The invention concerns a timepiece shaft, especially a balance shaft.
The invention also concerns an oscillator or a watch movement or a timepiece comprising such a shaft.
The balance shaft is an essential component of the timepiece regulating unit. The balance shaft comprises at each end a pivot-shank which is prolonged by a pivot. The balance shaft in particular carries the spiral spring and oscillates on its pivots in bearings. Upon impact, the pivot-shanks and the pivots of the shaft constituting zones of less mechanical strength are designed to take up the forces at play. Nevertheless, in certain cases, especially under high-intensity impact, the pivots may be bruised against their respective bearing on account of their slight dimensions, particularly their slight diameter.
Thus, the shaft needs to:
Timepiece shafts are traditionally cut out from a 20AP steel, then tempered. The pivots are then rolled in order to obtain the required surface condition and surface hardness. The hardness typically attains at least 700 HV. Shafts of 20AP steel or those made of other metallic materials, whether or not they have been hardened, require this rolling operation in the area of the pivots to ensure their manufacturing precision, durability over time to wear and tear as well as impact, and to ensure the optimal operation of the movement by control of the tribological parameters. This operation, consisting of polishing and surface hardening steps for the surface of the pivot, is complex and delicate, and requires great skill on the part of the person carrying out the process. Moreover, 20AP steel contains lead (0.2% by weight) and will soon need to be replaced by another lead-free steel such as Finemac™ (or 20C1A). The fabrication of these shafts is identical: they are cut out from a bar before tempering, then heat treated and tempered to increase the hardness. A stress-relief annealing makes it possible to eliminate internal stresses and prevents these shafts from breaking like glass under impact. The principal defect of this steel is its lack of hardness in the area of the pivots and therefore the need for a rolling operation to achieve the required final properties. These shafts of 20AP or Finemac steel are also ferromagnetic and can cause perturbations in the running if the movements containing them are subjected to magnetic fields, due to residual magnetization.
Alternatives exist for these shafts of 20AP or Finemac steel, with shafts of austenitic steel or of austenitic alloys based on cobalt or nickel, hardened by carbon or nitrogen ion implantation. These are rolled as well, in order to improve their properties. According to patent application EP2757423, shafts have been made from an austenitic stainless steel of type 316L for the purpose of minimizing the sensitivity to magnetic fields, but the obtained strength, as well as the hardness, fall short of the required characteristics to ensure the wear resistance. The solution of applying a coating of DLC (Diamond Like Carbon) type has been contemplated, but risks of significant delamination have been identified. Likewise, a surface treatment by nitriding or carbiding with the purpose of forming chromium carbides or nitrides would have the effect contemplated in terms of surface hardening, but it would entail a loss of corrosion resistance, which is detrimental to the quality of the components and of the product. Patent application EP2757423 discloses a solution for hardening of an austenitic steel or an austenitic cobalt alloy or an austenitic nickel alloy by means of a thermochemical treatment aimed at integrating carbon or nitrogen atoms in the interstitial sites of the crystal lattice of the alloy in order to strengthen the material before carrying out the rolling of the pivot, while limiting the risks of corrosion of the shaft. The hardness so achieved is close to 1000 HV, which theoretically places this type of part at a better level than parts made from 20AP steel.
However, such shafts also require a rolling in the area of the pivots to achieve the final dimension, in particular so as to obtain a surface condition enabling adequate performances in terms of chronometry to be obtained. Thus, such a solution is not optimal insofar as it requires at minimum two treatment steps for the shaft: a surface hardening step followed by a second rolling step.
An alternative described in patent application EP2757424 and able to do without the rolling involves having all or part of the shaft, but in any case the pivot or pivots, made of metallic material hardened with hard ceramic particles (metal matrix composite or MMC). This is a material partially composed of particles with a hardness greater than or equal to 1000 HV, between 0.1 and 5 microns in size. The materials given as an example comprise 92% of tungsten carbide (WC) particles integrated in a nickel matrix, which are blended prior to being injected into a mold in the shape of the shaft. After injection, the rough blank so obtained is fritted and the shaft is polished, especially in the area of the pivots, with the help of a diamond paste. A shaft of metal matrix composite with 92% WC and 8% nickel has a toughness of 8 MPa·m1/2 and a hardness greater than 1300 HV. In view of the typical dimensions of the pivots, on the order of 60 microns, and the importance of concentricity and surface condition, the use of composites containing particles which are liable to become detached constitutes a risk. In fact, there is only a little leeway in watchmaking dimensions for the wear behavior of this type of material. It is to be feared that the detachment of the reinforcement particles might come to affect the geometrical integrity of the pivot or pivots.
The purpose of the invention is to provide a timepiece shaft able to remedy the aforementioned drawbacks and improve the known timepiece shafts of the prior art. In particular, the invention proposes a hard and sturdy timepiece shaft whose manufacturing process is simplified.
Toward this end, a timepiece shaft according to the invention is defined by point 1 below.
Different embodiments of the timepiece shaft according to the invention are defined by points 2 to 9 below.
A shaft and guide assembly according to the invention is defined by point 10 below.
Different embodiments of the assembly according to the invention are defined by points 11 and 12 below.
An oscillator according to the invention is defined by point 13 below.
A watch movement according to the invention is defined by point 14 below.
A timepiece according to the invention is defined by point 15 below.
The appended figures represent, as an example, three embodiments of a timepiece shaft according to the invention, different embodiments of systems according to the invention and an embodiment of a timepiece according to the invention.
An embodiment of a timepiece 120 is described below with reference to
The balance shaft 1 comprises a first functional portion 2a; 2b including:
The first functional portion is made of ceramic and the first functional portion has a first outer diameter D1, for instance a maximal outer diameter, less than 0.5 mm, or less than 0.4 mm, or less than 0.2 mm, or less than 0.1 mm.
In the first embodiment represented in
In the first embodiment represented in
In the first embodiment represented in
The first functional portion may provide various functions, such as in particular:
In the first embodiment represented in
The shaft may also have a second functional portion 3, especially:
In the first embodiment represented in
Advantageously, the second functional portion has a second outer diameter D2, for example a maximal outer diameter, less than 2 mm, or less than 1 mm, or less than 0.5 mm. Preferably, the second functional portion is made of ceramic.
Again advantageously, the ratio of the dimension of the first diameter to the dimension of the second diameter is less than 0.9, or less than 0.8, or less than 0.6, or less than 0.5, or less than 0.4.
The fact that the first functional portion and/or the second functional portion is made of ceramic means that this functional portion is entirely made of ceramic. Preferably, the realization of the functional portion in a material composed of ceramic grains bonded together by a nonceramic matrix, such as a metal matrix, is excluded. “Ceramic” is understood to mean a homogeneous or substantially homogeneous material, including on the microscopic level. Preferably, the ceramic is homogeneous in at least one direction, or in all directions, for a distance greater than 6 μm, or greater than 10 μm, or greater than 20 μm. Again preferably, the ceramic does not have non-ceramic material in at least one direction, or in all directions, for a distance greater than 6 μm, or greater than 10 μm, or greater than 20 μm.
Advantageously, the first functional portion has dimensions greater than 20 μm or 40 μm or 50 μm in at least one direction or in three directions mutually perpendicular to each other and/or the first functional portion has a diameter equal to that of the shaft in the area of any point of this first functional portion and/or the first functional portion is situated between two planes perpendicular to the geometrical axis of the shaft.
Advantageously, the second functional portion has dimensions greater than 20 μm or 40 μm or 50 μm in at least one direction or in three directions mutually perpendicular to each other and/or the second functional portion has a diameter equal to that of the shaft in the area of any point of this second functional portion and/or the second functional portion is situated between two planes perpendicular to the geometrical axis of the shaft.
Advantageously, the ceramic is for the most part or principally composed (by weight or by moles) of:
Thus, zirconium oxide and/or alumina may be the preponderant elements in the ceramic. Nevertheless, the proportion by weight or by moles of zirconium oxide and/or alumina may be less than 50%.
Optionally, the ceramic comprises, in addition to zirconium oxide and/or alumina, one or more of the following elements:
Alternatively, the ceramic may be composed for the most part or principally (by weight or by moles) of silicon nitride.
Thus, silicon nitride may be the preponderant element in the ceramic. Nevertheless, the proportion by weight or by moles of silicon nitride may be less than 50%.
Optionally, the ceramic comprises, in addition to silicon nitride, one or more of the following elements:
For example, the ceramic may be one of the ceramics of the following table:
One may consider making a shaft from an extruded ceramic thread, with the aid of various diamond grindstones. At the end of these steps, the pieces may be geometrically conformable and of a sufficient hardness to do without any after-treatment.
Alternatively, the injection molding or pressing of a preform only the ends of which will undergo grinding makes it possible to optimize the process, especially thanks to time savings in the manufacturing cycle.
Again alternatively, other manufacturing techniques make it possible to further improve of the properties of the obtained pieces, such as cold isostatic pressing (CIP), by reducing the number of defects present in the material before it is machined. In particular, this increases its toughness.
Thanks to the intrinsic properties of the extremely hard ceramics, as mentioned above, the pivots do not become marred by impact and the performance is maintained over time. Advantageously, in the event of a major impact, these pivots will not become deformed, whereas steel pivots may bend and thereby affect the chronometry of the timepiece. Thus, ceramics such as those presented above make it possible to maintain the geometrical integrity of the pivots over time.
Furthermore, ceramics offer the supplemental advantage of being non-magnetic, and not influencing the running of the timepiece when it is subjected to a magnetic field, especially a magnetic field greater than 32 kA/m (400 G).
Advantageously, the entire shaft is made of ceramic. However, it is conceivable to limit the ceramic part to the first functional portion which includes at least one pivot and/or at least one pivot-shank.
Advantageously, the first portion has a surface of revolution, especially a cylindrical surface or a conical surface or a truncated conical surface or a curve generating surface. The pivot-shank and the pivot may be merged or at least not be bounded off by a free border such as a flange. For example, the pivot-shank and the pivot can be separated by a truncated conical surface or a curve generating surface.
Two variants of a first embodiment of an assembly 41 comprising an shaft 1 as described above and at least one guide 51, especially a bearing 51, the shaft being designed to rotate or pivot in the at least one bearing, are shown respectively in
The guide may be in the form of a conventional shock-absorbing bearing. Thus, in the first embodiment, the at least one bearing 51 comprises a bearing stone 511 designed to cooperate with a cylindrical or truncated conical section of a pivot 21′ and an endstone 512 designed to cooperate with one end 212′ of the pivot. The stones thus cooperate with the pivot 21′ for the pivoting and the receiving, or axially bounding, of the shaft in the guide.
In the first variant of the first embodiment of the assembly, the shaft 1 comprises a pivot 21′ having an end 212′ which is bulging or convex.
In the second variant of the first embodiment of the assembly, the shaft 1 comprises a pivot 21″ having an end 212″ which is hollow or concave.
The fact of having shafts made of ceramic, a material which is both hard and tough, makes it possible to achieve geometries which can optimize and ensure permanent contact in the area of the pivot and the bearing in which it pivots, especially in the area of the ends of the pivot. This would be hard to accomplish with conventional rolled alloys such as 20AP steel where the risk of loss of performance when wearing would be more significant, especially on account of the very great contact pressure.
A second embodiment of an assembly 42 comprising a shaft 1 as described above and at least one guide, especially a bearing 52, the shaft being designed to rotate or pivot in the at least one guide, is represented in
However, it is crucial for the proper working of the pivoting and reducing the deviations in timing that the geometry of the pivots is constant over time, regardless of the forces and impacts undergone by the watch, and this for all geometries of pivots. This is even more critical in certain cases: in fact, if a pivot associated with a ball bearing is bruised or presents plastic deformations due to impact, a good bit of the advantage of the solution will be lost.
Thus, the use of ceramics for the fabrication of the balls and the pivot makes it possible to optimize the use of a ball bearing and reduce in significant fashion the deviations in the quality factor between the different clock positions occupied by the timepiece.
A second embodiment of a timepiece shaft 1′ according to the invention is described below in regard to
This shaft 1′ is designed to be mounted on a pivot shaft 6, particularly a pivot shaft made of a different material, especially a free-cutting steel.
Thus, the first functional portion may comprise a pivot 2a, but the second functional portion may be present for example in the form of a portion 35 designed to be fixed, in particular by driving or welding, inside a bore 36 formed in the body of the pivoting shaft 6.
The invention has been described above in regard to a balance shaft. However, this invention may obviously be applied to any other timepiece shaft, such as a pivoting shaft of a watch wheel such as a wheel involved in the finishing chain of a watch movement, especially a center wheel, or a large intermediate wheel, or a small intermediate wheel, or a seconds wheel.
A timepiece shaft according to the invention may also be implemented in the context of an optimization of a watch escapement and thus enable the pivoting of a pallet wheel or a blocker or a pallet involved in the escapement. Of course, this invention can be applied to any watch wheel involved in an additional timepiece function, such as a calendar or a chronograph.
In an alternative embodiment, shown in
Once shaped, the ceramic pieces require neither heat treatment nor rolling to obtain good performance in wear resistance.
Number | Date | Country | Kind |
---|---|---|---|
16174244 | Jun 2016 | EP | regional |
This application is a divisional of U.S. application Ser. No. 15/618,859 filed Jun. 9, 2017, the content of which is hereby incorporated by reference herein in its entirety. This application claims priority of European patent application No. EP16174244.0 filed Jun. 13, 2016, the content of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2027788 | Ridgway | Jan 1936 | A |
2613119 | Seemann | Oct 1952 | A |
6755566 | Damasko | Jun 2004 | B2 |
7641381 | Levingston | Jan 2010 | B2 |
8240910 | Orny et al. | Aug 2012 | B2 |
8317391 | Conus et al. | Nov 2012 | B2 |
9342050 | Hessler et al. | May 2016 | B2 |
9377760 | Von Gruenigen et al. | Jun 2016 | B2 |
9740170 | Bertrand et al. | Aug 2017 | B2 |
20020114225 | Damasko | Aug 2002 | A1 |
20020135108 | Billiet | Sep 2002 | A1 |
20100054090 | Orny et al. | Mar 2010 | A1 |
20100214880 | Rappo et al. | Aug 2010 | A1 |
20100254230 | Takeuchi et al. | Oct 2010 | A1 |
20110080810 | Hiraoka et al. | Apr 2011 | A1 |
20110164478 | Conus et al. | Jul 2011 | A1 |
20110273969 | Forsey et al. | Nov 2011 | A1 |
20140198624 | Von Gruenigen et al. | Jul 2014 | A1 |
20140247704 | Bertrand et al. | Sep 2014 | A1 |
20140321250 | Corthesy | Oct 2014 | A1 |
20150092524 | Verdon | Apr 2015 | A1 |
20150261188 | Hessler et al. | Sep 2015 | A1 |
20150346686 | Dubois et al. | Dec 2015 | A1 |
20180104771 | Cusin et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
269552 | Jul 1950 | CH |
702431 | Jun 2011 | CH |
705 905 | Jun 2013 | CH |
705 906 | Jun 2013 | CH |
102257442 | Nov 2011 | CN |
103941571 | Jul 2014 | CN |
103959180 | Jul 2014 | CN |
2102717 | Sep 2009 | EP |
2142965 | Jan 2010 | EP |
2727880 | May 2014 | EP |
2735540 | May 2014 | EP |
2 757 423 | Jul 2014 | EP |
2 757 424 | Jul 2014 | EP |
2952977 | Dec 2015 | EP |
1233314 | Aug 2020 | EP |
655161 | Jul 1951 | GB |
2416408 | Jan 2006 | GB |
S48-004508 | Feb 1973 | JP |
3055407 | Jun 2000 | JP |
2003139870 | May 2003 | JP |
2011-080879 | Apr 2011 | JP |
2011-080880 | Apr 2011 | JP |
5135528 | Feb 2013 | JP |
2013-170821 | Sep 2013 | JP |
2013-238627 | Nov 2013 | JP |
2014-531026 | Nov 2014 | JP |
2015-230306 | Dec 2015 | JP |
2017-519227 | Jul 2017 | JP |
2008080570 | Jul 2008 | WO |
2008080570 | Jul 2008 | WO |
2008132135 | Nov 2008 | WO |
2008132135 | Nov 2008 | WO |
2015185423 | Dec 2015 | WO |
Entry |
---|
European Search Report and Written Opinion dated Nov. 16, 2016 issued in application No. EP16174244, counterpart of parent U.S. Appl. No. 15/618,859; w/ English partial translation and partial machine translation (12 pages). |
Japanese Office Action dated Nov. 30, 2021 in application No. JP2017-114859, counterpart of parent U.S. Appl. No. 15/618,859; with English machine translation (total 12 pages) (note: D1, EP2952977, D3, JP2014-531026, D6, JP2013-170821 cited in the Japanese Office Action are not listed in this IDS form since they are listed in other IDS forms filed concurrently). |
Berner, Illustrated Professional Dictionary of Horology, 1988, pp. 36-39, 678-681; w/English translation; total 5 pages) (note: D16 cited in opposition proceeding of E3258325B1 issued from counterpart application No. EP160174244 of parent U.S. Appl. No. 15/618,859). |
Reymondin et al., Theorie d'horlogerie [The Theory of horology], Fédération des Ecoles Techniques, Le Locle, Switzerland, 1988, p. 291; w/English translation; total 5 pages) (note: D17 cited in opposition proceeding of E3258325B1 issued from counterpart application No. EP160174244 of parent U.S. Appl. No. 15/618,859). |
Affidavit of Wolfgang Burger, Technical opinion related to EP3258325B1, with CV, Aug. 30, 2022; in English (total 5 pages) (note: D18-D19 cited in opposition proceeding of E3258325B1 issued from counterpart application No. EP160174244 of parent U.S. Appl. No. 15/618,859). |
Third Party Observation Communication dated Apr. 4, 2019 in European application No. EP16174244, counterpart of parent U.S. Appl. No. 15/618,859; w/English machine translation (8 pages) (note: PL4, EP2757424 cited in the Third Party Observation is not listed in this IDS form since it is listed in another IDS form filed concurrently). |
Daniels, “La montre: principes et méthodes de fabrication” [“The watch: principles and methods of manufacturing”], Ed. Scriptar S.A., La Conversion, Switzerland, 1993, pp. 80-81; cited in the Third Party Observation Communication dated Apr. 4, 2019 (w/English machine translation; total 9 pages). |
Additional Third Party Observation Communication dated Apr. 4, 2019 in European application No. EP16174244; w/English machine translation (6 pages). |
Nardin et al., “Nouveaux pivotages de balancier” [“New pivoting of balance wheels”], 5th Congress of chronology, Munich, Germany, Jun. 19-23, 1959, pp. 695-700; cited in the Additional Third Party Observation Communication dated Apr. 4, 2019 (with English machine translation; total 14 pages). |
Chinese Office Action and Search Report dated Jun. 15, 2020 in application No. CN201710439362.4, counterpart of parent U.S. Appl. No. 15/618,859; with English machine translation (total 17 pages) (note: D2-D4 cited in the Chinese Office Action, US20100254230, US20140198624, US20100214880 are not listed in this IDS form since they are listed in other IDS forms filed concurrently). |
EP Opposition dated Aug. 10, 2020 in EP patent No. EP3258325 issued from application No. EP16174244.0, counterpart of parent U.S. Appl. No. 15/618,859 (in English; 30 pages) (note: all documents cited on pp. 3-4 of the EP opposition are listed in other IDS forms filed concurrently, except D11, CH269552, which is listed in this IDS form). |
Japanese Office Action dated Jul. 5, 2022 in counterpart application No. JP2017114859; with English machine translation (total 9 pages) (note: D1-D6 cited in the Japanese Office Action are not listed in this form since they are listed in other IDS forms filed concurrently). |
Berner, Illustrated Professional Dictionary of Horology, 1988, pp. 68-69, 690-693, 856-857; w/English translation; total 6 pages) (note: cited in opposition proceeding of E3258325B1 issued from counterpart application No. EP160174244). |
Japanese Office Action dated Mar. 16, 2021 in application No. JP2017-114859, counterpart of parent U.S. Appl. No. 15/618,859; with English machine translation (total 9 pages) (note: D7, US20140198624 cited in the Japanese Office Action is not listed in this IDS form since it is listed in another IDS form filed concurrently). |
Number | Date | Country | |
---|---|---|---|
20220373977 A1 | Nov 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15618859 | Jun 2017 | US |
Child | 17877578 | US |