The present invention relates to method of manufacturing a blade root for a wind turbine blade having fully bonded insert bushings with internal thread for mounting bolts for releasable attachment to a hub of a wind turbine, the method comprising the steps of providing a first layer of fibre mat, arranging bushings on the first layer of fibre mat to extending largely in the longitudinal direction of the blade, providing additional layers of fiber mat on top of the bushings, and consolidating the fiber mat.
Wind turbines have been used for decades to exploit the energy of the wind e.g. to produce electricity. To reduce the price of electricity produced by such wind turbines, the size of the wind turbines have increased to a current average nominal power of commercial wind turbines of approximately 1.5 MW, while wind turbines of up to 3 MW are under development, and it is expected that even larger wind turbines will be marketed in the coming years. Common commercial wind turbines have three blades, which by a 1.5 MW wind turbine have a length of approximately 35 m.
The blades are subject to large forces and bending moments inter alia due to the wind pressure and due to the weight and rotation of the blades, and further the blades are subject to fatigue because of the cyclic load. For example, during one revolution, the blade travels through a region of maximum wind load in the upper part of the circle, whereas the blade experiences a low wind area (or even lee), when the blade passes the tower, and further the wind is normally not constant, as there may be gusts of wind. Naturally the root of the blade and the connection of the blade to the hub must be able to withstand the load of the blade, and a failure of the blade root or the hub would be devastating and potentially fatal to persons near the wind turbine.
Over the years different approaches have been tried out, as can be seen in U.S. Pat. No. 4,915,590 that discloses a wind turbine blade attachment method. This prior art blade attachment comprises fibre glass sucker rods secured in the blade root, which sucker rods are unbonded to the blade root for a substantial portion forming a free end at the root end, and further the free end of the sucker rods are recessed from the blade root end, which means that the sucker rods can be put under tension. The patent indicates that the sucker rods may be unbonded to the rotor blade for approximately 85% of the length. The sucker rods are tapered down in diameter toward the secured end in the bonded area, where the rod is mated internally to the blade. Although this may be appropriate for relatively small blades used on wind turbines in August 1987, when this US-application was filed, this prior art construction is not suited, however, for the relatively large blades currently used, as the sucker rods will not be able to withstand the very large forces present at the blade root of large blades, especially as the rods are only bonded to the blade root to a very limited extent.
In the blade attachment of WO-A2-01/42647, the blade is connected to the hub by bolts screwed into inserts provided in radial holes in the blade root. It is a disadvantage however, that radial holes must be provided in the blade root, as these holes seriously weakens the construction and provides a stress concentration, which means that the blade root must be constructed to be very strong and hence heavy, which again stresses the construction.
A similar construction is described in U.S. Pat. No. 6,371,730, which discloses a blade connected to the hub by bolts screwed into nuts inserted into radial blind holes in the blade root. Although the holes are not through-going, they nonetheless seriously weaken the blade root, and hence this construction is also not advantageous.
It has also been tried to provide a blade root with fully bonded or embedded bushings each having a projecting threaded bolt part, as disclosed in U.S. Pat. No. 4,420,354. This prior art incorporates drilling a relatively large axially extending hole in the blade root made of a wood-resin composite, in which hole the bushing, having a preformed resin sleeve, is resin bonded. With this prior art a relatively large amount of blade root material is removed, which weakens the construction, so the blade root must be overdimensioned. Especially with large blades of modem composites like fibre-reinforced plastics, which are relatively flexible, stress concentration at the end of the bushings may be detrimental, as the bushings are significantly more stiff. Moreover this prior art method is somewhat destructive, and as fibre composites for the blade root are quite expensive, and increasingly will be as larger blades are developed, as it is expected that high-tech materials like carbon fibre composites will be introduced, this procedure is not favorable.
In general, prior art methods of the kind set forth are quite labor intensive and time consuming, as the bushings are spaced by blocks of e.g. a foam material, and the blocks and the bushings must be arranged carefully. Further there is a risk of air pockets being formed in the blade root between the bushings and the blocks, and such air pockets, which are difficult to detect, will seriously deteriorate the strength of the blade root.
It is an object of the present invention to provide a method of the kind set forth to enable production of a lightweight wind turbine blade having an 30 attachment of high strength.
To achieve this object the method according to the invention is characterized by an initial step of providing a holder having spaced recesses for accommodating the bushings, arranging the first layer of fibre mat on the holder and arranging the bushings in said recesses.
According to an embodiment, the method comprises the additional the step of compacting the fibre mats using vacuum mats, whereby a firm compacting is achieved and the risk of pockets of gas being entrapped in the composites is significantly reduced.
The mats may be dry mats, only containing reinforcing fibres. According to an embodiment, however, the mats are of a pre-preg type, whereby the blade may be produced in a very efficient way, as the whole blade may be consolidated in one piece after laying up of the composite, e.g. by heating to cure a thermosetting binder included in the composite.
In a preferred embodiment of the method use is made of insert bushings comprising a first portion and an extension portion having gradually increased flexibility in the direction away from the first portion. The first portion may have any desirable shape, according to an embodiment, however, the first portion of the bushing is substantially cylindrical. Hereby relatively simple and hence cost effective bushings can be achieved, and further a bushing having a substantially cylindrical first portion will take up relatively little space in the composite material of the blade root.
Hereby is achieved that the bushings, which are embedded in the blade root, and hence are integral therewith, at the same time may provide a strong threaded connection with a bolt for attachment to the hub of the wind turbine, and provide a relatively flexible tip, thereby avoiding development of stress-concentrations thereby a very lightweight blade having an attachment of high strength is hence achieved.
Whereas the first portion of the bushing may have any desirable shape, it is preferred, however, according to an embodiment that the first portion of the bushing is substantially cylindrical. Thereby relatively simple and hence cost effective bushings can be achieved, and further a bushing having a substantially cylindrical first portion will take up relatively little space in the composite material of the blade root.
Preferably, the bushings are metallic, although non-metallic bushings e.g. made of high-strength polymers or polymer composites, can be provided. The extension portion of the bushing may be chamfered to provide a gradually reduced cross section, whereby a gradually increased flexibility is achieved in a very simple way. Further by reducing the cross-section of the extension portion of the bushing, a smooth transition between the first portion of the bushing and the composite construction of the blade root in the direction towards the blade tip. Moreover the risk of pockets of air or gas being trapped in the construction at the bushings is greatly reduced by this smooth transition.
The internal thread of the bushings may extend over the entire length, it is preferred, however, that a first portion of the first portion is threadfree. Thereby a bolt introduced into the bushing and engaged in the thread may be put under tension, such that the blade root can be kept engaged with the hub at all times during the cycle of the blade, independent of the cyclic load on the blade, which load comprises tension and compression forces, and bending and torsion moments.
Although it may be advantageous in some occasions to provide the bushings with barbs, radial flanges or the like on the external surfaces thereof, it is preferred according to an embodiment to use bushings having smooth external surface.
To provide extra grip with the binder for bonding the bushings, the external surfaces of the bushings may be slightly roughened, such as by etching, sand blasting or the like.
In the following the invention will be described in more detail by way of example and with reference to the schematic drawing, in which:
A wind turbine blade 1 can be seen in plan view in
The blade root 3 can be seen in more detail in
As schematically illustrated in
In the embodiment according to
It is found that the blade according to the invention weighs approximately 4,500 kg, whereas prior art blades weigh approximately 6,000 kg, i.e. a reduction of 25%. Clearly this is a large reduction, which will make handling of the blade during manufacture, transport and fixation thereof much easier and less costly. Further lighter blades means reduced load on the structural parts of the wind turbine.
As an example 54 bushings were embedded in the root of a blade for a 1.5 MW turbine having three blades measuring 35 m and each bushing had a total length of approximately 80 cm. Of course the number and dimensions of the bushings depend on parameters such as material (strength, flexibility etc.) and the shape of the bushings.
Number | Date | Country | Kind |
---|---|---|---|
03388045 | Jun 2003 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DK2004/000405 | 6/10/2004 | WO | 00 | 2/15/2006 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2004/110862 | 12/23/2004 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3734642 | Dixon | May 1973 | A |
4412784 | Wackerle et al. | Nov 1983 | A |
4420354 | Gougeon et al. | Dec 1983 | A |
4648921 | Nutter, Jr. | Mar 1987 | A |
4915590 | Eckland et al. | Apr 1990 | A |
6305905 | Nagle et al. | Oct 2001 | B1 |
6371730 | Wobben | Apr 2002 | B1 |
Number | Date | Country |
---|---|---|
2115075 | Sep 1983 | GB |
2115075 | Sep 1983 | GB |
11-182408 | Jul 1999 | JP |
11182408 | Jul 1999 | JP |
WO 0142647 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 10557727 | Feb 2006 | US |
Child | 13099557 | US |