2010 | B2 |
7836921 | Isomura et al. | Nov 2010 | B2 |
8001719 | Bayer et al. | Aug 2011 | B2 |
8205646 | Isomura et al. | Jun 2012 | B2 |
8227224 | Kalisz et al. | Jul 2012 | B2 |
8227233 | Kalisz et al. | Jul 2012 | B2 |
8241415 | Wantling et al. | Aug 2012 | B2 |
8298810 | Rocco et al. | Oct 2012 | B2 |
8313939 | Kalisz et al. | Nov 2012 | B2 |
8517064 | Isomura et al. | Aug 2013 | B2 |
8658407 | Lyons et al. | Feb 2014 | B2 |
8763653 | Weigel et al. | Jul 2014 | B2 |
8999687 | Bayer et al. | Apr 2015 | B2 |
9079978 | Räsänen et al. | Jul 2015 | B2 |
9085763 | Winiski et al. | Jul 2015 | B2 |
9253889 | Bayer et al. | Feb 2016 | B2 |
9332779 | Marga | May 2016 | B2 |
9394512 | Bayer et al. | Jul 2016 | B2 |
9469838 | Schaak et al. | Oct 2016 | B2 |
9485917 | Bayer et al. | Nov 2016 | B2 |
9555395 | Araldi et al. | Jan 2017 | B2 |
9714180 | McIntyre et al. | Jul 2017 | B2 |
9752122 | Marga et al. | Sep 2017 | B2 |
9795088 | Bayer et al. | Oct 2017 | B2 |
9801345 | Bayer et al. | Oct 2017 | B2 |
9803171 | Bayer et al. | Oct 2017 | B2 |
9879219 | McIntyre et al. | Jan 2018 | B2 |
9914906 | Winiski et al. | Mar 2018 | B2 |
10125347 | Winiski | Nov 2018 | B2 |
10144149 | Araldi et al. | Dec 2018 | B2 |
10154627 | McIntyre et al. | Dec 2018 | B2 |
10172301 | McNamara et al. | Jan 2019 | B2 |
10266695 | Lucht et al. | Apr 2019 | B2 |
10407675 | Bayer et al. | Sep 2019 | B2 |
10525662 | Bayer et al. | Jan 2020 | B2 |
10537070 | Betts et al. | Jan 2020 | B2 |
10583626 | Bayer et al. | Mar 2020 | B2 |
10589489 | Bayer et al. | Mar 2020 | B2 |
10687482 | Ross et al. | Jun 2020 | B2 |
10785925 | McNamara et al. | Sep 2020 | B2 |
11266085 | Kaplan-Bie et al. | Mar 2022 | B2 |
20010012235 | Schuchardt | Aug 2001 | A1 |
20020110427 | Waddell | Aug 2002 | A1 |
20020131828 | Waddell | Sep 2002 | A1 |
20020131933 | Delmotte | Sep 2002 | A1 |
20030017565 | Echigo et al. | Jan 2003 | A1 |
20030056451 | Pisek et al. | Mar 2003 | A1 |
20030121201 | Dahlberg et al. | Jul 2003 | A1 |
20030232895 | Omidian et al. | Dec 2003 | A1 |
20040000090 | Miller | Jan 2004 | A1 |
20040020553 | Amano | Feb 2004 | A1 |
20040166576 | Sadaie | Aug 2004 | A1 |
20040177585 | Vermette | Sep 2004 | A1 |
20050133536 | Kelsey et al. | Jun 2005 | A1 |
20050137272 | Gaserod et al. | Jun 2005 | A1 |
20060134265 | Beukes | Jun 2006 | A1 |
20060280753 | McNeary | Dec 2006 | A1 |
20070079944 | Amidon et al. | Apr 2007 | A1 |
20070196509 | Riman et al. | Aug 2007 | A1 |
20070225328 | Fritz et al. | Sep 2007 | A1 |
20070227063 | Dale et al. | Oct 2007 | A1 |
20070294939 | Spear et al. | Dec 2007 | A1 |
20080017272 | Isomura et al. | Jan 2008 | A1 |
20080046277 | Stamets | Feb 2008 | A1 |
20080047966 | Carson | Feb 2008 | A1 |
20080145577 | Bayer et al. | Jun 2008 | A1 |
20080234210 | Rijn et al. | Sep 2008 | A1 |
20080295399 | Kawai et al. | Dec 2008 | A1 |
20080296295 | Kords et al. | Dec 2008 | A1 |
20090107040 | Vandnhove | Apr 2009 | A1 |
20090191289 | Lutz et al. | Jul 2009 | A1 |
20090241623 | Matano et al. | Oct 2009 | A1 |
20090246467 | Delantar | Oct 2009 | A1 |
20090272758 | Karwacki et al. | Nov 2009 | A1 |
20090307969 | Bayer | Dec 2009 | A1 |
20090321975 | Schlummer | Dec 2009 | A1 |
20100101190 | Dillon | Apr 2010 | A1 |
20100158976 | O'Brien et al. | Jun 2010 | A1 |
20100159509 | Xu et al. | Jun 2010 | A1 |
20100199601 | Boldrini et al. | Aug 2010 | A1 |
20100227931 | Kuwano et al. | Sep 2010 | A1 |
20100243135 | Pepper et al. | Sep 2010 | A1 |
20100326564 | Isomura et al. | Dec 2010 | A1 |
20110094154 | Joaquin | Apr 2011 | A1 |
20110108158 | Huwiler et al. | May 2011 | A1 |
20110265688 | Kalisz et al. | Nov 2011 | A1 |
20110268980 | Kalisz et al. | Nov 2011 | A1 |
20110269209 | Rocco et al. | Nov 2011 | A1 |
20110269214 | Kalisz et al. | Nov 2011 | A1 |
20110306107 | Kalisz et al. | Dec 2011 | A1 |
20120000165 | Williams | Jan 2012 | A1 |
20120006446 | Isomura et al. | Jan 2012 | A1 |
20120060446 | Merz | Mar 2012 | A1 |
20120076895 | Kirejevas et al. | Mar 2012 | A1 |
20120115199 | Li et al. | May 2012 | A1 |
20120132314 | Weigel et al. | May 2012 | A1 |
20120135504 | Ross | May 2012 | A1 |
20120225471 | McIntyre et al. | Sep 2012 | A1 |
20120227899 | McIntyre et al. | Sep 2012 | A1 |
20120231140 | Hofmann et al. | Sep 2012 | A1 |
20120270031 | Guan et al. | Oct 2012 | A1 |
20120270302 | Bayer et al. | Oct 2012 | A1 |
20120315687 | Bayer et al. | Dec 2012 | A1 |
20130095560 | McIntyre et al. | Apr 2013 | A1 |
20130105036 | Smith et al. | May 2013 | A1 |
20130210327 | Corominas | Aug 2013 | A1 |
20130224840 | Bayer et al. | Aug 2013 | A1 |
20130274892 | Lelkes et al. | Oct 2013 | A1 |
20130309755 | McIntyre et al. | Nov 2013 | A1 |
20140038619 | Moulsley | Feb 2014 | A1 |
20140056653 | Scully et al. | Feb 2014 | A1 |
20140069004 | Bayer et al. | Mar 2014 | A1 |
20140093618 | Forgacs et al. | Apr 2014 | A1 |
20140163142 | Zhang | Jun 2014 | A1 |
20140173977 | Juscius | Jun 2014 | A1 |
20140371352 | Dantin et al. | Dec 2014 | A1 |
20150033620 | Greetham et al. | Feb 2015 | A1 |
20150038619 | McIntyre et al. | Feb 2015 | A1 |
20150101509 | McIntyre et al. | Apr 2015 | A1 |
20150197358 | Larsen | Jul 2015 | A1 |
20150342138 | Bayer et al. | Dec 2015 | A1 |
20150342224 | Medoff | Dec 2015 | A1 |
20160002589 | Winiski | Jan 2016 | A1 |
20160264926 | Winiski et al. | Sep 2016 | A1 |
20160355779 | Ross | Dec 2016 | A1 |
20170000040 | Bayer et al. | Jan 2017 | A1 |
20170071214 | Rehage | Mar 2017 | A1 |
20170218327 | Amstislavski et al. | Aug 2017 | A1 |
20170253849 | Miller et al. | Sep 2017 | A1 |
20170253852 | Bayer et al. | Sep 2017 | A1 |
20180014468 | Ross et al. | Jan 2018 | A1 |
20180148682 | Ross | May 2018 | A1 |
20180282529 | Kaplan-Bie | Oct 2018 | A1 |
20180368337 | McIntyre et al. | Dec 2018 | A1 |
20190059431 | Kozubal et al. | Feb 2019 | A1 |
20190090436 | Betts et al. | Mar 2019 | A1 |
20190284307 | Chase et al. | Sep 2019 | A1 |
20190322997 | Schaak | Oct 2019 | A1 |
20190330668 | Kozubal et al. | Oct 2019 | A1 |
20190338240 | Carlton et al. | Nov 2019 | A1 |
20190357454 | Mueller et al. | Nov 2019 | A1 |
20190359931 | Mueller et al. | Nov 2019 | A1 |
20190390156 | Bayer et al. | Dec 2019 | A1 |
20200024577 | Carlton et al. | Jan 2020 | A1 |
20200025672 | Scullin et al. | Jan 2020 | A1 |
20200055274 | Bayer et al. | Feb 2020 | A1 |
20200095535 | Kozubal et al. | Mar 2020 | A1 |
20200102530 | Winiski et al. | Apr 2020 | A1 |
20200146224 | Kaplan-Bie et al. | May 2020 | A1 |
20200157506 | Bayer et al. | May 2020 | A1 |
20200208097 | Winiski | Jul 2020 | A1 |
20200239830 | O'Brien et al. | Jul 2020 | A1 |
20200268031 | Macur et al. | Aug 2020 | A1 |
20200270559 | Macur et al. | Aug 2020 | A1 |
20200392341 | Smith et al. | Dec 2020 | A1 |
20210127601 | Kaplan-Bie et al. | May 2021 | A9 |
20210317433 | Schaak | Oct 2021 | A9 |
20210348117 | Winiski | Nov 2021 | A9 |
20210401019 | Bayer et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
1059662 | Mar 1992 | CN |
1732887 | Feb 2006 | CN |
101248869 | Aug 2008 | CN |
101653081 | Feb 2010 | CN |
106947702 | Jul 2017 | CN |
0226292 | Jun 1987 | EP |
1312547 | May 2003 | EP |
2677030 | Dec 2013 | EP |
2735318 | May 2014 | EP |
2875805 | May 2015 | EP |
2878340 | Jun 2015 | EP |
2485779 | Feb 2018 | EP |
3292769 | Mar 2018 | EP |
142800 | Jan 1921 | GB |
1525484 | Sep 1978 | GB |
2032456 | May 1980 | GB |
2165865 | Apr 1986 | GB |
358266 | Jul 2020 | IN |
H03234889 | Oct 1991 | JP |
H049316 | Jan 1992 | JP |
6111510 | Apr 2017 | JP |
20050001175 | Jan 2005 | KR |
101851655 | Apr 2018 | KR |
WO 1999024555 | May 1999 | WO |
WO 2001087045 | Nov 2001 | WO |
WO 2005067977 | Jul 2005 | WO |
WO 2008025122 | Mar 2008 | WO |
WO 2008073489 | Jun 2008 | WO |
WO 2010005476 | Jan 2010 | WO |
WO 2012122092 | Sep 2012 | WO |
WO 2014039938 | Mar 2014 | WO |
WO 2014195641 | Dec 2014 | WO |
WO 2016149002 | Sep 2016 | WO |
WO 2017056059 | Apr 2017 | WO |
WO 2017120342 | Jul 2017 | WO |
WO 2017136950 | Aug 2017 | WO |
WO 2017151684 | Sep 2017 | WO |
WO 2017205750 | Nov 2017 | WO |
WO 2018011805 | Jan 2018 | WO |
WO 2018014004 | Jan 2018 | WO |
WO 2018064968 | Apr 2018 | WO |
WO 2018183735 | Oct 2018 | WO |
WO 2018189738 | Oct 2018 | WO |
WO 2019046480 | Mar 2019 | WO |
WO 2019099474 | May 2019 | WO |
WO 2019178406 | Sep 2019 | WO |
WO 2019217175 | Nov 2019 | WO |
WO 2019226823 | Nov 2019 | WO |
WO 2019246636 | Dec 2019 | WO |
WO 2020023450 | Jan 2020 | WO |
WO 2020072140 | Apr 2020 | WO |
WO 2020082043 | Apr 2020 | WO |
WO 2020082044 | Apr 2020 | WO |
WO 2020102552 | May 2020 | WO |
WO 2020106743 | May 2020 | WO |
WO 2020176758 | Sep 2020 | WO |
WO 2020186068 | Sep 2020 | WO |
WO 2020186169 | Sep 2020 | WO |
WO 2020237201 | Nov 2020 | WO |
Entry |
---|
Nathan J. Kotlarewski; Benoit Belleville; Benson K. Gusamo; Barbara Ozarska. “Mechanical properties of Papua New Guinea balsa wood”. Eur. J. Wood Prod. (2016) 74:83-89 (Year: 2016). |
Nathan J. Kotlarewski; Benoit Belleville; Benson K. Gusamo; Barbara Ozarska. Mechanical properties of Papua New Guinea balsa wood.Eur. J. Wood Prod. (2016) 74:83-89. DOI 10.1007/s00107-015-0983-0 (Year: 2016). |
G Newaz; M Mayeed; A Rasul. Characterization of balsa wood mechanical properties required for continuum damage mechanics analysis. J Materials: Design and Applications 2016, vol. 230(1) 206-218. (Year: 2016). |
D. W. Green; J. E. Winandy; D. E. Kretschmann. “Mechanical Properties of Wood”. Forest Products Laboratory. 1999. Wood handbook—Wood as an engineering material. Gen. Tech. Rep. FPL-GTR-113. Madison, WI: U.S.D.A. Accessed at https://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr113/ch04.pdf on Jul. 20, 2021. (Year: 1999). |
www.timberpress.com/blog/2017/01/how-do-mushrooms-grow-so-quickly/. |
Bartnicki-Garcia, “Cell wall chemistry, morphogenesis, and taxonomy of fungi”, Annual Review Microbiol. (1968) 22(1): 87-108. |
Cha et al., “Biomimetic synthesis of ordered silica structures mediated by block copolypeptides”. Nature (2000) 403(6767): 289-292. |
Dugdale J. “This new surf company is making boards of mushrooms”. Blog post—Jun. 25, 2015. |
Halseide P., “Cutting brick the safe way”. The Aberdeen Group (1988) Publication #M880354 in 2 pages. |
Highland Woodworking, “Making Thin Lumber and Veneer Out of Ordinary Boards”, Sales Website (2017) in 3 pages. |
Holt et al., “Biobased Composition Boards Made from Cotton Gin and Guayule Wastes: Select Physical and Mechanical Properties”, Int J Mater Prod Tech. (2009) 36: 104-114. |
Islam et al., “Morphology and mechanics of fungal mycelium”, Scientific Reports, (2017) 7(1): 1-12. |
Kerem et al., “Chemically defined solid-state fermentation of Pleurotus Ostreatus”. Enzyme Microbiol Tech. (1993) 15(9): 785-790. |
Kokubo et al., “Ca,P-rich layer formed on high-strength bioactive glass-ceramic A-W”. J Biomed Mater Res. (1990) 24(3): 331-343. |
Koutsoukos et al., “Precipitation of calcium carbonate in aqueous solutions”. J Chem Soc., Faraday Trans. 1, Physical Chemistry in Condensed Phases, (1984) 80(5): 1181-1192. |
Lu et al., “Theoretical Analysis of Calcium Phosphate precipitation in simulated Body Fluid”. Biomaterials (2005) 26(10): 1097-1108—Pre-Pub. Version by Hong Kong University of Science and Technology, Department of Mechanical Engineering, Kowloon; 34 pages. |
Molvinger et al., “Porous chitosan-silica hybrid microspheres as a potential catalyst”. Chem Mater. (2004) 16(17): 3367-3372. |
Monmaturapoj et al., “Influence of preparation method on hydroxyapatite porous scaffolds”. Bull Mater Sci. (2011) 34(7): 1733-1737. |
Manoli et al., “Crystallization of calcite on chitin”. J Cryst Growth, (1997) 182(1-2): 116-124. |
Mushroom Source, “Aspen Wood Shavings for Mushroom Cultivation”, Website (2015) in 2 pages. |
National Institute of Health (NIH/NIBIB), “Tissue Engineering and Regenerative Medicine”, Retrieved Sep. 24, 2018 from https://www.nibib.nih.gov/science-education/science-topics/tissue-engineering-and-regenerative-medicine in 13 pages. |
Passauer U. et al., “Pilze in Höhlen” [Cave Mushrooms]. Denisia (2016) 37: 211-224. |
Stewart B., “Concrete Fence Posts: Fact Sheet”, Texas Agriculture Extension Service, Texas A & M University (1975) Article L-1368 in 4 pages. |
Trinci et al., “II. Unrestricted Growth of Fungal Mycelia”, The Mycota—Growth, Differenciation and Sexuality by Wessels et al. [Eds], Springer, Berlin, Heidelberg, (1994) Chapter II: 175-193. |
Udawatte et al., “Solidification of xonotlite fibers with chitosan by hydrothermal hot pressing”. J Mater Sci. Lttrs. (2000) 45(6): 298-301. |
University of Sydney, “Competition Between Fungi”. Webpage, accessed Jul. 16, 2014—http://bugs.bio.usyd.edu.au/learning/resources/Mycology/Ecology/competition.shtml in 3 pages. |
Varma et al., “Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method”. Biomaterials (1999) 20(9): 879-884. |
Wagner A. “Mycelium Biking—Eco-Design at its Best”, Master's Thesis at Lulea University of Technology (2016) in 92 pages. |
Woller R. “The Pearl Oyster Mushroom”, University of Wisconsin Website (2011) in 2 pages. |
Wan-Mohtar et al., “The morphology of Ganoderma lucidum mycelium in a repeated-batch fermentation for exopolysaccharide production”, Biotechnology Reports (2016) 11:2-11. |
Weaver et al., “The stomatopod dactyl club: a formidable damage-tolerant biological hammer”. Science (2012) 336(6086): 1275-1280. |
Yamasaki et al., “A hydrothermal hot-pressing method: Apparatus and Application”. J Mater Sci Lttrs. (1986) 5(3): 355-356. |
Zivanovic et al., “Changes in Mushroom Texture and Cell Wall Composition Affected by Thermal Processing”. J Food Service (2004) 69: 44-49. |
Agnese et al., “Investigating the Influence of Various Plasticizers on the Properties of Isolated Films of Polyvinyl Acetat”. The 37th Annual meeting and Exposition of the Controlled Release Society, Jul. 2010, Portland, OR U.S.A. |
Amsellem et al., “Long-term preservation of viable mycelia of two mycoherbicidal organisms”. Crop Protection (1999) 18: 643-649. |
Angelini et al., “Effect of antimicrobial activity of Melaleuca alternifolia essential oil on antagonistic potential of Pleurotus species against Trichoderma harzianum in dual culture.” World J Microbiol Biotech. (2008) 24(2): 197-202. |
Ashiuchi et al., “Isolation of Bacillus subtilis (chungkookjang), a poly-gamma-glutamate producer with high genetic competence”. Appl Microbiol Biotechnol. (2011) 57: 764-769. |
Bajaj et al., “Poly (glutamic acid)—An emerging biopolymer of commercial interest”. Bioresource Tech. (2011) 102(10): 5551-5561. |
Baysal et al., “Cultivation of oyster mushroom on waste paper with some added supplementary materials”. Biosource Technology (2003) 89: 95-97. |
Begum et al., “Bioconversion and saccharification of some lignocellulosic wastes by Aspergillus oryzae ITCC-4857.01 for fermentable sugar production”. Elect J Biotech. (2011) (14)5: 3 in 8 pages. |
Binder et al., “Phylogenetic and phylogenomic overview of the Polyporales”. Mycologia (Nov.-Dec. 2013) 105(6): 1350-1373. |
Blanchette et al., “Fungal mycelial mats used as textile by indigenous people of North America”, Mycologia (Feb. 20, 2021) pp. 1-7. |
Booth et al., “Potential of a dried mycelium formulation of an indigenous strain of Metarhizium anisopliae against subterranean pests of cranberry.” Biocontrol Science and Technology (2000) 10: 659-668. |
Bowman et al., “The structure and synthesis of the fungal cell wall”. Bioassays (2006) 28(8): 799-808. |
Chai et al., “β-Glucan Synthase Gene Overexpression and β-Glucans Overproduction in Pleurotus ostreatus Using Promoter Swapping”. PLoS ONE (2013) 8(4): e61693 in 7 pages. |
Chaudhary et al., “Understanding rice hull ash as fillers in polymers: a review”. Silicon Chemistry (2002) 1:281-289. |
Collins English Dictionary, “Mould”, retrieved from http://collinsdictionary.com/dictionary/english/mould, downloaded on Jul. 13, 2015. |
Dias et al., “Synthesis and characterization of chitosan-polyvinyl alcohol-bioactive glass hybrid membranes”. Biomatter (2011) 1(1): 114-119. |
Elleuche et. al., “Carbonic anhydrases in fungi”. Microbiology (2010) 156: 23-29. |
Elsacker et al., “Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting”, Construction Bldg Mater. (2021) 283: 122732 in 16 pages. |
Fleet G.H., “Cell walls”. in The Yeasts, by Rose et al. [Eds.] 2nd Edition. vol. 4. London: Academic Press. (1991) pp. 199-277. |
Frandsen R.J.N., “A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation”. J Microbiol Methods (2011) 87: 247-262. |
Gardening KnowHow, Perlite Soil Info: Learn About Perlite Potting Soil, online at www.gardeningknowhow.com/garden-how-to/soil-fertilizers/perlite-potting-soil.htm downloaded on Dec. 16, 2015., 3 pages. |
Goodell et al., “Fungal Decay of Wood: Soft Rot-Brown Rot-white Rot”. In Development of Commercial Wood Preservatives; Schultz et al. [Ed.] ACS Symposium Series; American Chemical Society, Washington, D.C. (2008), Chapter 2, pp. 9-31. |
Google Report, Complete colonization substrate mushroom (2 pages) Jan. 30, 2018., 2 pages. |
Google Dictionary Definition “Composite”, downloaded on Nov. 21, 2018; 1 page. |
Gourmet Mushroom, Inc., “What is Mushroom?”—Mushroom Facts Mushroom Information—Educational & Science Projects (2004). Downloaded from www.gmushrooms.com, on Nov. 27, 2017; 5 pages. |
Heinzkill et al., “Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae).” Appl Environ Microbiol. (1998) 64: 1601-1606. |
Horton et al., “Regulation of Dikaryon-Expressed Genes by FRT1 in the Basidiomycete Schizophyllum commune”. Fungal Genet Biol. (1999) 26(1): 33-47. |
Hyde et al., “The amazing potential of fungi: 50 ways we can exploit fungi industrially”. Fungal Diversity (2019) 97(1): 1-136. |
Kamzolkina et al., “Micromorphological features of Pleurotus pulmonarius (Fr.) Quel. and P. ostreaturs (Jacq.) P. Kumm. Strains in pure and binary culture with yeasts”. Tsitologiia (2006) 48(2): 153-160. |
Kerem et al., “Effect of Mananese on Lignin Degradation by Pleurotus ostreatus during Solid-State Fermentation”. Applied and Environmental Microbiology (1993) 59(12): 4115-4120. |
Kilaru et al., “Investigating dominant selection markers for Coprinopsis cinerea: a carboxin resistance system and re-evaluation of hygromycin and phleomycin resistance vectors”. Curr Genet. (2009) 55: 543-550. |
Kück et al., “New tools for the genetic manipulation of filamentous fungi”. Appl Microbiol Biotechnol. (2010) 86: 51-62. |
Kuo, 2005-2006. Glossary of Mycological Terms. Mushroom Expert. Com., pp. 1-13; downloaded from http://www.mushroomexpert.com/glossary.html (May 8, 2015). |
Li et al., “Preparation and Characterization of Homogeneous Hydroxyapatite/Chitosan Composite Scaffolds via In-Situ Hydration”. J Biomaterials Nanobiotech. (2010) 1: 42-49. |
Luo et al., “Coprinus comatus: a basidiomycete fungus forms novel spiny structures and infects nematode.” Mycologia (2004) 96(6): 1218-1225. |
Mushroom Growers' Handbook 1, “Oyster Mushroom Cultivation”. Part II, Chapter 5, (2005) pp. 75-85. |
Mushroom Growers' Handbook 2, “Shiitake Bag Cultivation”, Part I Shiitake. Published by Mush World (2005) Chapter 4, pp. 73-90 and pp. 105-109. |
Norvell L., Fungi Biology. Encyclopedia.(2002); 2 pages. |
Novoselova et al., “Cocultivation of Pleurotus ostreatus (Jacq.) P. Kumm, with yeasts”. Moscow University Biol Sciences Bulletin (2011) 66(3): 102-105. |
Peng et al., “Microbial biodegradation of polyaromatic hydrocarbons”. FEMS Microbiol Rev. (2008) 32:927-955. |
Perez et al., “Myxococcus xanthus induces actinorhodin overproduction and aerial mycelium formation by Streptomyces coelicolor.” Microbial Biotech. (2011) 4(2): 175-183. |
Philippoussis et al., “Production of Mushrooms Using Agro-Industrial Residues as Substrates”, in Biotechnology for Agro-Industrial Residues, Chapter 9, (2009) pp. 163-187. |
Poppe J., Mushroom Growers' Handbook 1, 2004, Part II. Chapter 5, “Substrate”, pp. 80-81. |
Pompei et al., “The Use of Olive Milling Waste-Water for the Culture of Mushrooms on Perlite”. Acta Horticulturae (1994) 361:179-185. |
Rai et al., “Production of Edible Fungi”, in Fungal Biotechnology in Agricultural, Food, and Environmental Applications, D.K. Arora [Ed.], Marcel Dekker, Inc., (2003), Chapter 21, pp. 383-404. |
Royse et al., “Influence of substrate wood-chip particle size on shiitake (Lentinula edodes) yield”. Bioresource Tehnology (2001) 76(3): 229-233. |
Sapak et al., “Effect of endophytic bacteria on growth and suppression of Tganoderma infection in oil palm”. Int J Agric Biol. (2008) 10(2): 127-132. |
Schirp et al., “Production and characterization of natural fiber-reinforced thermoplastic composites using wheat straw modified with the fungus Pleurotus ostreatus”. J Appl. Polym Sci. (2006) 102:5191-5201. |
Scholtmeijer et al., “Effect of introns and AT-rich sequences on expression of the bacterial hygromycin B resistance gene in the basidiomycete Schizophyllum commune”. Appl Environ Microbiol. (2001) 67(1): 481-483. |
Science Daily, May 7, 2007, retrieved from the Internet; http://www.sciencedaily.com/releases/2007/05/070506085628.htm., 3 pages. |
Sinotech et al., (2015): retrieved from the Internet http://www.sinotech.com/compressionAndTransferMolding.html., 4 pages. |
Slater, M. “Young SoRo Entrepreneur Develops Environmentally Friendly Insulation.” The Herald of Randolph. Jun. 21, 2007, pp. 1-2. |
Staib et al., “Differential expression of the NRG1 repressor controls species-specific regulation of chlamydospore development in Candida albicans and Candida dubliniensis.” Molecular Microbiol. (2005) 55(2): 637-652. |
Stamets P., “Mycelium Running”. Ten Speed Press (2005); pp. 18, 56, 58, 59, 85, 149, 157, 160 and 291 only. |
Sundari et al., “Freeze-drying vegetative mycelium of Laccaria fraterna and its subsequent regeneration”. Biotechnology Techniques (1999) 13:491-495. |
Tartar et al., “Differential expression of chitin synthase (CHS) and glucan synthase (FKS) genes correlates with the formation of a modified, thinner cell wall in in vivo-produced Beauveria bassiana cells.” Mycopathologia (2005) 160(4): 303-314. |
Téllez-Jurado et al., “Expression of a heterologous laccase by Aspergillus niger cultured by solid-state and submerged fermentations.” Enzyme Microbial Tech. (2006) 38(5): 665-669. |
Téllez-Téllez et al., “Growth and laccase production by Pleurotus ostreatus in submerged and solid-state fermentation.” Appl Microbiol Biotechnol. (2008) 81(4): 675-679. |
Ugalde U., “Autoregulatory Signals in Mycelial Fungi” in The Mycota: A Comprehensive Treatise on Fungi as Experimental Systems for Basic and Applied Research. K. Esser [Ed.] Springer Publisher, 2nd Edition (2006) Chapter 11; pp. 203-213. |
Universal Oil Field, “Sawdust”, downloaded from universaloilfield.org on Aug. 23, 2018, 4 pages. |
Vara et al., “Cloning and expression of a puromycin N-acetyl transferase gene from Streptomyces alboniger in Streptomyces lividans and Escherichia coli”. Gene (1985) 33(22): 197-206. |
Visser et al., “Pseudoxylaria as stowaway of the fungus-growing termite nest: Interaction asymmetry between Pseudoxylaria, Termitomyces and free-living relatives”. Fungal Ecology (2011)4(5): 322-332. |
Volk (2003) “Tom Volk's Fungus of the Month for Oct. 1998”. This month's fungus is Pleurotus ostreatus; the Oyster mushroom, pp. 1-4, downloaded from http://botit.botany.wise.edu/toms_fungi/oct98.html on May 8, 2015. |
Wang et al., “Influence of fungal elicitors on biosynthesis of natamycin by Streptomyces natalensis HW-2”. Appl Microbiol Biothechnol. (2003) 97: 5527-5534. |
Wikipedia, “Wood”, downloaded on Nov. 26, 2018, 1 page. |
Yang et al., “Medicinal Mushroom Ganoderma lucidum as a Potent Elicitor in Production of t-Resveratrol and t-Peceatannol in Peanut Calluses”. J Agric Food Chem. (2010) 58(17): 9518-9522. |
Zimin et al., “The MaSuRCA genome assembler”. Bioinformatics (2013) 29(21): 2669-2677. |
Grant, James. J.—“An investigation of the airflow in mushroom growing structures, the development of an improved, three-dimensional solution technique for fluid flow and its evaluation for the modelling of mushroom growing structures”, Doctoral Thesis Sep. 2002; 326 pages. |
PhpBB Shopsmith Forums, “Cracks in wide paneling boards”, Excerpt from Oct. 28, 2017, downloaded from URL <https://www.shopsmith.com/ss_forum/viewtopic.php?p=214601 >; 2 pages. |
Antón et al., “PimM, a PAS Domain Positive Regulator of Pimaricin Biosynthesis in Streptomyces natalensis.” Microbiol. (2007) 153: 3174-3183. |
Appels et al., “Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material.” Scientific Reports (2018)8(1): 1-7. |
Arshad et al., “Tissue engineering approaches to develop cultured meat from cells: a mini review.” Cogent Food & Agriculture (2017) 3(1): 1320814 in 11 pages. |
Belardinelli et al., “Actions of Adenosine and Isoproterenol on Isolated Mammalian Ventricular Myocytes.” Circulation Res. (1983) 53(3): 287-297. |
Belay et al., “Preparation and Characterization of Graphene-agar and Graphene Oxide-agar Composites.” JOAPS (2017) 134(33): 45085. |
Bormann et al., “Characterization of a Novel, Antifungal, Chitin-binding Protein from Streptomyces Tendae Tü901 that Interferes with Growth Polarity.” J Bacter. (1999) 181(24): 7421-7429. |
Bru{hacek over (z)}auskaite et al., “Scaffolds and Cells for Tissue Regernation: Different Scaffold Pore Sizes—Different Cell Effects.” Cytotechnology (2016) 68(3): 355-369. |
Byrd, “Clean meat's path to your dinner plate”, The Good Food Institute, website accessed Nov. 14, 2018, https://www.gfi.org/clean-meats-path-to-commercialization; 11 pages. |
Cerimi et al., “Fungi as source for new bio-based materials: a patent review”, Fungal Biol Biotechnol. (2019) 6: 17; 10 pgs. |
Chi et al., “Can Co-culturing of Two White-rot Fungi Increase Lignin Degradation and the Production of Lignin-degrading Enzymes?” Inter'l Biodeter Biodegrad. (2007) 59(1): 32-39. |
Glowacki et al., “Bioconjugation of Hydrogen-bonded Organic Semiconductors with Functional Proteins.” J Mate Chem. C (2015) 3(25): 6554-6564. |
Greetham et al., “Pheotypic characterisation of Saccharomyces sensu stricto to Inhibitory Compounds Released During the Deconstruction of Lignocellulosic Material.” 3th International Congress on Yeasts, ICY 2012, Aug. 26-30, Madison, USA; 1 page. |
Griffin et al., “Regulation of macromolecular synthesis, colony development and specific growth rate of Achlya bisexualis during balanced growth”. J General Microbiol. (1974) 80(2): 381-388. |
Growers Supply. “Horticultural Coarse Perlite—4 Cubic Fee—Growers Supply”. URL: https://growerssupply.com; Growers Supply 2012; www.growerssupply.com/farm/supplies/prod1:gs_growing_mediums:pg111049.html; downloaded Dec. 14, 2020 in 3 pages. |
Haneef et al., “Advanced Materials from Fungal Mycelium: Fabrication and Tuning of Physical Properties”, Scientific Reports 7(1): 1-11; DOI: 10.1038/srep41292, Jan. 24, 2017. |
Heisig et al., USGS, “Ground-Water Resources of the Clifton Park Area, Saratoga County, New York”, 2002, retrieved from the internet (Oct. 15, 2016): http://ny.water.usgs.gov/pubs/wri/wri014104/wrir01-4104.pdf; 27 pages. |
Home Depot “Miracle Gro® Perlite Mix”, retrieved from the internet: http://homedepot.com/p/Miracle-Gro-8-pt-Perlite-Mix-74278430/204502291; 2 pages. |
Home Depot “Pennington—Fast Acting Gypsum”, retrieved from the internet: http://homedepot.com/p/Miracle-Gro-8-pt-Perlite-Mix-74278430/204502291; 2 pages. |
Howden et al., “The effects of breathing 5% CO2 on human cardiovascular responses and tolerance to orthostatic stress”. Exper. Physiol. (2004) 89(4): 465-471. |
Hüttner et al., “Recent advances in the intellectual property landscape of filamentous fungi”, Fungal Biol Biotechnol. (2020) 7:16; 17 pgs. |
Instructables, How to Grow Oyster Mushroom Spawn (Low Tech), retrieved from the internet Aug. 19, 2018: http://www.instructables.com/id/1-How-to-Grow-Oyster-Mushroom-Spawn-Low-Tech/; 17 pages. |
Jones et al., “Leather-like material biofabrication using fungi”, Nature Sustainability (2020) https://doi.org/10.1038/s41893-020-00606-1, Sep. 7, 2020. |
Kemppainen et al., “Transformation of the Mycorrhizal Fungus Laccaria Bicolor using Agrobacterium tumefaciens.” Bioengin Bugs (2011) 2(1): 38-44. |
Kim et al., “Current Technologies and Related Issues for Mushroom Transformation.” Mycobiology (2015) 43(1): 1-8. |
Kües, U., “Life History and Development Processes in the Basidiomycete Coprinus Cinereus.” Micro Molecular Biol Rev. (2000) 64(2): 316-353. |
Kuhar et al., by Ingredi Potassium Sorbate vs Campden Tablets in Wine Making; Jun. 4, 2018. [online]; Retrieved from the Internet <URL: https://ingredi.com/blog/potassium-sorbate-vs-campden-tables-in-wine-making/>; 2 pages. |
McPherson et al., “Dissolvable Antibiotic Beads in Treatment of Periprosthetic Joint Infection and Revision Arthroplasty: The Use of Synthetic Pure Calcium Sulfate (Stimulan®) Impregnated with Vancomycin & Tobramycin.” Reconstructive Review (2013) 3(1) 12 pages. |
Merriam-Webster, “Chamber” dictionary definition; https://www.merriam-webster.com/dictionary accessed Jul. 10, 2017; in 4 Pages. |
Merriam-Webster, “pack” Thesaurus definition; https://www.merriam-webster.com/thesaurus; synonyms accessed Aug. 19, 2019; in 10 Pages. |
Michielse et al., “Agrobacterium-mediated Transformation of the Filamentous Fungus Aspergillus Awamori.” Nature Protocols (2008) 3(10): 1671-1678. |
Mitchell et al., [Eds.] “Solid-State Fermentation Bioreactors.” Springer Verlag, Berlin/Heidelberg (2006); TOC in 12 Pages. |
Moore D., “Fungal Morphogenesis.” Cambridge University Press, Cambridge, UK; (1998) TOC in 8 Pages. |
Moore D., “Tolerance of Imprecision in Fungal Morphogenesis.” In Proceedings of the 4th Meeting on the Genetics and Cellular Biology of Basidiomycetes (Mar. 1998) pp. 13-19. |
Naknean et al., “Factors Affecting Retention and Release of Flavor Compounds in Food Carbohydrates.” Inter'l Food Res J. (2010) 17(1): 23-34. |
Nussinovitch “Polymer Macro-and Micro-Gel Beads: Fundamentals and Applications”, DOI 10.1007/978-1-4419-6618_2, Springer Science & Business Media LLC (2010) TOC in 8 Pages. |
Paz et al., “One Step Contruction of Agrobacterium-Recombination-ready-plasmids (OSCAR): An Efficient and Robust Tool for ATMT Based Gene Deletion Construction in Fungi.” Fungal Gen Biol. (2011) 48(7): 677-684. |
Peksen et al., “Favourable Culture Conditions for mycelial growth of Hydnum repandum, a medicinal mushroom.” African Journal of Traditional, Complementary and Alternative Medicines (2013) 10(6): 431-434. |
Pinterest Fungus Objects: Alaska and Canada; Collection by Deborah Tear Haynes, downloaded from URL <https://www.pinterest.com/deborahtear/fungi-textile-ketchikan-alaska/>; 1 page. |
Ross, P., “Pure Culture” 1997-Present; URL: <http://billhoss.phpwebhosting.com/ross/index.php?kind>; downloaded Dec. 14, 2016 in 11 pages. |
Schaner et al., “Decellularized Vein as a Potential Scaffold for Vascular Tissue Engineering.” J Vascular Surg. (2004) 40(1): 146-153. |
Schuurman J., “Unique agar Pearls.” YouTube video; Feb. 16, 2012, <https://www.youtube.com/watch?v=8GqTTOHETPQ>; 1 page. |
Seamon K.B., “Forskolin: Unique Diterpene Activator of Adenylate Cyclase in Membranes and in Intact Cells.” PNAS (1981) 78(6): 3363-3367. |
Stanev et al., “Open Cell Metallic Porous Materials Obtained Through Space Holders. Part I: Production Methods, A Review”. JMSE (2016) 139(5): 21 pages. |
Stephens et al., “Bringing Cultured Meat to Market: Technical, Socio-political, and Regulatory Challenges in Cellular Agriculture.” Trends in Food Science & Technology (2018) 78: 155-166. |
Wikipedia, “Water gel (plain)”, Wikipedia Contributors downloaded Aug. 21, 2017 in 1 Page. |
Xiao et al., “A Water-soluble Core Material for Manufacturing Hollow Composite Sections.” Comp. Structures (2017) 182: 380-390. |
Zadrazil et al., “Influence of CO2 Concentration on the Mycelium Growth of Three Pleurotus Species”, European J. Appl. Microbiol., vol. 1, pp. 327-335 (1975). |
Abbadi et al., “Immunocytochemical identification and localization of lipase in cells of the mycelium of Penicillium cyclopium variety”, Applied Microbial Cell Physiology (1995) 42: 923-930. |
Ando et al., “Cosmetic material for skin whitening—contains mushroom mycelium cultured matter and e.g. ginseng extract, chondroitin sodium sulphate and/or hyaluronic acid”, WPI/THOMSON (Jan. 14, 1992), 1992(8): Accession #1992-062018; Abstract of JP4009316A; in 9 pages. |
Attias et al., “Biofabrication of Nanocellulose-Mycelium Hybrid Materials”, Adv Sustainable Syst. (2020) 5(2): 2000196 in 12 pages; Supporting Information in 7 pages. |
Borrás et al., “Trametes versicolor pellets production: Low-cost medium and scale-up”, Biochem Eng J. (2008) 42(1): 61-66. |
Holt et al. “Fungal mycelium and cotton plant materials in the manufacture of biodegradable molded packaging material: Evaluation study of select blends of cotton byproducts.” J Biobased Mater Bioenergy (2012) 6(4): 431-439. |
Jiang et al., “Manufacturing of Natural Composites with a Mycelium Binder and Vacuum-infused Vegetable Oil-based Resins”, Poster dated May 2014; 1 page. |
Jiang et al., “Vacuum Infusion of Mycelium-Bound Biocomposite Preforms with Natural Resins”, CAMX ExpoConference Proceedings, Oct. 13-16, 2014, 13 pages. |
Jones et al., “Mycelim Composites: A Review of Engineering Characteristics and Growth Kinetics”, J Bionanoscience (2017) 11 (4): 241-257. |
Jones et al., “Waste-derived Low-cost Mycelium Composite Construction Materials with Improved Fire Safety”, FAM (Fire and Materials) (2018) 42(7): 816-825. |
Kuhn et al., [Eds.] Cell Walls and Membranes in Fungi—An Introduction (Abstract) in Biochemistry of Cell Walls and Membranes in Fungi, Chapter 1, Springer Verlag Berlin/Heidelberg 1990, 2 pages. |
Pathway-27, “Beta-glucan”, Aug. 2012, retrieved from http://http://www.pathway27.eu/topstory/beta-glucan/on Oct. 7, 2021 in 2 pages. |
Stamets P., “Growing Gourmet and Medicinal Mushrooms”, (1993) Chapter 21; p. 363. |
Thomas et al., “Growing Orchids in Perlite”. In Perlite Plant Guide, The Schundler Company 1951, pp. 1-6, downloaded from http://www.schundler.com/index.html, archived on May 11, 2015. |
Vetchinkina et al., “Bioreduction of Gold (III) Ions from Hydrogen Tetrachloaurate . . . ” Scientific Practical J Health Life Sciences No. 4, ISSN 22188-2268, (2013) pp. 51-56. |
Wösten et al., “How a fungus escapes the water to grow into the air”, Current Biology. (1999) 9(2): 85-88. |
Zeng Z., “Cosmetic composition for cleaning skin, comprises glossy ganoderma spores and collagens, content of glossy ganoderma spores in composition and content of collagens in composition”, WPI/Thomson (Feb. 5, 2006) 7: Accession #2007-057767; Abstract of CN1732887A; in 11 pages. |
Ziegler et al., “Evaluation of Physico-mechanical Properties of Mycelium Reinforced Green Biocomposites Made from Cellulosic Fibers”, Appl Engin Agricult. (2016) 32(6): 931-938. |
Antinori et al., “Advanced mycelium materials as potential self-growing biomedical scaffolds.” Scientific reports (2021) 11(1): 1-14. |
Hidayat et al., “Characterization of polylactic acid (PLA)/kenaf composite degradation by immobilized mycelia of Pleurotus ostreatus”. Inter Biodeter Biodegrad. (2012) 71: 50-54. |
Jiang et al., “Bioresin Infused then Cured Mycelium-based Sandwich-structure Biocomposites: Resin Transfer Molding (RTM) Process, Flexural Properties, and Simulation.” J Cleaner Production (2019) 207: 123-135. |
Jones et al., Chitin-chitosan Thin Films from Microbiologically Upcycled Agricultural By-products. In 13th International Conference on the Mechanical Behavious of Materials, Melbourne, Australia (Jun. 2019) p. 66; in 7 pages. |
Meyer et al., “Comparison of the Technical Performance of Leather, Artificial Leather, and Trendy Alternatives.” Coatings (Feb. 2021) 11(2): 226; 14 pages. |
Wösten et al., “Growing Fungi Structures in Space”, ACT Research Category/Space Architecture; Noordwijk, The Netherlands (Oct. 15, 2018) in 17 pages. |
Collins English Dictionary, “Cavity”, Definition; retrieved on Nov. 8, 2021; 1 page. |
Merriam-Webster, “desiccated” (Adj.) Definition; downloaded on Nov. 8, 2021; 1 page. |
Wang et al., “Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce”. Biomass Bioengin. (2018) 109: 125-134. |
Bandalan et al., “Inhibitory effect of garlic (Allium sativum L.) against bread mold and its influence on the quality of yeast-leavened bread”, Int J Food Engineer. (Dec. 2018) 4(4): 256-262. |
Kumla et al., “Cultivation of Mushrooms and Their Lignocellulolytic Enzyme Production Through the Utilization of Agro-Industrial Waste”. Molecules Jun. 2020;25(12): 2811 in 41 pages. |
Voronin et al., “Carbon and Nitrogen Isotope Composition of the Wood of Pinus sylvestris, Betula pendula and Populus tremula”. Paleonotal J., Dec. 2020;54(8): 819-824. |
Williams, J. “Waste not: Will the furniture of the future be made from leftovers?”, Financial Times Jan. 11, 2019 (Mogu—Radical by Nature); in 9 page. |
Number | Date | Country | |
---|---|---|---|
20170028600 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
61890433 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14510912 | Oct 2014 | US |
Child | 15258685 | US |