1. Technical Field
The present disclosure relates to an electrosurgical forceps and, more particularly, to a method of manufacturing an end effector assembly including jaw members with seal plates having inwardly facing tab members formed thereon to facilitate overmolding the seal plates to respective jaw housings of the jaw members.
2. Description of Related Art
Electrosurgical forceps are well known in the medical arts. For example, an electrosurgical endoscopic forceps is utilized in surgical procedures, e.g., laparoscopic surgical procedure, where access to tissue is accomplished through a cannula or other suitable device positioned in an opening on a patient. The endoscopic forceps, typically, includes a housing, a handle assembly including a movable handle, a drive assembly, a shaft and an end effector assembly attached to a distal end of the shaft. Typically, the endoscopic forceps utilizes both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize, seal, cut, desiccate, and/or fulgurate tissue. In particular, the jaw members operably communicate with the drive assembly to manipulate tissue, e.g., grasp and seal tissue and the jaw members have respective seal plates secured to the jaw housing of the respective jaw members to seal tissue.
As is conventional in the endoscopic forceps art, the seal plates are, typically, secured to the respective jaw housing of the respective jaw members via an overmolding process. In particular, a peripheral edge of the seal plate(s) is bent or folded downwards and, subsequently, bent or folded outwards providing a thin lip or tab (referred to in the art as a “pinch trim”) that is overmolded to the jaw housing. As can be appreciated, this results in a thin section of the overmolding that may deform at the high temperatures that are typically associated with an electrosurgical procedure, e.g., an electrosurgical sealing procedure. This deformation of the overmolding may lead to delamination of the of the seal plate from the jaw housing. The delamination of the seal plate from the jaw housing may increase the likelihood of flexure of the jaw members and/or seal plates, which, in turn, may increase the likelihood of the seal plates inadvertently coming into contact with one another resulting in arcs developing therebetween.
In addition to the foregoing, one or more wires are typically secured to the seal plates of the respective jaw members to provide electrosurgical energy thereto. In particular, one (in the case of monopolar endoscopic forceps configurations) or two (in the case of bipolar endoscopic forceps configurations) wires are secured to the seal plates on the respective jaw members via a crimping process. This crimping process is complex and increases manufacturing costs of the electrosurgical instrument. Moreover, this crimping process, e.g., a crimp-on terminal that is positioned on one or both of the seal plates and connects to the respective jaw wire, takes up a large amount of space in the relatively limited space of the jaw members.
In view of the foregoing, there exists a need in the art for a method of manufacturing an end effector assembly including jaw members with seal plates having inwardly facing tab members formed thereon to facilitate overmolding the seal plates to respective jaw housings of the jaw members.
Embodiments of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.
An aspect of the present disclosure provides method for manufacturing a jaw assembly configured for use with an electrosurgical forceps. A seal plate with an inwardly facing tab member extending along a peripheral edge thereof is formed. In certain instances, a jaw wire may be welded to the seal plate. Subsequently, the seal plate is overmolded to a jaw housing. Forming the seal plate may include forming a cavity defined along the inwardly facing tab member of the seal plate. In this instance, the cavity may be configured to receive an insulative substrate therein to facilitate securing the seal plate to the jaw housing.
The insulative substrate may be made from plastic. Forming the seal plate may include forming one or more apertures thereon. In this instance, the aperture(s) is configured to receive the insulative substrate therein such that during the overmolding process of the jaw housing an insulative stop member is formed on the seal plate. The insulative stop member may include a generally arcuate configuration. Forming the seal plate may include forming a plurality of notches along the inwardly facing tab member of the seal plate.
An aspect of the present disclosure provides a method for manufacturing jaw members configured for use with an electrosurgical forceps. One or more of a pair of seal plates is stamped from a sheet metal. The stamped seal plates are formed with an inwardly facing tab member extending along a peripheral edge thereof. In certain instances, a jaw wire may be welded to each of the seal plates. The seal plates are positioned into respective mold cavities. An insulative substrate is introduced into the respective mold cavities. The insulative substrate is allowed to harden in the respective mold cavities to form respective jaw housings with seal plates secured thereto. Forming the seal plates may include forming a cavity defined along the inwardly facing tab member of the seal plate. In this instance, the cavity may be configured to receive the insulative substrate therein to facilitate securing the seal plates to the respective jaw housing. The jaw housings are removed from the respective mold cavities to form a pair of jaw members. The insulative substrate may be made from plastic.
Forming the seal plates may include forming one or more apertures thereon. The aperture(s) may be configured to receive the insulative substrate therein such that during the overmolding process of the respective jaw housing an insulative stop member is formed on the seal plate. The insulative stop member may include a generally arcuate configuration. Forming the seal plates may include forming a plurality of notches along the inwardly facing tab member of the seal plate.
An aspect of the present disclosure provides a method for manufacturing jaw members configured for use with an electrosurgical forceps. A pair of seal plates is stamped from sheet metal. The stamped seal plates may be formed with an inwardly facing tab member extending along a peripheral edge thereof, and one or more apertures thereon. A cavity defined along the inwardly facing tab member of the seal plate is formed. The seal plates are positioned into respective mold cavities. An insulative substrate is introduced into the respective mold cavities. The insulative substrate is allowed to harden in the respective mold cavities to form respective jaw housings with seal plates secured thereto. The cavities are defined along the inwardly facing tab members of the seal plates and are configured to receive the insulative substrate therein to facilitate securing the seal plates to a respective jaw housing. The aperture(s) is configured to receive the insulative substrate therein such that an insulative stop member is formed on the seal plate. The jaw housings is removed from the respective mold cavities to form a pair of jaw members.
Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:
Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
Turning now to
Continuing with reference to
Other than jaw member 110 being movable and jaw member 120 being stationary, jaw members 110 and 120 are identical to one another. In view thereof, and unless otherwise noted, jaw member 120 is described in detail hereinafter.
Turning now to
Continuing with reference to
In accordance with the instant disclosure, the seal plate 122 is formed with an inwardly facing tab member 126 (
The liquid thermosetting plastic may be heated and/or mixed prior to being introduced into the mold cavity. A “single-shot” or “two-shot” injection molding process may be utilized to introduce the liquid thermosetting plastic into the mold cavity.
Jaw member 110 includes an opposing electrically conductive tissue sealing plate 112 including an inwardly facing tab member 127 that extends along a peripheral edge 129 of the seal plate 112 (
With reference to
In embodiments, it may prove advantageous to provide one or more insulative or non-conductive stop members on one or both of the seal plates 112 and 122. In accordance with the present disclosure, either of seal plates 112 or 122 may be formed with one or more apertures 132 of suitable configuration (
The stop members 134 function similar to that of stop members that are typically associated with conventional forceps. That is, the stop members 134 may provide a specific gap distance between the jaw members 110 and 120 when the jaw members 110 and 120 are in the clamping configuration. Moreover, the stop members 134 may function to prevent the seal plates 112 and 122 from touching one another during the transmission of electrosurgical energy to the jaw members 110 and 120. In embodiments, the gap distance may range from about 0.001 inches to about 0.0016 inches. Unlike conventional stop members that are typically glued to seal plates via one or more suitable adhesives, and which are prone to becoming dislodged from the seal plates under high shear forces, the stop members 134 of the instant disclosure are formed with the jaw housing 124 and, thus, are permanently affixed to the seal surface of the seal plate 122. Therefore, the likelihood of the stop members 134 becoming dislodged from the seal surface of the seal plate 124 is diminished, if not eliminated.
In embodiment, where each of the seal plates 112 and 122 includes stop members 134, the stop members 134 on the seal plates 112 and 122 may be in vertical registration with one another.
In certain embodiments, after the jaw housing 124 and/or stop members 134 have cured, a buffing machine or the like may be utilized to smooth out rough edges that may have formed during the curing process.
In use, tissue may be positioned between the jaw members 110 and 120. Subsequently, electrosurgical energy is transmitted to the seal plates 112 and 122 via wires 611. The unique configuration of the seal plates 112, 122 including the respective inwardly facing tab members 127, 126 associated therewith overcome the aforementioned drawbacks typically associated with conventional forceps. That is, the inwardly facing tab members 127, 126 including the respective cavities 131, 130 defined therein provides a greater point of contact between the jaw housings 114, 124 and seal plates 112, 122, and, thus, the likelihood of the seal plates 112, 122 delaminating adjacent the point of contact between the seal plates 112, 122 and jaw housings 114, 124 is diminished, if not eliminated.
From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, in certain instances, it may prove advantageous to secure the seal plates 112 and 122 to the respective jaw housing 114, 124 of the jaw members 110 and 120 via a different securement method.
With reference to
The unique configuration of the seal plate 222 including the outwardly facing tab member 226 associated therewith overcomes the aforementioned drawbacks typically associated with conventional forceps. That is, the outwardly facing tab member 226 including the notches 228 defined therein provide a greater point of contact between the jaw housing and seal plate 222, and, thus, the likelihood of the seal plate 222 delaminating adjacent the point of contact between the seal plate 222 and jaw housing is diminished, if not eliminated.
In another embodiment, one or both of the inwardly facing tab members 126, 127 may include one or more of the notches 228 thereon.
While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
D249549 | Pike | Sep 1978 | S |
D263020 | Rau, III | Feb 1982 | S |
D295893 | Sharkany et al. | May 1988 | S |
D295894 | Sharkany et al. | May 1988 | S |
D298353 | Manno | Nov 1988 | S |
D299413 | Decarolis | Jan 1989 | S |
D343453 | Noda | Jan 1994 | S |
D348930 | Olson | Jul 1994 | S |
D349341 | Lichtman et al. | Aug 1994 | S |
D354564 | Medema | Jan 1995 | S |
D358887 | Feinberg | May 1995 | S |
D384413 | Zlock et al. | Sep 1997 | S |
H1745 | Paraschac | Aug 1998 | H |
D402028 | Grimm et al. | Dec 1998 | S |
D408018 | McNaughton | Apr 1999 | S |
D416089 | Barton et al. | Nov 1999 | S |
D424694 | Tetzlaff et al. | May 2000 | S |
D425201 | Tetzlaff et al. | May 2000 | S |
H1904 | Yates et al. | Oct 2000 | H |
D449886 | Tetzlaff et al. | Oct 2001 | S |
D453923 | Olson | Feb 2002 | S |
D454951 | Bon | Mar 2002 | S |
D457958 | Dycus et al. | May 2002 | S |
D457959 | Tetzlaff et al. | May 2002 | S |
H2037 | Yates et al. | Jul 2002 | H |
D465281 | Lang | Nov 2002 | S |
D466209 | Bon | Nov 2002 | S |
D493888 | Reschke | Aug 2004 | S |
D496997 | Dycus et al. | Oct 2004 | S |
D499181 | Dycus et al. | Nov 2004 | S |
D502994 | Blake, III | Mar 2005 | S |
6908463 | Treat et al. | Jun 2005 | B2 |
D509297 | Wells | Sep 2005 | S |
D525361 | Hushka | Jul 2006 | S |
D531311 | Guerra et al. | Oct 2006 | S |
7135020 | Lawes et al. | Nov 2006 | B2 |
D533274 | Visconti et al. | Dec 2006 | S |
D533942 | Kerr et al. | Dec 2006 | S |
7147638 | Chapman et al. | Dec 2006 | B2 |
D535027 | James et al. | Jan 2007 | S |
7160299 | Baily | Jan 2007 | B2 |
D538932 | Malik | Mar 2007 | S |
D541418 | Schechter et al. | Apr 2007 | S |
D541611 | Aglassinger | May 2007 | S |
D541938 | Kerr et al. | May 2007 | S |
D545432 | Watanabe | Jun 2007 | S |
D547154 | Lee | Jul 2007 | S |
D564662 | Moses et al. | Mar 2008 | S |
D567943 | Moses et al. | Apr 2008 | S |
7396265 | Darley et al. | Jul 2008 | B2 |
7396356 | Mollenauer | Jul 2008 | B2 |
D575395 | Hushka | Aug 2008 | S |
D575401 | Hixson et al. | Aug 2008 | S |
D582038 | Swoyer et al. | Dec 2008 | S |
7668597 | Engmark et al. | Feb 2010 | B2 |
D617900 | Kingsley et al. | Jun 2010 | S |
D617901 | Unger et al. | Jun 2010 | S |
D617902 | Twomey et al. | Jun 2010 | S |
D617903 | Unger et al. | Jun 2010 | S |
D618798 | Olson et al. | Jun 2010 | S |
D621503 | Otten et al. | Aug 2010 | S |
D627462 | Kingsley | Nov 2010 | S |
D628289 | Romero | Nov 2010 | S |
D628290 | Romero | Nov 2010 | S |
D630324 | Reschke | Jan 2011 | S |
7877853 | Unger et al. | Feb 2011 | B2 |
D649249 | Guerra | Nov 2011 | S |
D649643 | Allen, IV et al. | Nov 2011 | S |
20030216733 | McClurken et al. | Nov 2003 | A1 |
20050021026 | Baily | Jan 2005 | A1 |
20060141861 | Darley et al. | Jun 2006 | A1 |
20080058802 | Couture et al. | Mar 2008 | A1 |
20080195093 | Couture et al. | Aug 2008 | A1 |
20080208289 | Darley et al. | Aug 2008 | A1 |
20090082769 | Unger et al. | Mar 2009 | A1 |
20090216229 | Chojin | Aug 2009 | A1 |
20100179543 | Johnson et al. | Jul 2010 | A1 |
20100204697 | Dumbauld et al. | Aug 2010 | A1 |
20100204698 | Chapman et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
201299462 | Sep 2009 | CN |
2415263 | Oct 1975 | DE |
2514501 | Oct 1976 | DE |
2627679 | Jan 1977 | DE |
3423356 | Jun 1986 | DE |
3612646 | Apr 1987 | DE |
8712328 | Mar 1988 | DE |
4303882 | Aug 1994 | DE |
4403252 | Aug 1995 | DE |
19515914 | Jul 1996 | DE |
19506363 | Aug 1996 | DE |
29616210 | Jan 1997 | DE |
19608716 | Apr 1997 | DE |
19751106 | May 1998 | DE |
19751108 | May 1999 | DE |
19946527 | Dec 2001 | DE |
10045375 | Oct 2002 | DE |
10 2004 026179 | Dec 2005 | DE |
20 2007 009165 | Oct 2007 | DE |
20 2007 009317 | Oct 2007 | DE |
20 2007 016233 | Mar 2008 | DE |
19738457 | Jan 2009 | DE |
10 2008 018406 | Jul 2009 | DE |
1159926 | Dec 2001 | EP |
61-501068 | Sep 1984 | JP |
6-502328 | Mar 1992 | JP |
5-5106 | Jan 1993 | JP |
5-40112 | Feb 1993 | JP |
6-030945 | Feb 1994 | JP |
6-121797 | May 1994 | JP |
6-285078 | Oct 1994 | JP |
6-343644 | Dec 1994 | JP |
6-511401 | Dec 1994 | JP |
7-265328 | Oct 1995 | JP |
8-56955 | Mar 1996 | JP |
8-317936 | Mar 1996 | JP |
8-289895 | May 1996 | JP |
8-252263 | Oct 1996 | JP |
8-317934 | Dec 1996 | JP |
9-10223 | Jan 1997 | JP |
9-122138 | May 1997 | JP |
10-24051 | Jan 1998 | JP |
11-070124 | May 1998 | JP |
10-155798 | Jun 1998 | JP |
2000-102545 | Sep 1998 | JP |
11-47150 | Feb 1999 | JP |
11-169381 | Jun 1999 | JP |
11-192238 | Jul 1999 | JP |
11-244298 | Sep 1999 | JP |
2000-342599 | Dec 2000 | JP |
2000-350732 | Dec 2000 | JP |
2001-8944 | Jan 2001 | JP |
2001-29356 | Feb 2001 | JP |
2001-128990 | May 2001 | JP |
2001-190564 | Jul 2001 | JP |
2001-3400 | Nov 2001 | JP |
2002-528166 | Mar 2002 | JP |
2003-245285 | Sep 2003 | JP |
2004-517668 | Jun 2004 | JP |
2004-528869 | Sep 2004 | JP |
2011-125195 | Jun 2011 | JP |
401367 | Nov 1974 | SU |
WO 0036986 | Jun 2000 | WO |
WO 0059392 | Oct 2000 | WO |
WO 0115614 | Mar 2001 | WO |
WO 0154604 | Aug 2001 | WO |
WO 2005110264 | Nov 2005 | WO |
Entry |
---|
U.S. Appl. No. 08/926,869, filed Sep. 10, 1997, James G. Chandler. |
U.S. Appl. No. 09/177,950, filed Oct. 23, 1998, Randel A. Frazier. |
U.S. Appl. No. 09/387,883, filed Sep. 1, 1999, Dale F. Schmaltz. |
U.S. Appl. No. 09/591,328, filed Jun. 9, 2000, Thomas P. Ryan. |
U.S. Appl. No. 12/336,970, filed Dec. 17, 2008, Paul R. Sremeich. |
U.S. Appl. No. 12/915,809, filed Oct. 29, 2010, Thomas J. Gerhardt, Jr. |
U.S. Appl. No. 12/947,352, filed Nov. 16, 2010, Jason L. Craig. |
U.S. Appl. No. 12/947,420, filed Nov. 16, 2010, Jason L. Craig. |
U.S. Appl. No. 12/948,081, filed Nov. 17, 2010, Boris Chernov. |
U.S. Appl. No. 12/948,144, filed Nov. 17, 2010, Boris Chernov. |
U.S. Appl. No. 12/950,505, filed Nov. 19, 2010, David M. Garrison. |
U.S. Appl. No. 12/955,010, filed Nov. 29, 2010, Paul R. Romero. |
U.S. Appl. No. 12/955,042, filed Nov. 29, 2010, Steven C. Rupp. |
U.S. Appl. No. 12/981,771, filed Dec. 30, 2010, James D. Allen, IV. |
U.S. Appl. No. 12/981,787, filed Dec. 30, 2010, John R. Twomey. |
U.S. Appl. No. 13/006,538, filed Jan. 14, 2011, John W. Twomey. |
U.S. Appl. No. 13/028,810, filed Feb. 16, 2011, Robert M. Sharp. |
U.S. Appl. No. 13/030,231, filed Feb. 18, 2011, Jeffrey M. Roy. |
U.S. Appl. No. 13/050,182, filed Mar. 17, 2011, Glenn A. Horner. |
U.S. Appl. No. 13/072,945, filed Mar. 28, 2011, Patrick L. Dumbauld. |
U.S. Appl. No. 13/080,383, filed Apr. 5, 2011, David M. Garrison. |
U.S. Appl. No. 13/085,144, filed Apr. 12, 2011, Keir Hart. |
U.S. Appl. No. 13/089,779, filed Apr. 19, 2011, Yevgeniy Fedotov. |
U.S. Appl. No. 13/091,331, filed Apr. 21, 2011, Jeffrey R. Townsend. |
U.S. Appl. No. 13/102,573, filed May 6, 2011, John R. Twomey. |
U.S. Appl. No. 13/102,604, filed May 6, 2011, Paul E. Ourada. |
U.S. Appl. No. 13/108,093, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,129, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,152, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,177, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,196, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,441, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/108,468, filed May 16, 2011, Boris Chernov. |
U.S. Appl. No. 13/111,642, filed May 19, 2011, John R. Twomey. |
U.S. Appl. No. 13/111,678, filed May 19, 2011, Nikolay Kharin. |
U.S. Appl. No. 13/113,231, filed May 23, 2011, David M. Garrison. |
U.S. Appl. No. 13/157,047, filed Jun. 9, 2011, John R. Twomey. |
U.S. Appl. No. 13/162,814, filed Jun. 17, 2011, Barbara R. Tyrrell. |
U.S. Appl. No. 13/166,477, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/166,497, filed Jun. 22, 2011, Daniel A. Joseph. |
U.S. Appl. No. 13/179,919, filed Jul. 11, 2011, Russell D. Hempstead. |
U.S. Appl. No. 13/179,960, filed Jul. 11, 2011, Boris Chernov. |
U.S. Appl. No. 13/179,975, filed Jul. 11, 2011, Grant T. Sims. |
U.S. Appl. No. 13/180,018, filed Jul. 11, 2011, Chase Collings. |
U.S. Appl. No. 13/183,856, filed Jul. 15, 2011, John R. Twomey. |
U.S. Appl. No. 13/185,593, filed Jul. 19, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/204,841, filed Aug. 8, 2011, Edward J. Chojin. |
U.S. Appl. No. 13/205,999, filed Aug. 9, 2011, Jeffrey R. Unger. |
U.S. Appl. No. 13/212,297, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,308, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,329, filed Aug. 18, 2011, Allan J. Evans. |
U.S. Appl. No. 13/212,343, filed Aug. 18, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/223,521, filed Sep. 1, 2011, John R. Twomey. |
U.S. Appl. No. 13/227,220, filed Sep. 7, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/228,742, filed Sep. 9, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/231,643, filed Sep. 13, 2011, Keir Hart. |
U.S. Appl. No. 13/234,357, filed Sep. 16, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/236,168, filed Sep. 19, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/236,271, filed Sep. 19, 2011, Monte S. Fry. |
U.S. Appl. No. 13/243,628, filed Sep. 23, 2011, William Ross Whitney. |
U.S. Appl. No. 13/247,778, filed Sep. 28, 2011, John R. Twomey. |
U.S. Appl. No. 13/247,795, filed Sep. 28, 2011, John R. Twomey. |
U.S. Appl. No. 13/248,976, filed Sep. 29, 2011, James D. Allen, IV. |
U.S. Appl. No. 13/249,013, filed Sep. 29, 2011, Jeffrey R. Unger. |
U.S. Appl. No. 13/249,024, filed Sep. 29, 2011, John R. Twomey. |
U.S. Appl. No. 13/251,380, filed Oct. 3, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/277,373, filed Oct. 20, 2011, Glenn A. Homer. |
U.S. Appl. No. 13/277,926, filed Oct. 20, 2011, David M. Garrison. |
U.S. Appl. No. 13/277,962, filed Oct. 20, 2011, David M. Garrison. |
U.S. Appl. No. 13/293,754, filed Nov. 10, 2011, Jeffrey M. Roy. |
U.S. Appl. No. 13/306,523, filed Nov. 29, 2011, David M. Garrison. |
U.S. Appl. No. 13/306,553, filed Nov. 29, 2011, Duane E. Kerr. |
U.S. Appl. No. 13/308,104, filed Nov. 30, 2011, John R. Twomey. |
U.S. Appl. No. 13/312,172, filed Dec. 6, 2011, Robert J. Behnke, II. |
U.S. Appl. No. 13/324,863, filed Dec. 13, 2011, William H. Nau, Jr. |
U.S. Appl. No. 13/344,729, filed Jan. 6, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/355,829, filed Jan. 23, 2012, John R.Twomey. |
U.S. Appl. No. 13/357,979, filed Jan. 25, 2012, David M. Garrison. |
U.S. Appl. No. 13/358,136, filed Jan. 25, 2012, James D. Allen, IV. |
U.S. Appl. No. 13/358,657, filed Jan. 26, 2012, Kim V. Brandt. |
U.S. Appl. No. 13/360,925, filed Jan. 30, 2012, James H. Orszulak. |
U.S. Appl. No. 13/369,152, filed Feb. 8, 2012, William H. Nau, Jr. |
U.S. Appl. No. 13/400,290, filed Feb. 20, 2012, Eric R. Larson. |
U.S. Appl. No. 13/401,964, filed Feb. 22, 2012, John R. Twomey. |
U.S. Appl. No. 13/404,435, filed Feb. 24, 2012, Kim V. Brandt. |
U.S. Appl. No. 13/404,476, filed Feb. 24, 2012, Kim V. Brandt. |
Michael Choti, “Abdominoperineal Resection with the LigaSure Vessel Sealing System and LigaSure Atlas 20 cm Open Instrument”; Innovations That Work, Jun. 2003. |
Chung et al., “Clinical Experience of Sutureless Closed Hemorrhoidectomy with LigaSure” Diseases of the Colon & Rectum vol. 46, No. 1 Jan. 2003. |
Tinkcler L.F., “Combined Diathermy and Suction Forceps”, Feb. 6, 1967 (Feb. 6, 1965), British Medical Journal Feb. 6, 1976, Vol. 1, nr. 5431 p. 361, ISSN: 0007-1447. |
Carbonell et al., “Comparison of theGyrus PlasmaKinetic Sealer and the Valleylab LigaSure Device in the Hemostasis of Small, Medium, and Large-Sized Arteries” Carolinas Laparoscopic and Advanced Surgery Program, Carolinas Medical Center, Charlotte, NC; Date: Aug. 2003. |
Peterson et al. “Comparison of Healing Process Following Ligation with Sutures and Bipolar Vessel Sealing” Surgical Technology International (2001). |
“Electrosurgery: A Historical Overview” Innovations in Electrosurgery; Sales/Product Literature; Dec. 31, 2000. |
Johnson et al. “Evaluation of a Bipolar Electrothermal Vessel Sealing Device in Hemorrhoidectomy” Sales/Product Literature; Jan. 2004. |
E. David Crawford “Evaluation of a New Vessel Sealing Device in Urologic Cancer Surgery” Sales/Product Literature 2000. |
Johnson et al. “Evaluation of the LigaSure Vessel Sealing System in Hemorrhoidectormy” American College of Surgeons (ACS) Clinicla Congress Poster (2000). |
Muller et al., “Extended Left Hemicolectomy Using the LigaSure Vessel Sealing System” Innovations That Work, Sep. 1999. |
Kennedy et al. “High-burst-strength, feedback-controlled bipolar vessel sealing” Surgical Endoscopy (1998) 12: 876-878. |
Burdette et al. “In Vivo Probe Measurement Technique for Determining Dielectric Properties at VHF Through Microwave Frequencies”, IEEE Transactions on Microwave Theory and Techniques, vol. MTT-28, No. 4, Apr. 1980 pp. 414-427. |
Carus et al., “Initial Experience With the LigaSure Vessel Sealing System in Abdominal Surgery” Innovations That Work, Jun. 2002. |
Heniford et al. “Initial Research and Clinical Results with an Electrothermal Bipolar Vessel Sealer” Oct. 1999. |
Heniford et al. “Initial Results with an Electrothermal Bipolar Vessel Sealer” Surgical Endoscopy (2000) 15:799-801. |
Herman et al., “Laparoscopic Intestinal Resection With the LigaSure Vessel Sealing System: A Case Report”; Innovations That Work, Feb. 2002. |
Koyle et al., “Laparoscopic Palomo Varicocele Ligation in Children and Adolescents” Pediatric Endosurgery & Innovative Techniques, vol. 6, No. 1, 2002. |
W. Scott Helton, “LigaSure Vessel Sealing System: Revolutionary Hemostasis Product for General Surgery”; Sales/Product Literature 1999. |
LigaSure Vessel Sealing System, the Seal of Confidence in General, Gynecologic, Urologic, and Laparaoscopic Surgery; Sales/Product Literature; Apr. 2002. |
Joseph Ortenberg “LigaSure System Used in Laparoscopic 1st and 2nd Stage Orchiopexy” Innovations That Work, Nov. 2002. |
Sigel et al. “The Mechanism of Blood Vessel Closure by High Frequency Electrocoagulation” Surgery Gynecology & Obstetrics, Oct. 1965 pp. 823-831. |
Sampayan et al, “Multilayer Ultra-High Gradient Insulator Technology” Discharges and Electrical Insulation in Vacuum, 1998. Netherlands Aug. 17-21, 1998; vol. 2, pp. 740-743. |
Paul G. Horgan, “A Novel Technique for Parenchymal Division During Hepatectomy” The American Journal of Surgery, vol. 181, No. 3, Apr. 2001 pp. 236-237. |
Benaron et al., “Optical Time-of-Flight and Absorbance Imaging of Biologic Media”, Science, American Association for the Advancement of Science, Washington, DC, vol. 259, Mar. 5, 1993, pp. 1463-1466. |
Olsson et al. “Radical Cystectomy in Females” Current Surgical Techniques in Urology, vol. 14, Issue 3, 2001. |
Palazzo et al. “Randomized clinical trial of Ligasure versus open haemorrhoidectomy” British Journal of Surgery 2002, 89, 154-157. |
Levy et al. “Randomized Trial of Suture Versus Electrosurgical Bipolar Vessel Sealing in Vaginal Hysterectomy” Obstetrics & Gynecology, vol. 102, No. 1, Jul. 2003. |
“Reducing Needlestick Injuries in the Operating Room” Sales/Product Literature 2001. |
Bergdahl et al. “Studies on Coagulation and the Development of an Automatic Computerized Bipolar Coagulator” J.Neurosurg, vol. 75, Jul. 1991, pp. 148-151. |
Strasberg et al. “A Phase I Study of the LigaSure Vessel Sealing System in Hepatic Surgery” Section of HPB Surger, Washington University School of Medicine, St. Louis MO, Presented at AHPBA, Feb. 2001. |
Sayfan et al. “Sutureless Closed Hemorrhoidectomy: A New Technique” Annals of Surgery vol. 234 No. 1 Jul. 2001; pp. 21-24. |
Levy et al., “Update on Hysterectomy—New Technologies and Techniques” OBG Management, Feb. 2003. |
Dulemba et al. “Use of a Bipolar Electrothermal Vessel Sealer in Laparoscopically Assisted Vaginal Hysterectomy” Sales/Product Literature; Jan. 2004. |
Strasberg et al., “Use of a Bipolar Vessel-Sealing Device for Parenchymal Transection During Liver Surgery” Journal of Gastrointestinal Surgery, vol. 6, No. 4, Jul./Aug. 2002 pp. 569-574. |
Sengupta et al., “Use of a Computer-Controlled Bipolar Diathermy System in Radical Prostatectomies and Other Open Urological Surgery” ANZ Journal of Surgery (2001) 71.9 pp. 538-540. |
Rothenberg et al. “Use of the LigaSure Vessel Sealing System in Minimally Invasive Surgery in Children” Int'l Pediatric Endosurgery Group (IPEG) 2000. |
Crawford et al. “Use of the LigaSure Vessel Sealing System in Urologic Cancer Surgery” Grand Rounds in Urology 1999 vol. 1 Issue 4 pp. 10-17. |
Craig Johnson, “Use of the LigaSure Vessel Sealing System in Bloodless Hemorrhoidectomy” Innovations That Work, Mar. 2000. |
Levy et al. “Use of a New Energy-based Vessel Ligation Device During Vaginal Hysterectomy” Int'l Federation of Gynecology and Obstetrics (FIGO) World Congress 1999. |
Barbara Levy, “Use of a New Vessel Ligation Device During Vaginal Hysterectomy” FIGO 2000, Washington, D.C. |
E. David Crawford “Use of a Novel Vessel Sealing Technology in Management of the Dorsal Veinous Complex” Sales/Product Literature 2000. |
Jarrett et al., “Use of the LigaSure Vessel Sealing System for Peri-Hilar Vessels in Laparoscopic Nephrectomy” Sales/Product Literature 2000. |
Crouch et al. “A Velocity-Dependent Model for Needle Insertion in Soft Tissue” MICCAI 2005; LNCS 3750 pp. 624-632, Dated: 2005. |
McLellan et al. “Vessel Sealing for Hemostasis During Pelvic Surgery” Int'l Federation of Gynecology and Obstetrics FIGO World Congress 2000, Washington, D.C. |
McLellan et al. “Vessel Sealing for Hemostasis During Gynecologic Surgery” Sales/Product Literature 1999. |
Int'l Search Report EP 98944778.4 dated Oct. 31, 2000. |
Int'l Search Report EP 98957771 dated Aug. 9, 2001. |
Int'l Search Report EP 98957773 dated Aug. 1, 2001. |
Int'l Search Report EP 98958575.7 dated Sep. 20, 2002. |
Int'l Search Report EP 04013772.1 dated Apr. 1, 2005. |
Int'l Search Report EP 04027314.6 dated Mar. 10, 2005. |
Int'l Search Report EP 04027479.7 dated Mar. 8, 2005. |
Int'l Search Report EP 04027705.5 dated Feb. 3, 2005. |
Int'l Search Report EP 04709033.7 dated Dec. 8, 2010. |
Int'l Search Report EP 04752343.6 dated Jul. 20, 2007. |
Int'l Search Report EP 05002671.5 dated Dec. 22, 2008. |
Int'l Search Report EP 05002674.9 dated Jan. 16, 2009. |
Int'l Search Report EP 05013463.4 dated Oct. 7, 2005. |
Int'l Search Report EP 05013894 dated Feb. 3, 2006. |
Int'l Search Report EP 05013895.7 dated Oct. 21, 2005. |
Int'l Search Report EP 05016399.7 dated Jan. 13, 2006. |
Int'l Search Report EP 05017281.6 dated Nov. 24, 2005. |
Int'l Search Report EP 05019130.3 dated Oct. 27, 2005. |
Int'l Search Report EP 05019429.9 dated May 6, 2008. |
Int'l Search Report EP 05020532 dated Jan. 10, 2006. |
Int'l Search Report EP 05020665.5 dated Feb. 27, 2006. |
Int'l Search Report EP 05020666.3 dated Feb. 27, 2006. |
Int'l Search Report EP 05021197.8 dated Feb. 20, 2006. |
Int'l Search Report EP 05021779.3 dated Feb. 2, 2006. |
Int'l Search Report EP 05021780.1 dated Feb. 23, 2006. |
Int'l Search Report EP 05021937.7 dated Jan. 23, 2006. |
Int'l Search Report—extended—EP 05021937.7 dated Mar. 15, 2006. |
Int'l Search Report EP 05023017.6 dated Feb. 24, 2006. |
Int'l Search Report EP 06002279.5 dated Mar. 30, 2006. |
Int'l Search Report EP 06005185.1 dated May 10, 2006. |
Int'l Search Report EP 06006716.2 dated Aug. 4, 2006. |
Int'l Search Report EP 06008515.6 dated Jan. 8, 2009. |
Int'l Search Report EP 06008779.8 dated Jul. 13, 2006. |
Int'l Search Report EP 06014461.5 dated Oct. 31, 2006. |
Int'l Search Report EP 06020574.7 dated Oct. 2, 2007. |
Int'l Search Report EP 06020583.8 dated Feb. 7, 2007. |
Int'l Search Report EP 06020584.6 dated Feb. 1, 2007. |
Int'l Search Report EP 06020756.0 dated Feb. 16, 2007. |
Int'l Search Report EP 06 024122.1 dated Apr. 16, 2007. |
Int'l Search Report EP 06024123.9 dated Mar. 6, 2007. |
Int'l Search Report EP 07 001480.8 dated Apr. 19, 2007. |
Int'l Search Report EP 07 001488.1 dated Jun. 5, 2007. |
Int'l Search Report EP 07 004429.2 dated Nov. 2, 2010. |
Int'l Search Report EP 07 009026.1 dated Oct. 8, 2007. |
Int'l Search Report Extended—EP 07 009029.5 dated Jul. 20, 2007. |
Int'l Search Report EP 07 009321.6 dated Aug. 28, 2007. |
Int'l Search Report EP 07 010672.9 dated Oct. 16, 2007. |
Int'l Search Report EP 07 013779.9 dated Oct. 26, 2007. |
Int'l Search Report EP 07 014016 dated Jan. 28, 2008. |
Int'l Search Report EP 07 015191.5 dated Jan. 23, 2008. |
Int'l Search Report EP 07 015601.3 dated Jan. 4, 2008. |
Int'l Search Report EP 07 016911 dated May 28, 2010. |
Int'l Search Report EP 07 016911.5 extended dated Mar. 2, 2011. |
Int'l Search Report EP 07 020283.3 dated Feb. 5, 2008. |
Int'l Search Report EP 07 021646.0.dated Mar. 20, 2008. |
Int'l Search Report EP 07 021646.0 dated Jul. 9, 2008. |
Int'l Search Report EP 07 021647.8 dated May 2, 2008. |
Int'l Search Report EP 08 002692.5 dated Dec. 12, 2008. |
Int'l Search Report EP 08 004655.0 dated Jun. 24, 2008. |
Int'l Search Report EP 08 006732.5 dated Jul. 29, 2008. |
Int'l Search Report EP 08 006917.2 dated Jul. 3, 2008. |
Int'l Search Report EP 08 016539.2 dated Jan. 8, 2009. |
Int'l Search Report EP 08 020807.7 dated Apr. 24, 2009. |
Int'l Search Report EP 09 003677.3 dated May 4, 2009. |
Int'l Search Report EP 09 003813.4 dated Aug. 3, 2009. |
Int'l Search Report EP 09 004491.8 dated Sep. 9, 2009. |
Int'l Search Report EP 09 005051.9 dated Jul. 6, 2009. |
Int'l Search Report EP 09 005575.7 dated Sep. 9, 2009. |
Int'l Search Report EP 09 010521.4 dated Dec. 16, 2009. |
Int'l Search Report EP 09 011745.8 dated Jan. 5, 2010. |
Int'l Search Report EP 09 012629.3 dated Dec. 8, 2009. |
Int'l Search Report EP 09 012687.1 dated Dec. 23, 2009. |
Int'l Search Report EP 09 012688.9 dated Dec. 28, 2009. |
Int'l Search Report EP 09 152267.2 dated Jun. 15, 2009. |
Int'l Search Report EP 09 152898.4 dated Jun. 10, 2009. |
Int'l Search Report EP 09 154850.3 dated Jul. 20, 2009. |
Int'l Search Report EP 09 160476.9 dated Aug. 4, 2009. |
Int'l Search Report EP 09 164903.8 dated Aug. 21, 2009. |
Int'l Search Report EP 09 165753.6 dated Nov. 11, 2009. |
Int'l Search Report EP 09 168153.6 dated Jan. 14, 2010. |
Int'l Search Report EP 09 168810.1 dated Feb. 2, 2010. |
Int'l Search Report EP 09 172749.5 dated Dec. 4, 2009. |
Int'l Search Report EP 10 000259.1 dated Jun. 30, 2010. |
Int'l Search Report EP 10 011750.6 dated Feb. 1, 2011. |
Int'l Search Report EP 10 157500.9 dated Jul. 30, 2010. |
Int'l Search Report EP 10 159205.3 dated Jul. 7, 2010. |
Int'l Search Report EP 10 160870.1 dated Aug. 9, 2010. |
Int'l Search Report EP 10 161596.1 dated Jul. 28,2010. |
Int'l Search Report EP 10 167655.9 dated Aug. 31, 2011. |
Int'l Search Report EP 10 168705.1 dated Oct. 4, 2010. |
Int'l Search Report EP 10 169647.4 dated Oct. 29, 2010. |
Int'l Search Report EP 10 172005.0 dated Sep. 30, 2010. |
Int'l Search Report EP 10 175956.1 dated Nov. 12, 2010. |
Int'l Search Report EP 10 181034.9 dated Jan. 26, 2011. |
Int'l Search Report EP 10 181575.1 dated Apr. 5, 2011. |
Int'l Search Report EP 10 181969.6 dated Feb. 4, 2011. |
Int'l Search Report EP 10 182019 dated Aug. 4, 2011. |
Int'l Search Report EP 10 182022.3 dated Mar. 11, 2011. |
Int'l Search Report EP 10 185386.9 dated Jan. 10, 2011. |
Int'l Search Report EP 10 185405.7 dated Jan. 5, 2011. |
Int'l Search Report EP 10 186527.7 dated Jun. 17, 2011. |
lnt'l Search Report EP 10 189206.5 dated Mar. 17, 2011. |
Int'l Search Report EP 10 191320.0 dated Feb. 15, 2011. |
Int'l Search Report EP 11 151509.4 dated Jun. 6, 2011. |
Int'l Search Report EP 11 152220.7 dated May 19, 2011. |
Int'l Search Report EP 11 152360.1 dated Jun. 6, 2011. |
Int'l Search Report EP 11 159771.2 dated May 28, 2010. |
Int'l Search Report EP 11 161117.4 dated Jun. 30, 2011. |
Int'l Search Report EP 11 161118.2 dated Oct. 12, 2011. |
Int'l Search Report EP 11 164274.0 dated Aug. 3, 2011. |
Int'l Search Report EP 11 164275.7 dated Aug. 25, 2011. |
Int'l Search Report EP 11 167437.0 dated Aug. 8, 2011. |
Int'l Search Report EP 11 168458.5 dated Jul. 29, 2011. |
Int'l Search Report EP 11 173008.1 dated Nov. 4, 2011. |
Int'l Search Report EP 11 179514 dated Nov. 4, 2011. |
Int'l Search Report EP 11 180182.5 dated Nov. 15, 2011. |
Int'l Search Report PCT/US98/18640 dated Jan. 29, 1999. |
Int'l Search Report PCT/US98/23950 dated Jan. 14, 1999. |
Int'l Search Report PCT/US98/24281 dated Feb. 22, 1999. |
Int'l Search Report PCT/US99/24869 dated Feb. 3, 2000. |
Int'l Search Report PCT/US01/11218 dated Aug. 14, 2001. |
Int'l Search Report PCT/US01/11224 dated Nov. 13, 2001. |
Int'l Search Report PCT/US01/11340 dated Aug. 16, 2001. |
Int'l Search Report PCT/US01/11420 dated Oct. 16, 2001. |
Int'l Search Report PCT/US02/01890 dated Jul. 25, 2002. |
Int'l Search Report PCT/US02/11100 dated Jul. 16, 2002. |
Int'l Search Report PCT/US03/08146 dated Aug. 8, 2003. |
Int'l Search Report PCT/US03/18674 dated Sep. 18, 2003. |
Int'l Search Report PCT/US03/18676 dated Sep. 19, 2003. |
Int'l Search Report PCT/US03/28534 dated Dec. 19, 2003. |
Int'l Search Report PCT/US03/28539 dated Jan. 6, 2004. |
Int'l Search Report PCT/US04/03436 dated Mar. 3, 2005. |
Int'l Search Report PCT/US04/13273 dated Dec. 15, 2004. |
Int'l Search Report PCT/US04/15311dated Jan. 12, 2005. |
Int'l Search Report PCT/US07/021438 dated Apr. 1, 2008. |
Int'l Search Report PCT/US07/021440 dated Apr. 8, 2008. |
Int'l Search Report PCT/US08/52460 dated Apr. 24, 2008. |
Int'l Search Report PCT/US08/61498 dated Sep. 22, 2008. |
Int'l Search Report PCT/US09/032690 dated Jun. 16, 2009. |
Number | Date | Country | |
---|---|---|---|
20130255063 A1 | Oct 2013 | US |