1. Field of the Invention
The subject invention relates to a manufacturing machine assembly for producing an article having a radio frequency identification (RFID) device. The subject invention also includes a method for producing such an article.
2. Description of Related Art
Radio frequency identification (RFID) devices are well known in many industries and are utilized for a variety of purposes. In particular, RFID devices have been used in the past for security systems, tracking systems, data collection and management systems, valet communication systems, location systems and the like. The prior art has also contemplated the integration of these RFID devices into cards or multi-layered labels. U.S. Pat. No. 6,520,544 discloses an example of a RFID device integrated into a multi-layered label. The '544 patent, however, as well as the remaining prior art known to the Applicant, fail to disclose an adequate means of incorporating a RFID device into a label or card without potentially damaging the RFID device. Further, these prior art devices fail to disclose an adequate means of retaining the RFID device within the label or card.
Accordingly, it would be desirable to develop a method of manufacturing an article incorporating an RFID device without damaging the RFID device. Further, it would be desirable to develop an article, such as a card or label, that permanently retains the RFID card within the card or label.
The subject invention includes a manufacturing machine assembly for producing an article having a radio frequency identification (RFID) device. The article is fabricated from a continuous sheet of stock having a top surface and a bottom surface with an adhesive layer and release liner. The manufacturing machine assembly includes a support frame for supporting the continuous sheet of stock as the sheet of stock moves through the machine assembly. A printing station prints indicia on the top surface of the continuous sheet of stock that define a first strip and a second strip of the stock. A cutting station is mounted to the support frame for cutting the continuous sheet of stock to separate the first and second strips. A stripping device is mounted to the support frame for removing the release liner from the first strip to expose the adhesive layer. An applicator is mounted to the support frame for applying a plurality of the RFID devices to the exposed adhesive layer of the first strip. A pair of coupling rollers are rotatably mounted to the support frame for moving the adhesive layer of the first strip into a bonded relationship with the second strip to mate the first and second strips and form a continuous series of articles wherein the first strip defines the top surface and the second strip defines the bottom surface of the articles and the plurality of RFID devices are sandwiched between the first and second strips. At least one of the coupling rollers includes an integral notch for providing a passageway for the RFID devices as the first and second strips pass between the coupling rollers, thereby ensuring that the RFID devices are not damaged during the bonding of the first and second strips.
The subject invention also includes an associated method of manufacturing the article having the RFID device. The method comprises the steps of: printing the indicia on the top surface of the continuous sheet of stock to define the first strip and the second strip of the stock; cutting the continuous sheet of stock to separate the first and second strips of stock; removing the release liner from the first strip to expose the adhesive layer; applying a plurality of the RFID devices to the exposed adhesive layer of the first strip; aligning the first and second strips with the coupling rollers; aligning the RFID devices with the notch in the coupling roller; mating the adhesive layer of the first strip with the second strip to bond the first and second strips together and form the continuous series of articles wherein the first strip defines the top surface and the second strip defines the bottom surface of the articles; and simultaneously passing the RFID devices through the notch to ensure that the RFID devices are not damaged as the plurality of RFID devices are sandwiched between the first and second strips.
The subject invention further includes an additional method of manufacturing, including the steps of: printing the indicia on the top surface of the continuous sheet of stock to define the first strip and the second strip of the stock; cutting the continuous sheet of stock to separate the first and second strips of stock; inverting one of the first and second strips 180 degrees relative to the other first and second strip; removing the release liner from the first strip to expose the adhesive layer of the first strip; applying a plurality of the RFID devices to the exposed adhesive layer of the first strip; removing the release liner from the second strip to expose the adhesive layer of the second strip; mating the adhesive layer of the first strip with the adhesive layer of the second strip to bond the first and second strips together and form the continuous series of articles wherein the first strip defines the top surface and the second strip defines the bottom surface of the articles and the plurality of RFID devices are sandwiched between the adhesive layers of the first and second strips.
Accordingly, the subject invention has developed a manufacturing machine assembly, and associated method, that inserts a number of RFID devices within a series of articles, such as a series of labels or cards, without damaging the RFID devices. Further, the subject invention has developed a method of adequately adhering the RFID devices to a series of labels or cards.
Other advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
Referring to the Figures, wherein like numerals indicate like or corresponding parts throughout the several views, a manufacturing machine assembly 25 for producing an article 26 having a radio frequency identification (RFID) device 27 in accordance with the subject invention is generally shown in
A rolled continuous sheet of stock 50 is mounted to a rotating shaft 76 before the printing station 28 of Section A. This continuous sheet of stock 50, which is also shown in cross-section in
A support frame 62 is provided for supporting the continuous sheet of stock 50 as the sheet of stock 50 moves through the manufacturing machine assembly 25. In particular, the support frame 62 provides a support surface for numerous components of the manufacturing machine assembly 25, including the previously mentioned laminating device 30, cutting device 32, inverting device 34, stripping device 36, applicator 38, scoring roller 40, coupling rollers 42, exit rollers 46 and a scrap take-up roller 48. The support frame 62 may be of any suitable size and shape as is known in the art.
The fabrication of the article 26, for example, a label or card, from the continuous sheet of stock 50 is now discussed in greater detail with reference to
Current printing stations 28 may utilize a number of cyrel printing plates (not shown) as known to those skilled in the art. Variable speed laser printers may also be used as printing stations 28 without deviating from the scope of the subject invention. The length of the printing station 28 is typically dependent upon the number of colors of used, which in turn determines the number of printing plates and/or laser printers used.
The parallel rows defining the first strip 64 and the second strip 66 of the sheet of stock 50 are continuously moving along a path. More specifically, the path is a longitudinal path that generally runs the lengthwise dimension of the manufacturing machine assembly 25. As appreciated, a driving mechanism (not shown) moves the parallel strips of stock 64, 66 along the longitudinal path.
After the printing is complete, the laminating device 30 preferably applies the clear laminate 60 to the top surface 58 of the continuous sheet of stock 50 for protecting and viewing the indicia. Specifically, the laminate 60 is a clear polyester laminate 60 that is rolled onto a shaft (not numbered) above the continuous sheet of stock 50. The laminate 60 protects the top surface 58 of the stock and ensures that the indicia will not smear, rub off, or otherwise be damaged. As is discussed in greater detail below with reference to an alternative embodiment, the application of the clear laminate 60 may be eliminated without deviating from the scope of the subject invention.
The continuous sheet of stock 50 then moves into Section B, where the cutting device 32 cuts the continuous sheet of stock 50 to separate the first 64 and second 66 strips. As best shown in
The inverting device 34 is shown schematically in
The inverting device 34 includes a first turn bar 72 and a second turn bar 74 with a vertical axis A passing through an intersection of the first 72 and second 74 turn bars. Preferably, the first turn bar 72 is positioned at a 45 degree angle clockwise with respect to the vertical axis A and the second turn bar 74 is positioned at a 45 degree counterclockwise with respect to the vertical axis A. As discussed above, the second strip 66 preferably passes around the turn bars 72, 74 to be inverted 180 degrees. The preferred embodiment of the turn bars 72, 74 creates the least amount of stresses on the sheet of stock 50 as the second strip 66 passes around the turn bars 72, 74. As known to those skilled in the art, the first turn bar 72 could be positioned at any acute angle with respect to the vertical axis A, and the second turn bar 74 could be positioned at any acute angle with respect to the vertical axis A so long as the sum of the acute angles equals 90 degrees. The inverting device 34 may also include a number of additional bars and/or rollers for moving the second strip 66 of the card stock 50 through the inverting device 34. The inverting device 34 and its unique operation and related components form the claimed subject matter of U.S. Pat. No. 5,776,287, which is assigned to the assignee of the subject invention and is herein incorporated by reference.
The stripping device 36 is also located within Section B next to the inverting device 34. As best shown in
The applicator 38 is likewise mounted to the support frame 62 within Section B. As best shown in
The applicator 38 illustrated is but one means for applying the RFID devices 27 to the adhesive layer 54 of the first strip 64. One skilled in the art will recognize that there are many methods of supporting, mounting and operating an RFID applicator 38. As such, the cutting and applying of the RFID devices 27 can be performed by any suitable device. Further, the RFID applicator 38 can equally apply the RFID device 27 onto an exposed adhesive layer 54 anywhere between any suitable stripping device and Section C of the manufacturing machine assembly 25. Further, it should be appreciated that the location and/or operation of the particular stripping device 36 shown may be modified to incorporate various designs of RFID applicators 38.
The first 64 and second 66 strips continue through Section B of the card manufacturing machine assembly 25 with the first strip 64 now including a series of RFID devices 27 adhered to the adhesive layer 54 and the second strip 66 is inverted 180 degrees such that the second strip 66 is now turned upside down relative to the first strip 64. Referring to
As best shown in
As shown in
After the first strip 64 passes over the non-stick roller 86 and the second strip 66 passes through the scoring roller 40, the first 64 and second 66 strips should be aligned both horizontally and longitudinally. In other words, the printed indicia on the first strip 64 should align with the printed indicia on the second strip 66. The coupling rollers 42 of the subject invention are specifically designed to maintain the desired alignment of the first 64 and second 66 strips. By maintaining exact alignments, each individual article 26 will be manufactured in accordance with desired specifications. For example, a two-sided coupon card will have perfectly aligned indicia on both sides thereof.
Preferably the coupling rollers 42 comprise a top roller 94 and a bottom roller 96. The top roller 94 has the resilient, substantially rubber-like exterior for gripping the first strip 64 and creating the continuous series of articles 92. The notch 88 in the top roller 94 is formed by removing a center section the rubber-like exterior. The bottom roller 96 is a metal cylinder having the notch 88 and a smooth exterior surface. As discussed above, once the strips 64, 66 have passed through the coupling rollers 42, the continuous sheet of stock 50 is transformed into the continuous series of articles 92 with each article 26 containing an embedded RFID device 27.
Referring to
The continuous series of articles 92 now continues through Section C to the pair of exit rollers 46. The exit rollers 46 are mounted on the support frame 62 with at least one of the exit rollers 46 having a cutting surface thereon. The cutting surface completely cuts through the first 64 and second 66 strips for forming and separating the continuous series of articles 92 from the continuous sheet of stock 50. In particular, the exit rollers 46 engage the continuous sheet of stock 50 to remove an exterior material which forms and separates the continuous series of articles 92 and creates a web of scrap exterior material 100. In one embodiment, the exit rollers 46 also include a secondary scoring surface for completely cutting through the first 64 and second 66 strips between the articles 26 of the continuous series of articles 92 to separate each article 26 from each other. As illustrated in
The method of manufacturing the article 26 having the RFID device 27 will now be discussed in further detail. The method first comprises a step of printing the indicia on the top surface 58 of the continuous sheet of stock 50 to define the first strip 64 and the second strip 66 of the stock. The clear laminate 60 can then be applied to the top surface 58 of the continuous stock 50 for protecting and viewing the indicia. As mentioned above, the step of applying the clear laminate 60 could be eliminated without deviating from the scope of the subject invention.
The continuous sheet of stock 50 can be cut to separate the first 64 and second 66 strips of stock. In the embodiment of
After the strips 64, 66 are cut, one of the first 64 and second 66 strips are rotated 180 degrees relative to the other first 64 and second 66 strip. The release liner 56 is then removed from the first strip 64 to expose the adhesive layer 54 of the first strip 64. The plurality of the RFID devices 27 are applied to the exposed adhesive layer 54 of the first strip 64.
A section of the second strip of stock 66 can be cut to form the plurality of removal mini-coupons. As mentioned above, this step is, of course, accomplished when the article 26 is to be defined as a coupon card.
The first 64 and second 66 strips are then aligned with the coupling rollers 42. The RFID devices 27 are also aligned with the notch 88 in the coupling roller 42. As mentioned above, there is preferably one notch 88 in each of the coupling rollers 42 such that the RFID devices 27 are aligned with both of the notches 88 in the coupling rollers 42. The adhesive layer 54 of the first strip 64 is then mated with the second strip 66 to bond the first 64 and second 66 strips together to form the continuous series of articles 92. In the embodiment where the article 26 is defined as the card, the step of mating the adhesive layer 54 of the first strip 64 with the second strip 66 is further defined as moving the adhesive layer 54 of the first strip 64 into a bonded relationship with the release liner 56 of the second strip 66. This structure allows the pre-cut mini-coupons to be removed from the remaining portions of the card. In either case, once the strips 64, 66 have been bonded together, the first strip 64 defines the top surface 58 and the second strip 66 defines the bottom surface 52 of the articles 26. During the bonding of the first 64 and second 66 strips, the RFID devices 27 simultaneously pass through the notches 88 to ensure that the RFID devices 27 are not damaged. The RFID devices 27 are also simultaneously sandwiched between the first 64 and second 66 strips.
The first 64 and second 66 strips now move into the exit rollers 46 and are completely cut for forming and separating the continuous series of articles 92 from the continuous sheet of stock 50. In the embodiment of forming the card, the first 64 and second 66 strips are completely cut between the articles 26 of the continuous series of articles 92 to separate each article 26, i.e., card, from each other. The cutting of the first 64 and second 66 strips to form the continuous series of articles 92 also creates a continuous web of scrap stock 100. The continuous web of scrap stock 100 is then collected upon the take-up roller 48.
Turning to
The primary difference between the article 26 being manufactured in this alternative method and the article 26 manufactured in accordance with
As shown in
As shown in
As with the embodiment of
Turning now to
One alternative relates to bypassing the inverting device 34. In particular, the second strip of stock 66 separates from the first strip 64 and passes underneath the first strip 64 as the release liner 56 is removed and the RFID device 27 is applied to the first strip 64. The second strip 66 passes downwardly away from the first strip 64 and by-passes the inverting device 34. Alternatively, the inverting device 34 may be removed altogether. The second strip 66 therefore runs along the longitudinal path of the manufacturing machine assembly 25. The adhesive layer 54 of the first strip 64 is then bonded directly to the second strip 66. In particular, if the clear laminate 60 is applied to the first 64 and second 66 strips, then the adhesive layer 54, along with the RFID device 27 of the first strip 64, is bonded to the clear laminate 60 of the second strip 66. Alternatively, if the clear laminate 60 is not applied to the first 64 and second 66 strips, then the adhesive layer 54, along with the RFID device 27 of the first strip 64, is bonded directly to the stock 50 of the second strip 66. Hence, the coupling rollers 42 move the adhesive layer 54 of the first strip 64, with the RFID device 27, into a bonded relationship with a top surface of the second strip to stock 66 to mate the first 64 and second 66 strips and form the continuous series of articles 92. The article 26 constructed in this manner is typically used as a label.
As shown in
The second alternative illustrated in
The invention has been described in an illustrative manner, and it is to be understood that the terminology which has been used is intended to be in the nature of words of description rather than of limitation. As is now apparent to those skilled in the art, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
The subject patent application claims priority to and all the benefits of U.S. Provisional Patent Application Ser. No. 60/516,829, which was filed on Nov. 3, 2003.
Number | Date | Country | |
---|---|---|---|
60516829 | Nov 2003 | US |