Method of manufacturing an assaying device

Information

  • Patent Grant
  • 6418606
  • Patent Number
    6,418,606
  • Date Filed
    Friday, September 3, 1999
    25 years ago
  • Date Issued
    Tuesday, July 16, 2002
    22 years ago
Abstract
An assaying device and a method of manufacturing same are provided. The assaying device includes a unitary, absorbent membrane having multiple reagent stripes incorporated therein. The reagent stripes display an observable reaction if a sample component is present in a fluid sample being tested. The reagent stripes are deposited simultaneously on a continuous membrane ribbon and individual membranes are die cut therefrom. Each individual membrane includes commonly connected channels having die cut slots therebetween. The channels are preferably disposed perpendicularly with respect to the reagent stripes and provide means for causing contact between the fluid and reagent stripes. The present invention preferably includes a cassette for containing the membrane and for facilitating analysis of test results. During assembly of an assaying device, the unitary membrane is easily inserted into the cassette by engaging the slots with ridges in the cassette, thus minimizing a chance of error of alignment of the channels. The present invention is suitable for multiple component qualitative analysis as well as semi-quantitative analysis.
Description




The present intention directed to a device for detecting the presence of substances in a fluid sample and more specifically to an assay kit for qualitative and semi-quantitative analysis of fluid sample and a method for manufacturing same.




Devices for testing for the presence of single or multiple substances in a single fluid sample are well known. The demand for inexpensive, accurate and simple to use devices for testing, or assaying, biological specimens has increased in recent years in both medical and non-medical settings. For example, in a hospital where patients are subjected to massive dosages of antibiotics, a small amount of blood may be withdrawn from the patient and the serum assayed for determining an if an appropriate amount of antibiotic is present in the blood. As another example, in a hospital emergency room where an overdose patient has impaired cognitive function, or is a small child unable to communicate, the type of drug overdosed must be quickly determined in order to ensure correct administration of treatment. Nonmedical uses of assaying methods and devices include testing of the general population by employers, government agencies, sports groups and other organizations for employment and maintenance of safety in the workplace. Because of increasingly large numbers of persons being tested, there is a strong need for inexpensive, easy to use and reliable test devices.




Reagent test devices have been developed which generally include an absorbent membrane having incorporated therein a specific reagent which manifests a detectable response, for example a color change, in the presence of a specific component of a sample fluid that is absorbed by the membrane.




Many such test devices for detecting body fluid components are capable of making not only qualitative, but also quantitative or semi-quantitative measurements. Thus, by observing a color change response after a certain period of time, an analyst can obtain not only a positive indication of the presence of a specific component, but also an estimate of how much of the component is present in the sample.




One method for semi-quantitative analysis of a sample involves the uses of tags or marker agents in addition to the component specific reagent. Generally, a known amount of a marker agent is combined with a fluid sample in order to enable the sample component in question to bind with the marker agent, if the component is present in the sample. After the marker agent has become saturated with the component, any uncombined component remaining in the sample, i.e. the portion not bound to the marker, may cause a detectable response in the component specific reagent. Thus, by using known amounts of a marker agent, a relative amount of a sample component can be determined.




Conventionally, many test devices for determining multiple, distinct components of a sample fluid, or for performing semi-quantitative analysis utilize multiple test strips or filaments, each being impregnated or coated with the specific reagent. During assembly of the assaying kit, the separate strips are aligned in a common holder or container. A reservoir in the container is used to hold a fluid sample, and the reservoir and strips are so arranged such that each of the strips will absorb some of the fluid sample.




Although inexpensive materials may be used in the manufacture of conventional assaying devices, such devices require individual alignment and fastening of multiple, separate strips into a holder. The need for handling of a number of individual strips substantially adds to manufacturing time and cost. Moreover, the chance for inaccuracy of test results increases with increased number of strips, as strips may become lost, damaged or misaligned during the assembly process.




The present invention provides a device for testing of multiple substances in a single fluid sample, which is reliable and inexpensive to manufacture because it includes a single, unitary membrane having a number of commonly connected channels with multiple reagents disposed thereon.




SUMMARY OF THE INVENTION




The present invention provides an assaying device, and method for making same, which generally comprises a unitary, integral membrane made of a material capable of absorbing a fluid sample, said membrane including a plurality of die cut slots therein which define multiple, commonly connected, absorbent membrane channels.




Assaying means for indicating a presence of at least one component of the fluid sample is provided. The assaying means comprises one or more capture zones, disposed, for example, in a band or stripe fashion across the membrane. Each capture zone includes a particular reagent therein. The reagent may comprise any suitable composition known in the art which will provide a detectable response in the presence of the component in question. For example, the reagent may be a drug conjugate for detecting the presence of an illicit drug in a body fluid sample.




Preferably, the capture zone stripe is disposed on the membrane generally perpendicularly to the die cut slots and channels. As will be discussed in detail hereinafter, the present invention may include a plurality of said capture zones which have been simultaneously striped onto the membrane, each being generally parallel to one another and each containing a reagent for detecting a particular component of the sample.




Alternatively, or in addition to, the multiple capture zones, means for enabling semi-quantitative analysis may be provided such that a relative amount of a component in the sample may be determined. For example, the assaying means may additionally comprise a plurality of marker zones, disposed on an upstream end of the absorbent channels, each marker zone including a different concentration of a particular signal carrying agent. Each channel is then useful for measuring for the presence of a predetermined minimum level of component in the fluid sample.




In the semi-quantitative analysis embodiment, the slots between the channels function in part to prevent mixing of conjugates in one channel with conjugates in an adjacent channel, thus preserving integrity of test results.




Preferably, the slots are die cut into the membrane such that the slots are disposed inside a perimeter of the membrane such that the perimeter is comprised of a continuous common area about the die cut slots.




The present invention preferably includes a rigid holder for containing the unitary membrane and enabling hygienic handling thereof. The holder may be a cassette comprised of a cover portion and a base portion with the base portion including interior projections for engaging the slots and accurately aligning the membrane. The top portion of the cassette includes apertures therein for receiving the fluid sample and windows for enabling observation of capture zones when the membrane is enclosed between the cover and base. In addition, the cassette cover may include grooves for receiving the base projections, thus providing a fluid tight fitting between adjacent channels and preventing shifting or misalignment of the membrane.




The method of the present invention generally includes the steps of striping a continuous membrane ribbon with single or multiple reagents, for example, drug conjugates in the case of drug testing, and die cutting individual unitary membranes, each having multiple channels, therefrom. The die cutting step includes the step of cutting slots into each membrane to define the channels, the slots and channels being disposed perpendicular to the striped reagents. The unitary membrane is inserted into a cassette having interior projections for engaging the slots and aligning the membrane with the windows in the cassette for enabling observation of the capture zones.











BRIEF DESCRIPTION OF THE DRAWINGS




The advantages and features of the present invention will be better understood with the following detailed description when considered in conjunction with the accompanying drawings of which:





FIG. 1

is a representation of a method of the present invention for manufacturing an assaying device, as well as an assaying device manufactured by such a method;





FIG. 2

shows an assaying device in accordance with the present invention, comprising a unitary membrane having die cut slots defining channels, and capture zones striped perpendicular thereto;





FIG. 3

shows an exploded view of another embodiment of the present invention having a membrane as well as a cassette for containing the membrane;





FIG. 4

shows a top plan view of an embodiment of the present invention useful for qualitative drug testing of a fluid sample;





FIG. 5

shows a cross-sectional view of the present invention taken across line


5





5


or

FIG. 4

;





FIG. 6

shows a cross sectional view of the present invention taken across line


6





6


of

FIG. 4

;





FIG. 7

shows a membrane and a cassette in accordance with the present invention suitable for semi-quantitative analysis of a single component of a fluid sample; and





FIG. 8

shows a membrane and cassette in accordance with the present invention suitable for semi-quantitative analysis of multiple components of a fluid sample.











DETAILED DESCRIPTION




Turning now to

FIGS. 1 and 2

, an assaying device


10


in accordance with the present invention and a representation of a method for manufacturing same is shown.




More particularly, a method for manufacturing the assaying device


10


generally comprises the step of first depositing at least one reagent stripe


12


, on a continuous membrane ribbon


14


made of a material capable of absorbing a fluid sample (not shown). For example, the membrane ribbon


14


may comprise a suitable absorbent paper. The continuous membrane ribbon


14


may be provided as a wound spool


16


of such material.




The reagent stripe


12


may be comprised of any of the many well known reagents


22


capable of causing an observable reaction, for example a color change, in the presence of a specific component of the fluid sample, and will be specific to the type of component being tested. As examples, the reagent may be comprised of a drug conjugate matching a drug, or antibodies matching antigens, that are a subject of the test. During the step of depositing the reagent stripes


12


,


26


, or at sometime thereafter, As will be discussed hereinafter, the present invention provides a method for manufacturing an assaying device


10


capable of qualitative analysis of multiple components of a sample. In the embodiment shown in

FIGS. 1 and 2

, a plurality of different reagents


22


,


24


, matching the sample components to be detected, are prepared in a conventional fashion and deposited on the ribbon


14


as multiple parallel stripes


12


,


26


. More particularly, each stripe


12


,


26


may be deposited by discharging a particular reagent


22


,


24


, respectively, onto the ribbon


14


while the ribbon spool


16


is being unrolled and the ribbon


14


conveyed in a direction represented by arrow


30


. The reagent stripes


12


,


26


are preferably spaced apart from one another such that a reagent-free area


38


of membrane material divides the adjacent reagent stripes


12


,


26


. the continuous membrane ribbon


14


is die cut into individual, separate membranes


32


, each separate membrane


32


having a portion of the reagent stripe


12


,


26


deposited thereon. Importantly, at least one slot, preferably multiple parallel slots


36


, are die cut from the membrane


32


in order to obtain a unitary membrane


32


having a plurality of commonly connected absorbent channels


38


disposed adjacent and between the slots


36


.




The slots


36


are preferably cut interior to a perimeter


39


of the membrane


32


, such as shown, leaving a common area


40


of membrane material about the slots


36


. Alternatively, although not shown in the drawings, the slots may be cut such that they form slot openings in a lower edge of the membrane


32


, creating finger-like channels commonly connected at an upper edge of the membrane


32


. Preferably, the slots


36


are die cut parallel with respect to each other and perpendicularly with respect to the reagent stripes


12


,


26


.




Although a total of four slots


36


and five channels


38


are shown in

FIGS. 1 and 2

, it should be appreciated that any number of slots


36


and channels


38


may be provided, depending on the assaying to be performed. Furthermore, although a rectangular membrane


32


with parallel slots


36


forming parallel channels


38


is shown, it should be appreciated that the method of the present invention may include die cutting a different shaped unitary membrane from the ribbon


14


, for example, a circular membrane having slots disposed in a spoked fashion about a center of the circular membrane.




Once the slots


36


and channels


38


have been formed into the membrane


32


, each reagent stripe


12


,


26


becomes a divided capture zone


44


across each channel


38


which provides distinct areas of the channel


38


containing the reagent


22


,


24


for indicating a presence or absence of the respective components being tested.




Preferably, the step of die cutting the continuous membrane ribbon


14


and the step of die cutting the slots


36


are performed simultaneously by using a conventional die apparatus


48


, having dimensions designed for this purpose. For example, the die apparatus


48


may include an upper portion


50


and a lower portion


52


having cooperative cutting blades


54


adapted for cutting apart adjacent membranes


32


and punching slots


36


therein. It should be appreciated that the term “die cut” as used herein is intended to include any method of rapid cutting of sheet material which lends itself to automated production.




Advantageously, the method of the present invention provides an inexpensive method of manufacturing the assaying device


10


shown in the

FIG. 2

which can be used for assaying multiple components of a fluid sample without the need for preparing and assembling multiple, individual test strips. As will be discussed hereinafter, the assaying device of the present invention preferably includes a holder, such as a cassette, for supporting the membrane, such as the embodiments shown in

FIGS. 3-8

.




More particularly, another embodiment


58


of an assaying device in accordance with the present invention is shown in

FIG. 3

, which generally comprises the unitary membrane


32


having commonly connected channels


38


and capture zones


44


such as shown in

FIGS. 1 and 2

and discussed hereinabove, and additionally comprises a cassette


60


.




Turning as well to

FIGS. 4-6

, the cassette


60


may be comprised of a cover


62


and engaging base


64


. Importantly, the base


64


, or alternatively the cover


62


, includes one or more projections


68


for engaging the membrane slots


36


and aligning the membrane


32


within the cassette


60


. The projections


68


are preferably the same number and dimension as the slots


36


such that assembly of the assaying device


58


is simple, reliable and leaves minimal opportunity for error.




In the example shown, the membrane


32


includes four slots


36


interior to a perimeter


69


of the membrane


32


. Accordingly, the cassette


60


includes four projections


68


having nearly equal dimension as the slots


36


.




The assembly of the assaying device


58


is accomplished by simply inserting the membrane


32


into the bottom portion by aligning the slots


36


with the projections


68


and engaging the projections


68


into the slots


36


. Next, the cover


62


is caused to engage the base


64


by any suitable means, such as cooperating snap connectors


70


.




Additionally, the cassette


60


preferably includes means, such as grooves


72


in the cassette cover


62


, for receiving the base projections


68


in order to provide a secure fitting between the base


64


and cover


62


and further prevent shifting or misalignment of the membrane


32


.

FIGS. 3 and 6

. The projection


68


and groove


72


engagement is shown in FIG.


6


. The engagement may be fluid tight to prevent fluid communication between adjacent channels


38


, the advantages of which will be discussed hereinafter.




As shown, the cassette cover


62


includes apertures, such as windows


74


, for revealing a portion of each capture zone


44


and enabling observation thereof, and a relatively larger well


76


for receiving the fluid sample and establishing a fluid communication between the sample and the absorbent membrane


32


. The cassette cover


62


preferably includes indicia


78


for indicating a name, or other identification information, of the sample component that will cause an observable reaction in the adjacent window


74


.




Importantly, the projections


68


and grooves


72


maintain positive alignment of the membrane within the cassette


60


, hence handling or shipping of the cassette


60


will not dislodge or otherwise move the membrane


32


within the cassette


60


. This ensures that the assaying device


58


will function properly and will display accurate test results through the windows


74


.




In use, a suitable volume of sample fluid, such as blood serum, is deposited into the well


76


of an assembled assaying device


58


in accordance with the present invention. The fluid will saturate the common area


40


of the membrane immediately adjacent the well


76


. Absorbent padding


80


may be provided in the base


64


for capturing excess fluid that may have been deposited into the well


76


. The fluid will travel through the channels


38


by capillary action due to the absorbent nature of the membrane


32


and eventually reach the capture zones


44


which may change in color, or in some other way indicate a presence or absence of a specific component in the fluid sample.




Advantageously, because of the unity of the channels


38


at the membrane common area


40


disposed immediately adjacent or below the well


76


, the sample fluid will tend to migrate into the channels


38


uniformly, such that the fluid will be distributed nearly equally among the several channels


38


. Preferably, the well


76


is elongated in shape and equal to a width of the membrane


32


. As shown most clearly in

FIGS. 4 and 5

, the well may have a funnel-shaped cross section to allow a steady flow of fluid into the absorbent membrane


32


. The structure of the membrane


32


and the well


76


enhances equality of volume and rate of fluid absorption among the channels


38


, thus enhancing accuracy of test results when compared to conventional devices.




Importantly, one particular reagent stripe


86


may be used to indicate a validity of the test, or in other words, such reagent stripe


86


may operate as a control mechanism to assure that the sample has saturated the channels


38


sufficiently to have contacted each capture zone


44


. The control reagent stripe


86


is preferably disposed near a lower, downstream edge of the membrane


32


, as shown most clearly in

FIGS. 1

,


2


and


4


. A control window


88


for viewing the control stripe


86


is located downstream of each test window


74


in the cassette cover


62


.




Thus, after a sample fluid has been deposited in the well


76


and a sufficient period of time has elapsed to allow for the fluid to migrate through each channel


38


, the control windows


88


are observed. If, for example, all of the control windows


88


show a change in color, the test would be considered valid for each test window


74


located upstream of the control windows


88


. On the other hand, if a particular control window


88


shows no observable change, then this would indicate the test is invalid in the test window


74


located immediately upstream the particular control window


88


. Control reagents suitable for this purpose well known in the art, and thus will not be described hereinafter with more detail.




In the example shown in

FIG. 4

, the present invention is being used to test for the presence of a variety of drugs in a sample of body fluid. As shown, each control window


88


indicates the test is valid for each drug being tested. Furthermore, the presence of a drug referred to as “THC” has been detected.




Turning now to

FIGS. 7 and 8

, alternative embodiments


92


,


94


of the present invention are shown suitable for semi-quantitative analysis of a fluid sample such that a relative amount of a component in the sample may be determined.




More particulary,

FIG. 7

shows an assaying device


92


in accordance with the present invention useful for semi-quantitative analysis of a single component of a fluid sample, and

FIG. 8

shows an assaying device


94


suitable for semi-quantitative analysis of multiple components of a fluid sample. As discussed hereinabove, semi-quantitative analysis is used as a way of determining if a certain minimum amount of a component is present in a fluid sample and thus can be used to determine a relative amount of component present in a sample.




For example, the assaying means may be comprised of a single reagent stripe


96


, for single drug semi-quantitative testing, or multiple reagent stripes


98


,


100


, for multiple drug semi-quantitative testing. Additionally, the assaying means may comprise a plurality of marker zones


104


including signal carrying agents of varying concentrations disposed on an upstream end of the absorbent channels


38


. Thus, each particular channel Will be used for measuring for the presence of a predetermined minimum level of component in the fluid sample.




The signal carrying agent is preferably unique to the capture zone reagent. Thus, for example, in the embodiment shown in

FIG. 7

, a semi-quantitative analysis of one component of a sample is to be tested by single reagent stripe


96


, using four different concentrations of signal carrying agent, illustrated by different sized marker zones


104


. A two component semi-quantitative analysis may be made by the embodiment of

FIG. 8

using the two different reagent stripes


98


,


100


, and marker zones


104


comprising two sets of different concentrations of signal carrying agent specific to respective reagent stripes


98


,


100


.




The signal carrying agent functions to bind with a predetermined amount of the sample component until a saturation point is reached. An observable reaction may occur in a downstream capture zone if an excess amount of component or, alternatively an excess amount of signal carrying agent, is present in the fluid within that particular channel. The signal carrying agent may be particle based, or polymer based technology, or any other suitable technology as known by those skilled in the art.




The marker zones


104


are deposited onto the membrane


32


, for example, by spotting the various amounts of signal carrying agent on an upstream end of each channel


38


. Preferably, the marker zones


104


are deposited onto each channel at a location immediately downstream of the common area


40


and between the slots


36


, to prevent mixing of fluids in adjacent channels


38


during the testing process. Additionally, the channels and the projections function to prevent mixing of the varying amounts of signal carrying agents and sample components during the migration of the fluid by providing a positive barrier between adjacent channels


38


. Thus, although the membrane


32


is a unitary structure having commonly connected channels


38


, the integrity of the test results displayed in each channel


38


is preserved.




It will be appreciated that the positioning of windows


74


as shown in the three different embodiments


58


,


92


,


94


facilitates test analysis and enables a quick determination of the type of test the assaying device will be useful for.




Although there has been hereinabove described a die cut reagent membrane, holder and a specific method for manufacturing same, in accordance with the present invention, for the purpose of illustrating the manner in which the invention may be use to advantage, it should be appreciated that the invention is not limited thereto. Accordingly, any and all modifications, variations or equivalent arrangements which may occur to those skilled in the art, should be considered to be within the scope of the present invention as defined in the appended claims.



Claims
  • 1. A method of manufacturing an assaying device, the method comprising the steps of:depositing at least one reagent stripe on a continuous membrane ribbon made of a material capable of absorbing a fluid sample, said reagent stripe including a reagent capable of chemically reacting in the presence of a specific component of the fluid sample; die cutting the continuous membrane ribbon into individual, separate membranes, each separate membrane having the reagent stripe deposited thereon; die cutting at least one slot into each individual separate membrane to obtain a unitary membrane having a plurality of commonly connected absorbent channels disposed adjacent the at least one die cut slot; providing a cassette having a cover, a base and projecting ribs and grooves within the cassette between the cover and base; and assembling the membrane ribbon within the cassette in registration with the ribs and grooves so that the ribs and grooves provide a fluid tight engagement between the channels in order to prevent fluid communication between adjacent channels and preserve integrity of test results displayed in each channel.
  • 2. The method according to claim 1 wherein the step of depositing includes the step of depositing a plurality of different reagent stripes parallel to one another along the continuous membrane ribbon, in order to enable analysis of multiple components of the fluid sample.
  • 3. The method according to claim 2 wherein the step of depositing includes the step of depositing a plurality of different reagent stripes parallel to one another simultaneously along the continuous membrane ribbon, in order to enable analysis of multiple components of the fluid sample.
  • 4. The method according to claim 1 wherein the steps of die cutting the continuous membrane ribbon is performed simultaneously with the step of die cutting the at least one slot into each individual membrane.
  • 5. The method according to claim 1 wherein the step of die cutting the at least one slot into each individual membrane is comprised of the step of die cutting multiple parallel slots into the individual membrane, the parallel slots being cut perpendicularly with respect to the reagent stripe.
  • 6. The method according to claim 1 further comprising the step of aligning the individual die cut membrane in a cassette by engaging the at least one slot with projections in the cassette.
  • 7. The method according to claim 1 further comprising the step of depositing a marker zone on an upstream end of each channel, each marker zone comprising a different concentration of signal carrying agent in order to enable semi-quantitative analysis of the sample.
  • 8. A method for manufacturing an assaying device, the method comprising the steps of:forming a cassette having a cover, a base and projecting ribs and grooves within the cassette between the cover and base; providing a unitary membrane made of a material capable of absorbing a fluid sample; cutting slots in the membrane to create a plurality of absorbent channel and enable registration of the membrane with the cassette; disposing an assaying medium in at least one captive zone on said membrane across each channel, for indicating a presence of at least one specific component of the fluid sample; and assembling the membrane within the cassette in registration with the ribs and grooves so that the ribs and grooves provide a fluid tight engagement between the channels in order to prevent fluid communication between adjacent channels and preserve integrity of test results displayed in each channel.
  • 9. The method according to claim 8 wherein the step of assembly includes disposing a captive zone generally perpendicular to a membrane slot and further includes the step of forming a window in the cassette cover for revealing a portion of each captive zone.
US Referenced Citations (3)
Number Name Date Kind
4459360 Marinkovich Jul 1984 A
4518565 Boger et al. May 1985 A
6235241 Catt et al. May 2001 B1
Foreign Referenced Citations (1)
Number Date Country
WO-9114942 Oct 1991 WO