Method of manufacturing an automotive component member

Information

  • Patent Grant
  • 8056233
  • Patent Number
    8,056,233
  • Date Filed
    Wednesday, February 28, 2007
    17 years ago
  • Date Issued
    Tuesday, November 15, 2011
    13 years ago
Abstract
The invention provides a method for manufacturing an automotive component member, including the steps of: (A) positioning at least one insert into a mold, wherein the insert defines a plurality of holes; and (B) casting a portion of the automotive component member in the mold to substantially encapsulate the insert such that a major portion of the insert is substantially non-bonded with the casting material to provide a proper interfacial boundary with the casting material for damping. The method may include the step of coating the insert to prevent bonding between the insert and the casting material. A damped automotive component member having an insert cast therein is also disclosed.
Description
TECHNICAL FIELD

The present invention relates to a cast automotive component and method for damping vehicle noise by casting coulomb damper inserts into an automotive component to provide noise-damping interfaces within the cast automotive components.


BACKGROUND OF THE INVENTION

Vehicle noise, such as that emanating from the powertrain or braking system, transmitted to the passenger compartment of the vehicle contributes to operator and passenger discomfort as well as discomfort to those outside the passenger compartment of the vehicle. In an effort to reduce the transmission of noise from components of the vehicle to the passenger compartment, a variety of techniques have been employed, including the use of polymer coatings, sound absorbing barriers, and laminated panels having viscoelastic layers. Other noise reducing efforts have included the use of noise reducing engine mount designs, including active engine mounts that employ magneto-rheological fluid actuators. While existing noise reducing efforts may have a positive effect on reducing the transmission of noise to the passenger compartment, there remains a need in the art to address the problem associated with the source of the noise. Accordingly, there is a need in the art for alternate methods to damp vehicle noise.


SUMMARY OF THE INVENTION

The invention provides a method for manufacturing a damped automotive component member, including the steps of: (A) positioning at least one insert into a mold; and (B) casting the automotive component member in the mold around the insert such that a major portion of the insert is substantially non-bonded with the casting material to provide a proper interfacial boundary with the casting material for the damping of noise.


The insert may include tabs which support the insert in a suspended position within a mold for casting or may be self supporting or fixturing. The insert preferably also defines a plurality of holes. The insert may be provided with a coating to allow the insert to remain non-bonded with the casting material. Alternately, the non-bonded nature of the insert may arise from the intrinsic properties of the insert itself.


The invention has been demonstrated for grey iron cast around a steel insert, however, a similar effect should be obtained if an insert is cast into aluminum, magnesium, or other suitable materials. Like the cast iron/steel insert arrangement, adhesion of the cast structure to the insert must be avoided by use of a barrier coating, or by selection of an insert material that is not bondable to the casting material. An aluminum insert could be used instead of steel, as long as it has a higher melting point than the cast metal.


The invention may be applicable to many automotive component members, such as brake components, steering knuckles, control arms, cast cradles, cast instrument panel beams, brakes, or any structural or closure casting. Additionally, the invention may benefit traction drive motors for hybrid electric and pure electric propulsion systems, as well as containment/housings for high voltage contactors. Other potential applications include any structure which produces or transmits audible and objectionable noise in service, such as manufacturing machines, railroad equipment, passenger planes, etc. The invention seems particularly well suited for powertrain components which house or enclose one or more rotating, noise-generating components of a vehicle powertrain.


These and additional features and advantages of the present invention will become more clear from the following detailed description of the preferred embodiments.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1
a is a schematic cross sectional side view of a coulomb damper insert positioned within a casting mold in accordance with the present invention;



FIG. 1
b shows an enlarged view of area 1b identified in FIG. 1a by phantom lines;



FIG. 1
c is a schematic cross sectional side view of the mold and coulomb damper insert of FIG. 1a, with the mold closed and molten material introduced into the mold to form a coulomb damped disc brake rotor in accordance with the invention;



FIG. 1
d is a schematic cross sectional side view of the mold of FIG. 1a, with the mold opened and the coulomb damped disc brake rotor ejected from the mold in accordance with the invention;



FIG. 2 shows a schematic perspective view of an electric drive motor housing having a cast in place coulomb damper insert in accordance with the invention;



FIG. 3 shows a schematic perspective view of a transmission housing having cast in place coulomb damper inserts in accordance with the invention;



FIG. 4 shows a schematic perspective view of an exhaust manifold having cast in place coulomb damper inserts in accordance with the invention;



FIG. 5 shows a schematic perspective view of a cylinder head having cast in place coulomb damper inserts in accordance with the invention;



FIG. 6 shows a schematic perspective view of a differential case having cast in place coulomb damper inserts in accordance with the invention;



FIG. 7 shows a schematic perspective view of an engine block having cast in place coulomb damper inserts in accordance with the invention; and



FIG. 8 shows a schematic perspective view of a rear end housing having cast in place coulomb damper inserts in accordance with the invention.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention provides a method for manufacturing an automotive component member, including the steps of: (A) positioning at least one coulomb damper insert into a mold, wherein the coulomb damper insert defines a plurality of holes; and (B) casting a wall of the automotive component member in the mold around the coulomb damper insert such that a major portion of the coulomb damper insert is substantially non-bonded with the casting material to provide a proper interfacial boundary with the casting material for damping.


Referring to FIGS. 1a and 1b, a mold 10 is provided in accordance with the invention having upper and lower mold halves 12, 14 that form a cavity 16 therebetween for casting a friction or coulomb damped disc brake rotor in accordance with the invention. FIG. 1b shows a portion of a coulomb damper insert 18, highlighted in FIG. 1a by phantom lines, which is pre-positioned within the mold 10 and having tabs 20 which rest on cutout portions 22, 24 of the lower mold half 14. As shown in FIG. 1c, when the upper and lower mold halves 12, 14 are closed together, the tabs 20 are supported between the cutout portions 22, 24 of the lower mold half 14 and the lands 26, 28, respectively of the upper mold half 12.


The coulomb damper insert 18 has a generally annular body 30 with tabs 20 extending generally radially therefrom. Each tab 20 includes a distal portion 32 and a proximal portion 34. During casting, the distal portion 32 is secured between the cutout portions 22, 24 and the lands 26, 28, respectively, shown in FIG. 1c, while the proximal portion 34 of each tab 20 is exposed to molten casting material 39 within the mold cavity 16. The body 30 of the coulomb damped insert 18 defines a plurality of orifices or holes 35. Those skilled in the art will recognize that the holes 35 may be any shape, such as circular, diamond, rectangular, triangular, etc, and any size while remaining within the scope of that which is claimed. While it is envisioned that the coulomb damper insert 18 is formed from sheet stock having the holes 35 punched, drilled or otherwise machined therein; those skilled in the art will recognize other materials such as expanded metal, flattened expanded metal, woven screen, wire welded screen, etc. may be used to form the insert 18 while remaining within the scope of that which is claimed.


The mold 10 is preferably formed from sand, and the coulomb damper insert 18 is preferably a pre-manufactured steel component having a coating on opposing surfaces 36, 38 (shown in FIG. 1b) of the generally annular body 30 and optionally on the walls defining the holes 35. These coated surfaces 36, 38 do not bond with the casting material 39 during the casting operation, shown in FIG. 1c. The lack of affinity along these coated surfaces 36, 38 produces the unbonded interfacial boundary between the generally annular body 30 and a rotor cheek 44, shown in FIG. 1d, desired for damping effectiveness. The walls defining the holes 35 may be coated to increase the surface area of the non-bonded portion of the coulomb damper insert 18, thereby increasing damping effectiveness of the coulomb damper insert 18. Optionally, the tabs 20, particularly the proximal portion 34 of each tab 20, may be configured in a manner to bond with the casting material 39 forming the rotor cheek 44 of a coulomb damped disc brake rotor 40 of FIG. 1d.


Since the coated surfaces 36, 38 of the coulomb damper insert 18 do not bond with the casting material 39 of the rotor cheek 44, a proper interfacial boundary is formed with the rotor cheek 44 for damping. However, the bonding of the tabs 20, particularly the proximal portions 34 thereof, with the casting material 39 of the rotor cheek 44 prevents corrosion causing exterior elements, such as water and salt, from reaching the interfacial boundary between the coulomb damper insert 18 and the rotor cheek 44. A graphite coating or similar fluxing agent may be applied to the tabs 20 to enhance bonding with the casting material 39. The coulomb damper insert 18 may be formed from any material having a melting point higher than that of casting material 39, such that the coulomb damper insert 18 will not be melted during the casting process. In the preferred embodiment of the coulomb damped disc brake rotor 40, the casting material 39 is iron and, as mentioned hereinabove, the coulomb damper insert 18 is formed from steel.


To apply the coating, the above-referenced coated surfaces 36, 38 must first be cleaned free of oil, rust or dirt. Degreasers may be used to remove thin films of oil, and steel wool may be used to remove rust. The best results are attained when the coulomb damper insert 18 is sand blasted, which removes both oil and rust. It also roughens the surface, which promotes adherence of the coating. A preferred coating material is a ceramic mold wash sold under the trade name IronKote, and is available from Vesuvius Canada Refractories, Inc. of Welland, Ontario. IronKote has alumina and silica particles mixed with an organic binder. It is approximately 47.5% alumina and 39.8% silica with a lignisole (lignosulfanate) binder. The coating preferably has a thickness between approximately 50 and 300 micrometers. It should be noted that other ceramic coatings that prevent bonding between the coulomb damper insert 18 and the casting material 39 and having a melting point higher than that of the casting material 39 may be used. Additionally, non-ceramic coatings such as those with hydrocarbon based carriers may be used while remaining within the scope of that which is claimed. Furthermore, a coating may not be required should the intrinsic properties of the material forming the coulomb damper insert 18 allow the coulomb damper insert 18 to remain substantially non-bonded with the casting material 39 thereby providing a proper interfacial boundary with the casting material 39 for damping.


Referring to FIG. 1d, the mold 10 is shown in the open position with the friction damped disc brake rotor 40 removed from the mold cavity 16. As shown, the coulomb damped disc brake rotor 40 has a hat portion 42 with the rotor cheek 44 extending about the periphery thereof, and the coulomb damper insert 18 positioned within the rotor cheek 44. The distal end 32 of each of the tabs 20 of the coulomb damper insert 18 is removed, such as by machining, after the coulomb damped disc brake rotor 40 is removed from the mold 10.


The locating tabs 20 may be formed on the inside diameter (i.e. radially inwardly extending), outside diameter (i.e. radially outwardly extending), or both to locate and stabilize the coulomb damper insert 18 during the casting operation. The number and placement of tabs 20 will depend, in part, on the specific rotor cheek 44 geometry and dimensions, and on the thickness of the coulomb damper insert 18. Alternately, the coulomb damper insert 18 may be formed without tabs 20 such that the coulomb damper insert 18 is self supporting or fixturing within the mold 10.


The coulomb damper insert 18 is preferably 1.5 to 2 mm in thickness, but other thicknesses are envisioned. The thickness of the coulomb damper insert 18 is chosen to prevent bending or flexing of the coulomb damper insert 18 while not being so thick as to “chill” the surrounding molten casting material 39 during casting.


The location, number, and geometry of the holes 35 within the coulomb damper insert 18 are preferably chosen such that mold filling is facilitated while reducing the tendency of the casting material 39 to move or dislodge the coulomb damper insert 18 during the casting operation. In other words, the holes 35 help to prevent molten casting material 39 from lifting or shifting the coulomb damper insert 18, as the mold 10 is filled from below through the gate 47, shown in FIG. 1c. By gating below the part and using the horizontally parted mold 10, the molten casting material 39 is not directed or splashed onto the coulomb damper insert 18 prematurely. Also, quiescent mold filling prevents splashing and premature solidification of droplets of molten casting material 39 on the coulomb damper insert 18 prior to general contact with molten casting material 39 during filling of the mold 10. Further, the molten casting material 39 is preferably filtered at the gate 47 with a ceramic filter, not shown, to reduce slag related defects. Although a generally horizontally parted mold 10 has been described hereinabove, those skilled in the art of casting will recognize that vertically parted molds may be utilized to form the coulomb damped disc brake rotor 40 of the present invention with the casting process determined by such aspects as casting volume, mold footprint, etc. Additionally various additional gating techniques may be envisioned while remaining within the scope of that which is claimed. Additionally, the location, number and geometry of the holes 35 within the coulomb damper insert 18 may also be chosen to increase damping effectiveness.


Other automotive components, in addition to the coulomb damped disc brake rotor 40, may be formed using the same general method outlined above with reference to FIGS. 1a through 1d. Referring to FIG. 2, a schematic perspective view of an electric drive motor housing 50 is shown having a coulomb damper insert 52 which is cast into a peripheral wall 54 of the electric drive motor housing 50 in accordance with the invention. The coulomb damper insert 52 defines a plurality of orifices or holes 56 and is prepared in a manner such that the surface of the coulomb damper insert 52 is not bonded to the casting material during casting. The preparation coating the coulomb damper insert, as described hereinabove, prior to casting the drive motor housing 50 to provide proper boundary interface between the coulomb damper insert 52 and the wall 54 to prevent bonding of the coulomb damper insert 52 with the wall 54. Alternately the intrinsic properties of the material forming the coulomb damper insert 52 may substantially prevent bonding between the coulomb damper insert 52 and the wall 54. The coulomb damper insert 52 may be provided with peripheral tabs 58 to support the coulomb damper insert 52 in a suspended position within a mold cavity for casting. As described hereinabove, the tabs 58 are preferably prepared in a manner to enhance bonding between the tabs 58 and the wall 54 to prevent unwanted corrosion causing elements from reaching the interfacial boundary between the coulomb damper insert 52 and the wall 54. Those skilled in the art will recognize that the tabs 58 can be omitted in instances where the coulomb damper insert 52 is self supporting or fixturing within the mold.


As with the coulomb damper insert 18, the coulomb damper insert 52 is preferably pre-manufactured from steel, aluminum, magnesium, or other suitable material. The coulomb damper insert 52 may comprise any material having a melting point higher than that of cast alloy that would not be melted during the casting process. Typical materials suitable for forming the coulomb damper insert 52 are steel or stainless steel for castings formed from grey iron. Alternatively, pure aluminium, dilute aluminium alloys, and steel may be used to form the coulomb damper insert 52 for casting formed from aluminium. It may be beneficial and/or desirable to match the thermal expansion coefficient of the coulomb damper insert 52 with that of the wall 54 to minimize thermally induced stresses in service. In addition to the tabs 58, those skilled in the art will recognize that other portions of the coulomb damper insert 52 may be left uncoated to promote bonding depending on the damping requirements of the component while remaining within the scope of that which is claimed.



FIG. 3 shows a schematic perspective view of a transmission housing 150 having coulomb damper inserts 152, 154, 156, and 158 cast in place in accordance with the invention. Each of the coulomb damper inserts 152, 154, 156, and 158 define a plurality of holes 160.



FIG. 4 shows a schematic perspective view of an exhaust manifold 250 having coulomb damper inserts 252, 254, and 256 cast in accordance with the invention. The inserts 252, 256 are curved, and the insert 254 partially conical. Each of the coulomb damper inserts 252, 254, and 256 define a plurality of holes 260.



FIG. 5 shows a schematic perspective view of a cylinder head 350 having coulomb damper inserts 352, 354, 356, 358, and 360 cast in place in accordance with the invention. Each of the coulomb damper inserts 352, 354, 356, 358, and 360 define a plurality of holes 362.



FIG. 6 shows a schematic perspective view of a differential case 450 having coulomb damper inserts 452 and 454 cast in place in accordance with the invention. Each of the coulomb damper inserts 452 and 454 define a plurality of holes 460.



FIG. 7 shows a schematic perspective view of an engine block 550 having coulomb damper inserts 552, 554, 556, 558 and 560 cast in place in accordance with the invention. Each of the coulomb damper inserts 552, 554, 556, 558 and 560 define a plurality of holes 562.



FIG. 8 shows a schematic perspective view of a rear end housing 650 having coulomb damper inserts 652 and 654 cast in place in accordance with the invention. Each of the coulomb damper inserts 652 and 654 defines a plurality of holes 660.


Locating tabs are not shown in FIGS. 2 through 8, but may be used to position and to stabilize the coulomb damper insert during the metal casting operation. Alternately, the coulomb damper insert may be positioned within the casting cavity of the mold in a manner without tabs when the coulomb damper insert is self supporting or fixturing. As a further alternative embodiment, the above-described coated inserts may be provided in a structural oil pan.


By providing holes or orifices within the coulomb damper inserts, the interfacial surface area per unit mass is increased, when the walls of the holes are coated, compared to inserts with no holes, thereby increasing the damping effectiveness with a reduction in weight. Additionally, the holes reduce the likelihood of distorting the coulomb damper insert during casting, thereby allowing thinner cross sections to be cast while still achieving complete encapsulation of the coulomb damper insert. Additional damping effectiveness may be obtained due to the three-dimensional nature of the coulomb damper insert of the present invention. The holes or orifices defined by the insert of the present invention may facilitate the casting of thin-walled castings that would be excessively chilled with a solid insert. Furthermore, the holes or orifices defined by the coulomb damper insert allow continuous paths to be maintained throughout the wall of the casting, thereby acting to improve the mechanical strength and properties of the cast wall having the coulomb damper insert embedded or encapsulated therein. Consequently, the insert defining a plurality of holes may generally be employed to maintain the mechanical properties of thin walled castings, whereas the mechanical properties for thin walled castings may be compromised by the inclusion of a coulomb damper insert having a large and continuous surface area forming large planes of non-bonded material. Additionally, the coulomb damper insert of the present invention may reduce the casting defect scrap rate due to the reduced chance of casting cracks at the insert location. Similarly, the likelihood of cracking during machining operations and use is also reduced.


To those skilled in the art to which this invention pertains, the above described preferred embodiments may be subject to change or modification. Such change or modification can be carried out without departing from the scope of the invention, which is intended to be limited only by the scope of the appended claims.

Claims
  • 1. A method for manufacturing an automotive component member, comprising: positioning at least one insert into a mold, wherein said at least one insert defines a plurality of holes; andcasting a portion of the automotive component member in said mold to substantially encapsulate said at least one insert such that a major portion of said at least one insert is substantially non-bonded with casting material to provide a proper interfacial boundary with the casting material for damping.
  • 2. The method of claim 1, further comprising coating said at least one insert to prevent bonding between said at least one insert and the casting material.
  • 3. The method of claim 1, wherein the automotive component member comprises an electric drive motor housing.
  • 4. The method of claim 1 wherein the automotive component member comprises a transmission housing.
  • 5. The method of claim 1, wherein the automotive component member comprises a rear end housing.
  • 6. The method of claim 1, wherein the automotive component member comprises an engine block.
  • 7. The method of claim 1, wherein the automotive component member comprises a differential case.
  • 8. The method of claim 1, wherein the automotive component member comprises an exhaust manifold.
  • 9. The method of claim 1, wherein the automotive component member comprises a cylinder head.
  • 10. The method of claim 1, wherein the automotive component member comprises a disc brake rotor.
  • 11. A method as set forth in claim 1, wherein portions of the insert defining the plurality of holes is non-bonded to the casting material.
  • 12. A method for manufacturing a damped automotive component member, comprising: positioning at least one insert into a mold, wherein said at least one insert defines a plurality of holes; andcasting a portion of the automotive component member in said mold to substantially encapsulate said at least one insert such that a major portion of said at least one insert is substantially non-bonded with the casting material to provide a proper interfacial boundary with the casting material for damping, wherein said at least one insert is provided with at least one tab to support said at least one insert within said mold for said casting.
  • 13. The method of claim 12, further comprising coating said at least one insert to substantially prevent bonding between said at least one insert and the casting material.
  • 14. A method as set forth in claim 13, wherein the coating is performed so that portions of the insert defining the plurality of holes is non-bonded with the casting material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of U.S. patent application Ser. No. 11/475,756, filed Jun. 27, 2006, now U.S. Pat. No. 7,937,819 B2 which is hereby incorporated by reference in its entirety.

US Referenced Citations (117)
Number Name Date Kind
974024 Carter Oct 1910 A
1484421 Thomspon Feb 1924 A
1989211 Norton Jan 1935 A
2012838 Tilden Aug 1935 A
2026878 Farr Jan 1936 A
2288438 Dach Jun 1942 A
2603316 Pierce Jul 1952 A
2978793 Lamson et al. Apr 1961 A
3085391 Hatfield et al. Apr 1963 A
3127959 Wengrowski Apr 1964 A
3147828 Hunsaker Sep 1964 A
3292746 Robinette Dec 1966 A
3378115 Stephens, III Apr 1968 A
3425523 Robinette Feb 1969 A
3509973 Kimata May 1970 A
3575270 Wagenfuhrer et al. Apr 1971 A
3774472 Mitchell Nov 1973 A
3841448 Norton, Jr. Oct 1974 A
3975894 Suzuki Aug 1976 A
4049085 Blunier Sep 1977 A
4072219 Hahm et al. Feb 1978 A
4195713 Hagbjer et al. Apr 1980 A
4250950 Buxmann et al. Feb 1981 A
4278153 Venkatu Jul 1981 A
4338758 Hagbjer Jul 1982 A
4379501 Hagiwara et al. Apr 1983 A
4475634 Flaim et al. Oct 1984 A
4523666 Murray Jun 1985 A
4529079 Albertson Jul 1985 A
4905299 Ferraiuolo et al. Feb 1990 A
5004078 Oono et al. Apr 1991 A
5025547 Sheu et al. Jun 1991 A
5083643 Hummel et al. Jan 1992 A
5115891 Raitzer et al. May 1992 A
5139117 Melinat Aug 1992 A
5143184 Snyder et al. Sep 1992 A
5183632 Kluchi et al. Feb 1993 A
5184663 Oono Feb 1993 A
5259486 Deane Nov 1993 A
5310025 Anderson May 1994 A
5416962 Passarella May 1995 A
5417313 Matsuzaki et al. May 1995 A
5509510 Ihm Apr 1996 A
5530213 Hartsock et al. Jun 1996 A
5582231 Siak et al. Dec 1996 A
5620042 Ihm Apr 1997 A
5660251 Nishizawa et al. Aug 1997 A
5789066 DeMare et al. Aug 1998 A
5819882 Reynolds et al. Oct 1998 A
5855257 Wickert et al. Jan 1999 A
5862892 Conley Jan 1999 A
5878843 Saum Mar 1999 A
5927447 Dickerson Jul 1999 A
5965249 Sutton et al. Oct 1999 A
6047794 Nishizawa Apr 2000 A
6073735 Botsch et al. Jun 2000 A
6112865 Wickert et al. Sep 2000 A
6206150 Hill Mar 2001 B1
6216827 Ichiba et al. Apr 2001 B1
6223866 Giacomazza May 2001 B1
6231456 Rennie et al. May 2001 B1
6241055 Daudi Jun 2001 B1
6241056 Cullen et al. Jun 2001 B1
6283258 Chen et al. Sep 2001 B1
6302246 Naumann et al. Oct 2001 B1
6357557 DiPonio Mar 2002 B1
6405839 Ballinger et al. Jun 2002 B1
6465110 Boss et al. Oct 2002 B1
6481545 Yano et al. Nov 2002 B1
6505716 Daudi et al. Jan 2003 B1
6507716 Nomura et al. Jan 2003 B2
6543518 Bend et al. Apr 2003 B1
6648055 Haug et al. Nov 2003 B1
6799664 Connolly Oct 2004 B1
6880681 Koizumi et al. Apr 2005 B2
6890218 Patwardhan et al. May 2005 B2
6899158 Matuura et al. May 2005 B2
6932917 Golden et al. Aug 2005 B2
6945309 Frait et al. Sep 2005 B2
7066235 Huang Jun 2006 B2
7112749 DiPaola et al. Sep 2006 B2
7178795 Huprikar et al. Feb 2007 B2
7293755 Miyahara et al. Nov 2007 B2
7594568 Hanna et al. Sep 2009 B2
7604098 Dessouki et al. Oct 2009 B2
7644750 Schroth et al. Jan 2010 B2
7775332 Hanna et al. Aug 2010 B2
7836938 Agarwal et al. Nov 2010 B2
20020084156 Ballinger et al. Jul 2002 A1
20020104721 Schaus et al. Aug 2002 A1
20030037999 Tanaka et al. Feb 2003 A1
20030127297 Smith et al. Jul 2003 A1
20030141154 Rancourt et al. Jul 2003 A1
20030213658 Baba Nov 2003 A1
20040031581 Herreid et al. Feb 2004 A1
20040045692 Redemske Mar 2004 A1
20040074712 Quaglia et al. Apr 2004 A1
20040084260 Hoyte et al. May 2004 A1
20040242363 Kohno et al. Dec 2004 A1
20050011628 Frait et al. Jan 2005 A1
20050150222 Kalish et al. Jul 2005 A1
20050183909 Rau, III et al. Aug 2005 A1
20050193976 Suzuki et al. Sep 2005 A1
20060076200 Dessouki et al. Apr 2006 A1
20060243547 Keller Nov 2006 A1
20070039710 Newcomb Feb 2007 A1
20070056815 Hanna et al. Mar 2007 A1
20070062664 Schroth et al. Mar 2007 A1
20070062768 Hanna et al. Mar 2007 A1
20070142149 Kleber Jun 2007 A1
20070166425 Utsugi Jul 2007 A1
20070235270 Miskinis et al. Oct 2007 A1
20070298275 Carter et al. Dec 2007 A1
20080099289 Hanna et al. May 2008 A1
20080185249 Schroth et al. Aug 2008 A1
20090032569 Sachdev et al. Feb 2009 A1
20090107787 Walker et al. Apr 2009 A1
Foreign Referenced Citations (25)
Number Date Country
428319 Jan 1967 CH
20051113784 Oct 2005 CN
1757948 Apr 2006 CN
2863313 Jan 2007 CN
2446938 Apr 1976 DE
2537038 Mar 1977 DE
19649919 Jun 1998 DE
19948009 Mar 2001 DE
60000008 Mar 2002 DE
10141698 Mar 2003 DE
102005048258 Apr 2006 DE
60116780 Nov 2006 DE
0205713 Dec 1986 EP
1230274 Apr 1971 GB
2328952 Mar 1999 GB
57154533 Sep 1982 JP
1126434 Aug 1989 JP
05-104567 Apr 1993 JP
11342461 Dec 1999 JP
2003214465 Jul 2003 JP
2004011841 Jan 2004 JP
20010049837 Jun 2001 KR
9823877 Jun 1998 WO
0136836 May 2001 WO
2007035206 Mar 2007 WO
Related Publications (1)
Number Date Country
20070298275 A1 Dec 2007 US
Continuation in Parts (1)
Number Date Country
Parent 11475756 Jun 2006 US
Child 11680179 US