Method of manufacturing an implantable polymeric medical device

Abstract
A polymeric tube is positioned on a polymeric mandrel and then laser cut to form an implantable medical device, such as a stent. The method reduces contamination of the inner surface of the stent, which would be caused if conventional glass or metal mandrels are used, while simultaneously reducing damage to the inner surface of the stent due to the shielding effect of the polymeric mandrel.
Description
BACKGROUND OF THE INVENTION

The invention relates to radially expandable endoprostheses which are adapted to be implanted in a lumen of a tubular organ. An “endoprosthesis”, or stent, corresponds to an artificial implantable medical device that is placed inside the body. A “lumen” refers to a cavity of a tubular organ such as a blood vessel. A stent is an example of these endoprostheses. Stents are generally cylindrically shaped devices which function to hold open and sometimes expand a segment of a blood vessel or other anatomical lumens such as urinary tracts and bile ducts. Stents are often used in the treatment of atherosclerotic stenosis in blood vessels. “Stenosis” refers to a narrowing or constriction of the diameter of a bodily passage or orifice. In such treatments, stents reinforce vessels and prevent restenosis following angioplasty in the vascular system. “Restenosis” refers to the reoccurrence of stenosis in a blood vessel or heart valve after it has been treated (as by balloon angioplasty or valvuloplasty) with apparent success.


A treatment involving a stent includes both delivery and deployment of the stent. “Delivery” refers to introducing and transporting the stent through a lumen of a tubular organ to a region requiring treatment. “Deployment” corresponds to the expanding of the stent within the lumen at the treatment region. Delivery and deployment of a stent may be accomplished by positioning the stent about one end of a catheter, inserting the end of the catheter through the skin into the lumen, advancing the catheter in the lumen to a desired treatment location, expanding the stent at the treatment location, and then removing the catheter from the lumen. In the case of a balloon expandable stent, the stent is mounted about a balloon disposed on the catheter. Mounting the stent typically involves compressing or crimping the stent onto the balloon. The stent is then expanded by inflating the balloon. The balloon may then be deflated and the catheter withdrawn. In the case of a self-expanding stent, the stent may be secured to the catheter via a retractable sheath or a sock. When the stent is in a desired bodily location, the sheath may be withdrawn allowing the stent to self-expand.


Stents have been made of many materials including metals and polymers. Polymer materials include both nonbioerodable and bioerodable plastic materials. In some applications, a polymeric bioerodable stent may be more advantageous than a metal stent due to its biodegradeability and increased flexibility relative to the metal stent. The cylindrical structure of a stent is typically composed of a scaffolding that includes a pattern or network of interconnecting structural elements or struts. The scaffolding can be formed from wires, tubes, or planar films of material rolled into a cylindrical shape. In addition, a medicated stent may be fabricated by coating the surface of either a metallic or polymeric scaffolding with a polymeric carrier. The polymeric carrier can include an active agent or drug. Furthermore, the pattern that makes up the stent allows the stent to be radially expandable and longitudinally flexible. Longitudinal flexibility facilitates delivery of the stent and rigidity is needed to hold open a lumen of a tubular organ. Generally, the pattern should be designed to maintain the longitudinal flexibility and rigidity required of the stent. The stent should also have adequate strength in the circumferential direction.


A number of techniques have been suggested for the fabrication of stents from tubes and planar films or sheets. One such technique involves laser cutting or etching a pattern onto a material. Laser cutting may be performed on a planar film of a material which is then rolled into a tube. Alternatively, a desired pattern may be etched directly onto a tube. Other techniques involve cutting a desired pattern into a sheet or a tube via chemical etching or electrical discharge machining. Laser cutting of stents has been described in a number of publications including U.S. Pat. No. 5,780,807 to Saunders, U.S. Pat. No. 5,922,005 to Richter and U.S. Pat. No. 5,906,759 to Richter.


In a typical method of manufacturing a metal stent with a laser, a mandrel is placed inside the lumen of metal tubing. A “mandrel” refers to a metal bar or rod on which an implantable medical device may be shaped. The mandrel provides structural support to the tubing as it is being cut and shaped. See, e.g., U.S. Pat. No. 5,780,807 to Saunders.


SUMMARY OF THE INVENTION

Methods for the manufacture of polymeric implantable medical devices, such as stents, using a mandrel in the manufacturing process thereof are disclosed.


According to one form of a method, a polymeric mandrel may be employed to manufacture a polymeric stent. Thus, a polymeric tube is positioned on a mandrel of a stent manufacturing device and the positioned tube is cut, etched or otherwise worked on to form a polymeric stent. A laser may be used to etch the polymeric tubing mounted on the polymeric mandrel to form the polymeric stent. The mandrel may provide shielding protection to the inner diameter of the polymeric tubing reducing damage caused by the high intensity laser in the form of angled cuts, or “nicks,” typical in non-mandrel polymer stent manufacturing processes.


According to another form of a method, a method of manufacturing an implantable medical device includes: positioning at least one of a polymeric mandrel or polymeric tubing relative to the other such that the polymeric mandrel is within the polymeric tubing, forming a tubing-mandrel fixture; positioning the tubing-mandrel fixture between two locking mechanisms of a stent manufacturing device; and lasing the polymeric tube to form an implantable medical device.


In some embodiments, a polymeric implantable medical device may be formed by the process of positioning at least one of a polymeric mandrel or polymeric tubing relative to the other such that the polymeric mandrel is within the polymeric tubing, forming a mandrel-tubing fixture and, after the positioning, cutting the polymeric tubing with a laser to form an implantable medical device.


In some embodiments, the polymeric mandrel may be of the same polymeric material as that of the polymeric stent or may be coated with the same polymeric material as that of the polymeric stent. In some embodiments, the polymeric materials of the polymeric mandrel and the polymeric stent may differ. Because the polymeric mandrel is composed of or coated with a material the same as or substantially the same as the material of the polymeric stent, the resultant polymeric stent may be completely or substantially free of undesirable particulate contaminates in contrast to processes in which a metal or glass mandrel is used.


Other objects and advantages of the present invention will become more apparent to those persons having ordinary skill in the art to which the present invention pertains from the foregoing description taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a polymeric stent manufacturing device used in one form of a method for manufacturing a polymeric stent pursuant to the present invention.



FIG. 2 shows an enlarged view of a polymeric stent manufactured by the stent manufacturing device of FIG. 1.



FIG. 3 is a cross-sectional view of the polymeric stent of FIG. 2.



FIG. 4 is an enlarged view of a portion of a distal ring of the polymeric stent of FIG. 2.



FIG. 5 illustrates an alternative embodiment of a polymeric stent manufacturing device used in one form of a method pursuant to the present invention.



FIG. 6 is an exploded view of the alternative embodiment of the device in FIG. 5.



FIG. 7A illustrates an embodiment of a polymeric mandrel of the present invention and used in one form of a method of the present invention.



FIG. 7B illustrates an alternative embodiment of a polymeric mandrel of the present invention and used in one form of a method of the present invention.



FIG. 8 illustrates a second alternative embodiment of a polymeric stent manufacturing device used in one form of a method pursuant to the present invention.



FIG. 9 shows an enlarged view of a polymeric stent manufactured by the stent manufacturing device of FIG. 5.



FIG. 10 is a cross-sectional view of the polymeric stent of FIG. 9.



FIG. 11 is an enlarged view of a portion of a distal ring of the polymeric stent of FIG. 9.





DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION

A polymeric stent may be manufactured by a variety of methods. In one method, the polymeric stent may be formed by laser cutting a flat polymeric sheet in the form of rings and links, and then subsequently rolling the pattern into the shape of the cylindrical stent and providing a longitudinal weld to form the stent. In another method, a flat polymeric sheet may be chemically etched and then subsequently rolled and welded to form the polymeric stent. Additionally, a polymeric wire may be coiled to form a polymeric stent. In yet another method, a polymeric stent may be formed from a tube by laser cutting a pattern of cylindrical rings and connecting rings in the tube itself. See, e.g., U.S. Pat. No. 6,585,755 to Jackson et al.


In a conventional lasing process of manufacturing a polymeric stent from a tube, a mandrel may not typically be employed. Due to the retentive nature of polymeric materials for foreign particulates, a glass or metal mandrel may contaminate the polymeric stent if a laser beam from the laser strikes it and releases such contaminates. In other words, a glass mandrel may leave glass particulates, and a metal mandrel may leave large amounts of metal oxide contamination melted into the inner surface of the polymer stent, respectively. Such contaminants may cause adverse effects during and/or after the stent is implanted into the lumen of a bodily organ.


Non-use of a mandrel in the manufacturing process of a polymeric stent, however, may cause problems aside from contamination through use of glass or metal mandrels. It has been observed that in the manufacture of polymeric stents, damage to the inner surface of the stent can occur. The damage is typically in the form of at least one angled cut, or “nick”, within the inner surface area. The angled cuts are the result of the laser beam reaching the inner surface as the equal-but-opposite outer surface is being lased. The damage caused thereby may cause problems with delivery of the stent and/or adverse body reactions. This problem may be remedied by use of a typical mandrel (which may provide a shielding effect) in the manufacturing process; however, the problems associated with the use of metal or glass mandrels as described previously may result.



FIG. 1 illustrates an embodiment of a polymeric stent manufacturing device 30′ related to the manufacturing process of a polymeric stent. Device 30′ for supporting a stent 10′ (not shown in FIG. 1) includes a support member 32′ and a lock member 36′. Support member 32′ may connect to a motor 38A′ to provide rotational motion about the longitudinal axis of a stent (depicted by arrow 40′). Another motor 38B′ may also be provided for moving device 30′ in a back and forth linear direction along rail 42′. Polymeric stent manufacturing device 30′ may be in fluid communication with a vacuum device 44′ for collecting excess polymeric material. Lock member 36′ may be coupled to the vacuum device 44′ via a conduit 46′. A coupler 48′ allows device 30′ to rotate with respect to conduit 46′ and vacuum 44′. In some embodiments, “device” 44′ can be a temperature adjuster for adjusting the temperature of the tube 8 to a temperature other than room temperature before, during and/or after the etching process.


In the manufacturing process, a polymeric tube 8 may be mounted between support member 32′ and lock member 36′. The wall thickness of the polymeric tube 8 will typically vary throughout the tube body due to variations in the manufacturing process of polymeric tubes. A coaxial gas jet, rotary collet, tube support and beaming block apparatus of a laser (from hereonout abbreviated as a laser 100) may then be used for the etching process to form a polymeric stent 10′ from the polymeric tube 8. The laser 100 can include a laser beam 102, a focusing lens 104, a gas input 106, a coaxial gas jet assay 108 and a gas jet 110. A resultant polymeric stent 10′ manufactured using device 30′ is illustrated in FIG. 2. Polymeric stent 10′ includes a plurality of struts 12′ linked by connecting elements 14′ with gaps 16′ positioned in between struts 12′ and connecting elements 14′. The polymeric stent 10′ can include a proximal ring 18′, a distal ring 20′ and at least one central ring 22′.



FIG. 3 is a cross-section of the polymeric stent 10′ of FIG. 2. As shown, the stent 10′ includes an inner surface 26′ and an outer surface 24′. The inner surface 26′ of the stent 10′ may have at least one “nick” or angled cut 28 when manufactured using the device 30′ as discussed in connection with FIG. 1. In FIG. 4, an enlarged view of a portion of the distal ring 20′ is depicted. In this view, at least one angled cut 28 on the inner surface 26′ can be seen more clearly. It should be understood that the angled cuts 28 may occur throughout the inner surface 26′ of the stent 10′.


The manufacturing process as discussed in connection with FIG. 1 may lead to the manifestation of angled cuts 28. For example, a shielding effect to the inner surface of a polymeric tube that would otherwise be provided by a mandrel during the manufacturing process of a polymeric stent contributes to the manifestation of angled cuts 28. In addition, the inherent varying wall thickness of the polymeric tubes may contribute to the manifestation of angled cuts 28. As an illustration, the power of the laser 100 may be adjusted to etch a first portion of the polymeric tube 8 with a first thickness. However, this same power may be too strong for the etching of a second portion of polymeric tube 8 with a second thickness. As a result, although appropriate for the first portion of polymeric tube 8 with the first thickness, the same power of the laser 100 for the second portion of the polymer tube 8 with the second thickness may be too strong and therefore cause the manifestation of angled cuts 28. Consequently, the yield of viable polymeric stents using the method and device as discussed above will typically be in the range of 30% to 90%.


In FIGS. 5 and 6, an embodiment of a polymeric stent manufacturing device 30 related to a manufacturing process of the present invention is illustrated. Device 30 for supporting a stent 10 (not shown in this figure) can include a support member 32, a polymeric mandrel 34 and a lock member 36. A polymeric mandrel is a mandrel made wholly or in part from at least one type of polymer of a combination of polymers, such as in a blended chemically bonded or grafted form. The polymeric mandrel can also be a mandrel that is coated with at least one type of polymer or a combination of polymers. Support member 32 may connect to a motor 38A to provide rotational motion about the longitudinal axis of a stent (depicted by arrow 40). Another motor 38B may also be provided for moving device 30 in a back-and-forth linear direction along rail 42. The types and specifications of the various motors which can be used in any of the embodiments herein would be apparent to those skilled in the art. The term stent is broadly intended to include self- and balloon-type as well stent-grafts. Polymeric stent manufacturing device 30 can be in fluid communication with a vacuum device 44 for collecting excess material that may discharge off of the mandrel 34 or the stent 10. In addition, lock member 36 is coupled to vacuum device 44 via a conduit 46. A coupler 48 allows device 30 to rotate with respect to conduit 46 and vacuum 44. In some embodiments, “device” 44 can be a temperature adjuster for adjusting the temperature of the tube 8 to a temperature other than room temperature before, during and/or after the etching process.


Support member 32 includes a flat end 50 that is coupled to a first end 52 of mandrel 34. In accordance to one embodiment, mandrel 34 can be permanently affixed to support member 32. Alternatively, support member 32 can include a bore 54 for receiving first end 52 of mandrel 34. First end 52 of mandrel 34 can be threaded to screw into bore 54. Alternatively, a non-threaded first end 52 of mandrel 34 can be press-fitted or friction-fitted within bore 54. Bore 54 should be deep enough so as to allow mandrel 34 to securely mate with support member 32. The depth of bore 54 can be over-extended so as to allow a significant length of mandrel 34 to penetrate the bore. This would allow the length of mandrel 34 to be adjusted to accommodate stents of various sizes.


Lock member 36 can include a flat end 56 that can be permanently affixed to a second end 58 of mandrel 34 if end 52 of mandrel 34 is disengagable from support member 32. A bore 54 extends along lock member 36 for allowing mandrel 34 to be in fluid communication with vacuum device 44. In accordance with another embodiment, mandrel 34 can have a threaded second end 58 for screwing into bore 54. A non-threaded second end 58 and bore 54 combination can also be employed such that second end 58 of mandrel 34 is press-fitted or friction-fitted within bore 54. Lock member 36 can be incrementally moved closer to support member 32. Accordingly, stents of any length can be securely pinched between flat ends 50 and 56 of the support and lock members 32 and 36. A stent need not, however, be pinched between ends 50 and 56; a stent can be simply crimped tightly on mandrel 34.


An embodiment of a portion of polymeric mandrel 34 is illustrated in FIG. 7A and includes a hollow tubular body having a mandrel bore 60 extending through the body of mandrel 34. In addition, mandrel 34 may have pores 62 on its surface that are in communication with mandrel bore 60. In other words, pores 62 penetrate all the way through the body of mandrel 34. Mandrel bore 60 and pores 62 can be of any suitable size and the number of pores 62 can be selected for effectively allowing excess material to be vacuumed off of the stent and mandrel 34. However, the pores 62 should not cause manufacturing defects. In some embodiments, the vacuum device 34 should be able to apply positive pressure so as to blow out air or a gas (such as an inert gas, for example, argon) in or out from the mandrel 34. The blowing or vacuuming can be conducted during or after the laser etching. In an alternative embodiment, the mandrel 34 may be solid (see FIG. 7B).


Polymeric mandrel 34 can be made from or coated with a biostable polymer or a bioerodable, biodegradable or bioabsorbable polymer. Bioerodable, biodegradable or bioabsorbable are intended to be used interchangeably unless otherwise indicated. In some embodiments, the polymer is the same as a polymer used to make the implantable medical device or stent 10. In some embodiments, the polymer can be different, so long as the polymer is biocompatible. If a combination of polymers is used from the device or mandrel 34, at least one of the polymers can be the same.


Representative examples of biocompatible polymers that can be used for mandrel 34 include, but are not limited to, fluorinated polymers or copolymers such as poly(vinylidene fluoride), poly(vinylidene fluoride-co-hexafluoro propene), poly(tetrafluoroethylene), and expanded poly(tetrafluoroethylene); poly(sulfone); poly(N-vinyl pyrrolidone); poly(aminocarbonates); poly(iminocarbonates); poly(anhydride-co-imides), poly(hydroxyvalerate); poly(L-lactic acid); poly(L-lactide); poly(caprolactones); poly(lactide-co-glycolide); poly(hydroxybutyrates); poly(hydroxybutyrate-co-valerate); poly(dioxanones); poly(orthoesters); poly(anhydrides); poly(glycolic acid); poly(glycolide); poly(D,L-lactic acid); poly(D,L-lactide); poly(glycolic acid-co-trimethylene carbonate); poly(phosphoesters); poly(phosphoester urethane); poly(trimethylene carbonate); poly(iminocarbonate); poly(ethylene); and any derivatives, analogs, homologues, congeners, salts, copolymers and combinations thereof.


In some embodiments, the polymers include, but are not limited to, poly(propylene) co-poly(ether-esters) such as, for example, poly(dioxanone) and poly(ethylene oxide)/poly(lactic acid); poly(anhydrides), poly(alkylene oxalates); poly(phosphazenes); poly(urethanes); silicones; poly(esters; poly(olefins); copolymers of poly(isobutylene); copolymers of ethylene-alphaolefin; vinyl halide polymers and copolymers such as poly(vinyl chloride); poly(vinyl ethers) such as, for example, poly(vinyl methyl ether); poly(vinylidene halides) such as, for example, poly(vinylidene chloride); poly(acrylonitrile); poly(vinyl ketones); poly(vinyl aromatics) such as poly(styrene); poly(vinyl esters) such as poly(vinyl acetate); copolymers of vinyl monomers and olefins such as poly(ethylene-co-vinyl alcohol) (EVAL), copolymers of acrylonitrile-styrene, ABS resins, and copolymers of ethylene-vinyl acetate; and any derivatives, analogs, homologues, congeners, salts, copolymers and combinations thereof.


In some embodiments, the polymers include, but are not limited to, poly(amides) such as Nylon 66 and poly(caprolactam); alkyd resins; poly(carbonates); poly(oxymethylenes); poly(imides); poly(ester amides); poly(ethers) including poly(alkylene glycols) such as, for example, poly(ethylene glycol) and poly(propylene glycol); epoxy resins; polyurethanes; rayon; rayon-triacetate; biomolecules such as, for example, fibrin, fibrinogen, starch, poly(amino acids); peptides, proteins, gelatin, chondroitin sulfate, dermatan sulfate (a copolymer of D-glucuronic acid or L-iduronic acid and N-acetyl-D-galactosamine), collagen, hyaluronic acid, and glycosaminoglycans; other polysaccharides such as, for example, poly(N-acetylglucosamine), chitin, chitosan, cellulose, cellulose acetate, cellulose butyrate, cellulose acetate butyrate, cellophane, cellulose nitrate, cellulose propionate, cellulose ethers, and carboxymethylcellulose; and any derivatives, analogs, homologues, congeners, salts, copolymers and combinations thereof.


In some embodiments, at least one of polymers can be a poly(ester amide), a poly(lactide) or a poly(lactide-co-glycolide) copolymer; and any derivatives, analogs, homologues, congeners, salts, copolymers and combinations thereof.


In some embodiments, the polymers can be biodegradable, bioerodable and/or bioabsorbable. Examples of biodegradable polymers include, but are not limited to, polymers having repeating units such as, for example, an a-hydroxycarboxylic acid, a cyclic diester of an α-hydroxycarboxylic acid, a dioxanone, a lactone, a cyclic carbonate, a cyclic oxalate, an epoxide, a glycol, an anhydride, a lactic acid, a glycolic acid, a lactide, a glycolide, an ethylene oxide, an ethylene glycol, and any derivatives, analogs, homologues, congeners, salts, copolymers and combinations thereof.


In some embodiments, the biodegradable polymers include, but are not limited to, polyesters, poly(ester amides); poly(hydroxyalkanoates) (PHA), amino acids; PEG and/or alcohol groups; polycaprolactones, poly(D-lactide), poly(L-lactide), poly(D,L-lactide), poly(meso-lactide), poly(L-lactide-co-meso-lactide), poly(D-lactide-co-meso-lactide), poly(D, L-lactide-co-meso-lactide), poly(D,L-lactide-co-PEG) block copolymers, poly(D,L-lactide-co-trimethylene carbonate), polyglycolides, poly(lactide-co-glycolide), polydioxanones, polyorthoesters, polyanhydrides, poly(glycolic acid-co-trimethylene carbonate), polyphosphoesters, polyphosphoester urethanes, poly(amino acids), polycyanoacrylates, poly(trimethylene carbonate), poly(imino carbonate), polycarbonates, polyurethanes, copoly(ether-esters) (e.g. PEO/PLA), polyalkylene oxalates, polyphosphazenes, PHA-PEG, and any derivatives, analogs, homologues, salts, copolymers and combinations thereof.


In other embodiments, the polymers can be poly(glycerol sebacate); tyrosine-derived polycarbonates containing desaminotyrosyl-tyrosine alkyl esters such as, for example, desaminotyrosyl-tyrosine ethyl ester (poly(DTE carbonate)); and any derivatives, analogs, homologues, salts, copolymers and combinations thereof.


In some embodiments, the polymers are selected such that they specifically exclude any one or any combination of any of the polymers taught herein.



FIG. 8 illustrates a view of polymeric stent mandrel device 30 according to another embodiment of the invention. Support member 32 and lock member 36 include conical end portions 56A and 56B, instead of flat ends, for penetrating into ends of stent 10. The end portions 56A and 56B can taper inwardly at an angle θ1 of about 15° to about 75°, more narrowly from about 30° to about 60°. By way of example, angle θ1 can be about 45°. The outer surface of mandrel 34 will typically be smaller than the inner surface of stent 10, as positioned on fixture 30, so as to prevent the outer surface of mandrel 34 from making contact with the inner surface of stent 10.


In the manufacturing process using device 30, a polymeric tube 8 may be placed on the polymeric mandrel 34 between support member 32 and lock member 36. The polymeric tube 8 may typically be between twelve to two-hundred millimeters long depending on its intended therapeutic application. Additionally, the inner and outer surfaces of the polymeric tube 8 may vary in accordance with the intended therapeutic application and in correspondence with the outer surface of the mandrel 34. In some embodiments, the OD of the polymeric tube 8 may approximately be equivalent to the ID of the mandrel 34. In other embodiments, the OD of the polymeric tube 8 may be smaller than the ID of the mandrel 34. For example, for a polymeric tube 8 of size 0.084″ OD and 0.070″ ID, a corresponding polymer mandrel in the range of 0.025″ OD to 0.035″ OD may be used. Generally, mandrels may range in size from 0.010″ OD to 0.050″ OD, typically supplied in the sizes 0.014″ OD or 0.035″ OD.


A laser 100 may then be used for the etching process to form a polymeric stent 10 from polymeric tube 8. The laser 100 may be used in a range of fifty milliwatts to one waft, depending on the environmental conditions surrounding the laser. In contrast to the method employing device 30′, the method employing device 30 with polymeric mandrel 34 reduces the need to tailor the power from the laser 100 to the wall thickness of the polymer tube 8, thus reducing the time it takes to cut the stent 10. A typical lasing process takes approximately two minutes to twelve minutes, more particularly approximately six minutes, pursuant to a method of this invention.


In FIG. 9, a polymeric stent 10 manufactured in accordance with device 30 is illustrated. As discussed previously, the polymeric stent 10 can include a plurality of struts 12 linked by connecting elements 14, with gaps 16 positioned between the struts and the connecting elements. The polymeric stent 10 can also include a proximal ring 18, a distal ring 20 and at least one central ring 22. Generally, the polymeric stent 10 is a bioerodable, biodegradable or bioabsorbable implantable medical device that is intended to remain in the body until its intended function is achieved.


In FIGS. 10 and 11, cross-sectional and enlarged views of the polymer stent of FIG. 9 are illustrated, respectively. Generally absent from the inner surface 26 is at least one angled cut 28. This is substantially due to the mandrel 34, which provides a shielding effect to the inner surface 26 when the equal-but-opposite outer surface 24 is being lased during the manufacturing process. Moreover, because the mandrel 34 is comprised of a biocompatible polymer, the problems of undesirable residual contaminants left by typical glass or metal mandrels, for example, are substantially reduced or completely eliminated. Finally, using the method related to device 30, slight wall thickness variations of the polymeric tube 8 can be tolerated to a greater extent due to the shielding effect of the polymeric mandrel 34 as discussed previously. Overall, a higher yield of usable commercially polymeric stents may be produced using the method employing device 30 with polymeric mandrel 34. It is anticipated that the yield of polymeric stents using the method and device as just described will approach 100%.


The polymeric stent 10 described in FIGS. 9, 10 and 11 may be coated with one or more therapeutic agents, including an anti-proliferative, anti-inflammatory or immune modulating, anti-migratory, anti-thrombotic or other pro-healing agent or a combination thereof. The anti-proliferative agent can be a natural proteineous agent such as a cytotoxin or a synthetic molecule or other substances such as actinomycin D, or derivatives and analogs thereof (manufactured by Sigma-Aldrich 1001 West Saint Paul Avenue, Milwaukee, Wisc. 53233; or COSMEGEN available from Merck) (synonyms of actinomycin D include dactinomycin, actinomycin IV, actinomycin I1, actinomycin X1, and actinomycin C1), all taxoids such as taxols, docetaxel, and paclitaxel, paclitaxel derivatives, all olimus drugs such as macrolide antibiotics, rapamycin, everolimus, structural derivatives and functional analogues of rapamycin, structural derivatives and functional analogues of everolimus, FKBP-12 mediated mTOR inhibitors, biolimus, perfenidone, prodrugs thereof, co-drugs thereof, and combinations thereof. Representative rapamycin derivatives include 40-O-(3-hydroxy)propyl-rapamycin, 40-O-[2-(2-hydroxy)ethoxy]ethyl-rapamycin, or 40-O-tetrazole-rapamycin, 40-epi-(N1-tetrazolyl)-rapamycin (ABT-578 manufactured by Abbot Laboratories, Abbot Park, Ill.), prodrugs thereof, co-drugs thereof, and combinations thereof.


The anti-inflammatory agent can be a steroidal anti-inflammatory agent, a nonsteroidal anti-inflammatory agent, or a combination thereof. In some embodiments, anti-inflammatory drugs include, but are not limited to, alclofenac, alclometasone dipropionate, algestone acetonide, alpha amylase, amcinafal, amcinafide, amfenac sodium, amiprilose hydrochloride, anakinra, anirolac, anitrazafen, apazone, balsalazide disodium, bendazac, benoxaprofen, benzydamine hydrochloride, bromelains, broperamole, budesonide, carprofen, cicloprofen, cintazone, cliprofen, clobetasol propionate, clobetasone butyrate, clopirac, cloticasone propionate, cormethasone acetate, cortodoxone, deflazacort, desonide, desoximetasone, dexamethasone dipropionate, diclofenac potassium, diclofenac sodium, diflorasone diacetate, diflumidone sodium, diflunisal, difluprednate, diftalone, dimethyl sulfoxide, drocinonide, endrysone, enlimomab, enolicam sodium, epirizole, etodolac, etofenamate, felbinac, fenamole, fenbufen, fenclofenac, fenclorac, fendosal, fenpipalone, fentiazac, flazalone, fluazacort, flufenamic acid, flumizole, flunisolide acetate, flunixin, flunixin meglumine, fluocortin butyl, fluorometholone acetate, fluquazone, flurbiprofen, fluretofen, fluticasone propionate, furaprofen, furobufen, halcinonide, halobetasol propionate, halopredone acetate, ibufenac, ibuprofen, ibuprofen aluminum, ibuprofen piconol, ilonidap, indomethacin, indomethacin sodium, indoprofen, indoxole, intrazole, isoflupredone acetate, isoxepac, isoxicam, ketoprofen, lofemizole hydrochloride, lomoxicam, loteprednol etabonate, meclofenamate sodium, meclofenamic acid, meclorisone dibutyrate, mefenamic acid, mesalamine, meseclazone, methylprednisolone suleptanate, momiflumate, nabumetone, naproxen, naproxen sodium, naproxol, nimazone, olsalazine sodium, orgotein, orpanoxin, oxaprozin, oxyphenbutazone, paranyline hydrochloride, pentosan polysulfate sodium, phenbutazone sodium glycerate, pirfenidone, piroxicam, piroxicam cinnamate, piroxicam olamine, pirprofen, prednazate, prifelone, prodolic acid, proquazone, proxazole, proxazole citrate, rimexolone, romazarit, salcolex, salnacedin, salsalate, sanguinarium chloride, seclazone, sermetacin, sudoxicam, sulindac, suprofen, talmetacin, talniflumate, talosalate, tebufelone, tenidap, tenidap sodium, tenoxicam, tesicam, tesimide, tetrydamine, tiopinac, tixocortol pivalate, tolmetin, tolmetin sodium, triclonide, triflumidate, zidometacin, zomepirac sodium, aspirin (acetylsalicylic acid), salicylic acid, corticosteroids, glucocorticoids, tacrolimus, pimecorlimus, prodrugs thereof, co-drugs thereof, and combinations thereof.


These agents can also have anti-proliferative and/or anti-inflammmatory properties or can have other properties such as antineoplastic, antiplatelet, anti-coagulant, anti-fibrin, antithrombonic, antimitotic, antibiotic, antiallergic, antioxidant as well as cystostatic agents. Examples of suitable therapeutic and prophylactic agents include synthetic inorganic and organic compounds, proteins and peptides, polysaccharides and other sugars, lipids, and DNA and RNA nucleic acid sequences having therapeutic, prophylactic or diagnostic activities. Nucleic acid sequences include genes, antisense molecules which bind to complementary DNA to inhibit transcription, and ribozymes. Some other examples of other bioactive agents include antibodies, receptor ligands, enzymes, adhesion peptides, blood clotting factors, inhibitors or clot dissolving agents such as streptokinase and tissue plasminogen activator, antigens for immunization, hormones and growth factors, oligonucleotides such as antisense oligonucleotides and ribozymes and retroviral vectors for use in gene therapy. Examples of antineoplastics and/or antimitotics include methotrexate, azathioprine, vincristine, vinblastine, fluorouracil, doxorubicin hydrochloride (e.g. Adriamycin® from Pharmacia & Upjohn, Peapack N.J.), and mitomycin (e.g. Mutamycin® from Bristol-Myers Squibb Co., Stamford, Conn.). Examples of such antiplatelets, anticoagulants, antifibrin, and antithrombins include sodium heparin, low molecular weight heparins, heparinoids, hirudin, argatroban, forskolin, vapiprost, prostacyclin and prostacyclin analogues, dextran, D-phe-pro-arg-chloromethylketone (synthetic antithrombin), dipyridamole, glycoprotein IIb/IIIa platelet membrane receptor antagonist antibody, recombinant hirudin, thrombin inhibitors such as Angiomax ä (Biogen, Inc., Cambridge, Mass.), calcium channel blockers (such as nifedipine), colchicine, fibroblast growth factor (FGF) antagonists, fish oil (omega 3-fatty acid), histamine antagonists, lovastatin (an inhibitor of HMG-CoA reductase, a cholesterol lowering drug, brand name Mevacor® from Merck & Co., Inc., Whitehouse Station, N.J.), monoclonal antibodies (such as those specific for Platelet-Derived Growth Factor (PDGF) receptors), nitroprusside, phosphodiesterase inhibitors, prostaglandin inhibitors, suramin, serotonin blockers, steroids, thioprotease inhibitors, triazolopyrimidine (a PDGF antagonist), nitric oxide or nitric oxide donors, super oxide dismutases, super oxide dismutase mimetic, 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO), estradiol, anticancer agents, dietary supplements such as various vitamins, and a combination thereof. Examples of such cytostatic substance include angiopeptin, angiotensin converting enzyme inhibitors such as captopril (e.g. Capoten® and Capozide® from Bristol-Myers Squibb Co., Stamford, Conn.), cilazapril or lisinopril (e.g. Prinivil® and Prinzide® from Merck & Co., Inc., Whitehouse Station, N.J.). An example of an antiallergic agent is permirolast potassium. Other therapeutic substances or agents which may be appropriate include alpha-interferon, and genetically engineered epithelial cells. The foregoing substances are listed by way of example and are not meant to be limiting. Other active agents which are currently available or that may be developed in the future are equally applicable.


The coating method may be applied by a variety of methods, such as those disclosed in U.S. Pat. No. 6,818,063 to Kerrigan and U.S. Pat. No. 6,695,920 to Pacetti et al. In addition, the therapeutic drug may be incorporated within the polymeric tube 8 thereof, such as disclosed in U.S. Pat. No. 5,605,696 to Eury et al. Also, the polymeric tube 8 may include at least two layers of polymers with different chemical characteristics for purposes of, for example, adjusting the flexibility characteristic of the polymeric stent 10.


From the foregoing detailed description, it will be evident that there are a number of changes, adaptations and modifications of the present invention which come within the province of those skilled in the art. The scope of the invention includes any combination of the elements from the different species or embodiments disclosed herein, as well as subassemblies, assemblies, and methods thereof. However, it is intended that all such variations not departing from the spirit of the invention be considered as within the scope thereof.

Claims
  • 1. A method of manufacturing an implantable medical device, comprising: positioning at least one of a polymeric mandrel or polymeric tube relative to the other such that the polymeric mandrel is within the polymeric tube forming a tubing-mandrel assembly, wherein the polymeric tube and the polymeric mandrel are formed from the same bioerodable polymer; cutting the polymeric tube while the polymeric mandrel is positioned within the polymeric tube with a laser to form an implantable medical device; and removing the implantable medical device from the polymeric mandrel.
  • 2. The method of claim 1, wherein the implantable medical device is a stent having an inner surface, an outer surface and a lumen.
  • 3. The method of claim 2, wherein the inner surface of the stent is substantially or completely free of angled cuts and contaminants.
  • 4. The method of claim 2, wherein the polymeric mandrel does not make contact with the inner surface of the stent.
  • 5. The method of claim 2, wherein the polymeric mandrel makes contact with the inner surface of the stent.
  • 6. The method of claim 1, wherein the polymer of the mandrel is a polymer coating.
  • 7. The method of claim 1, wherein the polymeric mandrel comprises pores on its surface that are in communication with a bore of the mandrel, wherein the pores allow excess material from the laser cutting of the polymeric tube to be removed from the polymeric tube.
  • 8. The method of claim 1, wherein a proximal and a distal end of the polymeric tube is supported by conical members so as to prevent contact of the polymeric tube with the polymeric mandrel.
US Referenced Citations (706)
Number Name Date Kind
2072303 Hermann et al. Mar 1937 A
2386454 Frosch et al. Oct 1945 A
2845346 Scanlon et al. Jul 1958 A
3016875 Ballentine, Jr. et al. Jan 1962 A
3687135 Stroganov et al. Aug 1972 A
3773737 Goodman et al. Nov 1973 A
3827139 Norteman Aug 1974 A
3839743 Schwarcz Oct 1974 A
3849514 Gray, Jr. et al. Nov 1974 A
3882816 Rooz et al. May 1975 A
3900632 Robinson Aug 1975 A
3995075 Cernauskas et al. Nov 1976 A
4011388 Murphy et al. Mar 1977 A
4082212 Headrick et al. Apr 1978 A
4104410 Malecki Aug 1978 A
4110497 Hoel Aug 1978 A
4201149 Koester et al. May 1980 A
4226243 Shalaby et al. Oct 1980 A
4269713 Yamashita et al. May 1981 A
4290383 Pfender Sep 1981 A
4321711 Mano Mar 1982 A
4329383 Joh May 1982 A
4343931 Barrows Aug 1982 A
4346028 Griffith Aug 1982 A
4459252 MacGregor Jul 1984 A
4489670 Mosser et al. Dec 1984 A
4529792 Barrows Jul 1985 A
4560374 Hammerslag Dec 1985 A
4596574 Urist Jun 1986 A
4599085 Riess et al. Jul 1986 A
4611051 Hayes et al. Sep 1986 A
4612009 Drobnik et al. Sep 1986 A
4616593 Kawamura et al. Oct 1986 A
4629563 Wrasidlo Dec 1986 A
4633873 Dumican et al. Jan 1987 A
4640846 Kuo Feb 1987 A
4656083 Hoffman et al. Apr 1987 A
4656242 Swan et al. Apr 1987 A
4674506 Alcond Jun 1987 A
4718907 Karwoski et al. Jan 1988 A
4722335 Vilasi Feb 1988 A
4723549 Wholey et al. Feb 1988 A
4732152 Wallstén et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4740207 Kreamer Apr 1988 A
4743252 Martin, Jr. et al. May 1988 A
4762128 Rosenbluth Aug 1988 A
4768507 Fischell et al. Sep 1988 A
4776337 Palmaz Oct 1988 A
4798585 Inoue et al. Jan 1989 A
4800882 Gianturco Jan 1989 A
4816339 Tu et al. Mar 1989 A
4818559 Hama et al. Apr 1989 A
4822535 Ekman et al. Apr 1989 A
4839055 Ishizaki et al. Jun 1989 A
4846791 Hattler et al. Jul 1989 A
4850999 Planck Jul 1989 A
4865879 Finlay Sep 1989 A
4877030 Beck et al. Oct 1989 A
4878906 Lindemann et al. Nov 1989 A
4879135 Greco et al. Nov 1989 A
4882168 Casey et al. Nov 1989 A
4886062 Wiktor Dec 1989 A
4893623 Rosenbluth Jan 1990 A
4902289 Yannas Feb 1990 A
4906423 Frisch Mar 1990 A
4931287 Bae et al. Jun 1990 A
4941870 Okada et al. Jul 1990 A
4955899 Della Corna et al. Sep 1990 A
4976736 White et al. Dec 1990 A
4977901 Ofstead Dec 1990 A
4992312 Frisch Feb 1991 A
4994298 Yasuda Feb 1991 A
5017420 Marikar May 1991 A
5019090 Pinchuk May 1991 A
5019096 Fox, Jr. et al. May 1991 A
5028597 Kodama et al. Jul 1991 A
5033405 Yamada et al. Jul 1991 A
5037392 Hillstead Aug 1991 A
5037427 Harada et al. Aug 1991 A
5059211 Stack et al. Oct 1991 A
5062829 Pryor et al. Nov 1991 A
5084065 Weldon et al. Jan 1992 A
5085629 Goldberg et al. Feb 1992 A
5095848 Ikeno Mar 1992 A
5100429 Sinofsky et al. Mar 1992 A
5100992 Cohn et al. Mar 1992 A
5104410 Chowdhary Apr 1992 A
5108417 Sawyer Apr 1992 A
5108755 Daniels et al. Apr 1992 A
5112457 Marchant May 1992 A
5123917 Lee Jun 1992 A
5133742 Pinchuk Jul 1992 A
5156623 Hakamatsuka et al. Oct 1992 A
5163951 Pinchuk et al. Nov 1992 A
5163952 Froix Nov 1992 A
5163958 Pinchuk Nov 1992 A
5165919 Sasaki et al. Nov 1992 A
5167614 Tessmann et al. Dec 1992 A
5171445 Zepf Dec 1992 A
5188734 Zepf Feb 1993 A
5192311 King et al. Mar 1993 A
5197977 Hoffman, Jr. et al. Mar 1993 A
5201314 Bosley et al. Apr 1993 A
5219980 Swidler Jun 1993 A
5229045 Soldani Jul 1993 A
5234456 Silvestrini Aug 1993 A
5234457 Andersen Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5242399 Lau et al. Sep 1993 A
5258020 Froix Nov 1993 A
5264246 Ikeno Nov 1993 A
5272012 Opolski Dec 1993 A
5279594 Jackson Jan 1994 A
5282860 Matsuno et al. Feb 1994 A
5289831 Bosley Mar 1994 A
5290271 Jernberg Mar 1994 A
5292516 Viegas et al. Mar 1994 A
5298260 Viegas et al. Mar 1994 A
5300295 Viegas et al. Apr 1994 A
5306286 Stack et al. Apr 1994 A
5306294 Winston et al. Apr 1994 A
5306501 Viegas et al. Apr 1994 A
5306786 Moens et al. Apr 1994 A
5308338 Helfrich May 1994 A
5328471 Slepian Jul 1994 A
5330500 Song Jul 1994 A
5330768 Park et al. Jul 1994 A
5342348 Kaplan Aug 1994 A
5342395 Jarrett et al. Aug 1994 A
5342621 Eury Aug 1994 A
5356433 Rowland et al. Oct 1994 A
5358740 Bornside et al. Oct 1994 A
5370684 Vallana et al. Dec 1994 A
5378511 Cardinali et al. Jan 1995 A
5380299 Fearnot et al. Jan 1995 A
5383925 Schmitt Jan 1995 A
5385580 Schmitt Jan 1995 A
5389106 Tower Feb 1995 A
5399666 Ford Mar 1995 A
5417981 Endo et al. May 1995 A
5421955 Lau et al. Jun 1995 A
5423885 Williams Jun 1995 A
5441515 Khosravi et al. Aug 1995 A
5443458 Eury et al. Aug 1995 A
5443496 Schwartz et al. Aug 1995 A
5443500 Sigwart Aug 1995 A
5447724 Helmus et al. Sep 1995 A
5455040 Marchant Oct 1995 A
5458683 Taylor et al. Oct 1995 A
5462990 Hubbell et al. Oct 1995 A
5464650 Berg et al. Nov 1995 A
5485496 Lee et al. Jan 1996 A
5502158 Sinclair et al. Mar 1996 A
5514154 Lau et al. May 1996 A
5514379 Weissleder et al. May 1996 A
5516560 Harayama et al. May 1996 A
5516881 Lee et al. May 1996 A
5527337 Stack et al. Jun 1996 A
5537729 Kolobow Jul 1996 A
5538493 Gerken et al. Jul 1996 A
5545408 Trigg et al. Aug 1996 A
5554120 Chen et al. Sep 1996 A
5556413 Lam Sep 1996 A
5558900 Fan et al. Sep 1996 A
5569295 Lam Oct 1996 A
5569463 Helmus et al. Oct 1996 A
5578046 Liu et al. Nov 1996 A
5578048 Pasqualucci et al. Nov 1996 A
5578073 Haimovich et al. Nov 1996 A
5584877 Miyake et al. Dec 1996 A
5591199 Porter et al. Jan 1997 A
5591607 Gryaznov et al. Jan 1997 A
5593403 Buscemi Jan 1997 A
5593434 Williams Jan 1997 A
5599301 Jacobs et al. Feb 1997 A
5599922 Gryaznov et al. Feb 1997 A
5603721 Lau et al. Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607442 Fischell et al. Mar 1997 A
5607467 Froix Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5610241 Lee et al. Mar 1997 A
5611775 Machold et al. Mar 1997 A
5616338 Fox, Jr. et al. Apr 1997 A
5618299 Khosravi et al. Apr 1997 A
5624411 Tuch Apr 1997 A
5628730 Shapland et al. May 1997 A
5628786 Banas et al. May 1997 A
5629077 Turnlund et al. May 1997 A
5631135 Gryaznov et al. May 1997 A
5632771 Boatman et al. May 1997 A
5632840 Campbell May 1997 A
5637113 Tartaglia et al. Jun 1997 A
5643580 Subramaniam Jul 1997 A
5644020 Timmermann et al. Jul 1997 A
5649977 Campbell Jul 1997 A
5656082 Takatsuki et al. Aug 1997 A
5658995 Kohn et al. Aug 1997 A
5667767 Greff et al. Sep 1997 A
5667796 Otten Sep 1997 A
5670558 Onishi et al. Sep 1997 A
5674242 Phan et al. Oct 1997 A
5679400 Tuch Oct 1997 A
5687906 Nakagawa Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5700285 Myers et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5702754 Zhong Dec 1997 A
5707385 Williams Jan 1998 A
5711763 Nonami et al. Jan 1998 A
5711958 Cohn et al. Jan 1998 A
5713949 Jayaraman Feb 1998 A
5716981 Hunter et al. Feb 1998 A
5721131 Rudolph et al. Feb 1998 A
5723219 Kolluri et al. Mar 1998 A
5725549 Lam Mar 1998 A
5726297 Gryaznov et al. Mar 1998 A
5728751 Patnaik Mar 1998 A
5733326 Tomonto et al. Mar 1998 A
5733330 Cox Mar 1998 A
5733564 Lehtinen Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5735897 Buirge Apr 1998 A
5741554 Tisone Apr 1998 A
5741881 Patnaik Apr 1998 A
5746998 Torchilin et al. May 1998 A
5756457 Wang et al. May 1998 A
5756476 Epstein et al. May 1998 A
5756553 Iguchi et al. May 1998 A
5759192 Saunders Jun 1998 A
5759205 Valentini Jun 1998 A
5765682 Bley et al. Jun 1998 A
5766204 Porter et al. Jun 1998 A
5766239 Cox Jun 1998 A
5766710 Turnlund et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5772864 Møller et al. Jun 1998 A
5776184 Tuch Jul 1998 A
5780807 Saunders Jul 1998 A
5783657 Pavlin et al. Jul 1998 A
5788626 Thompson Aug 1998 A
5788979 Alt et al. Aug 1998 A
5800392 Racchini Sep 1998 A
5800516 Fine et al. Sep 1998 A
5811447 Kunz et al. Sep 1998 A
5820917 Tuch Oct 1998 A
5823996 Sparks Oct 1998 A
5824048 Tuch Oct 1998 A
5824049 Ragheb et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5830461 Billiar Nov 1998 A
5830879 Isner Nov 1998 A
5833651 Donovan et al. Nov 1998 A
5833659 Kranys Nov 1998 A
5834582 Sinclair et al. Nov 1998 A
5836962 Gianotti Nov 1998 A
5836965 Jendersee et al. Nov 1998 A
5837008 Berg et al. Nov 1998 A
5837313 Ding et al. Nov 1998 A
5837835 Gryaznov et al. Nov 1998 A
5840083 Braach-Maksvytis Nov 1998 A
5843172 Yan Dec 1998 A
5849859 Acemoglu Dec 1998 A
5851508 Greff et al. Dec 1998 A
5853408 Muni Dec 1998 A
5854207 Lee et al. Dec 1998 A
5854376 Higashi Dec 1998 A
5855598 Pinchuk Jan 1999 A
5855600 Alt Jan 1999 A
5855612 Ohthuki et al. Jan 1999 A
5855618 Patnaik et al. Jan 1999 A
5855684 Bergmann Jan 1999 A
5858746 Hubbell et al. Jan 1999 A
5865814 Tuch Feb 1999 A
5868781 Killion Feb 1999 A
5869127 Zhong Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5874101 Zhong et al. Feb 1999 A
5874109 Ducheyne et al. Feb 1999 A
5874165 Drumheller Feb 1999 A
5876433 Lunn Mar 1999 A
5876743 Ibsen et al. Mar 1999 A
5877224 Brocchini et al. Mar 1999 A
5877263 Patnaik et al. Mar 1999 A
5879713 Roth et al. Mar 1999 A
5888533 Dunn Mar 1999 A
5891108 Leone et al. Apr 1999 A
5891192 Murayama et al. Apr 1999 A
5891507 Jayaraman Apr 1999 A
5895407 Jayaraman Apr 1999 A
5897911 Loeffler Apr 1999 A
5897955 Drumheller Apr 1999 A
5902631 Wang et al. May 1999 A
5902875 Roby et al. May 1999 A
5905168 Dos Santos et al. May 1999 A
5906759 Richter May 1999 A
5910564 Gruning et al. Jun 1999 A
5911752 Dustrude et al. Jun 1999 A
5914182 Drumheller Jun 1999 A
5914387 Roby et al. Jun 1999 A
5916870 Lee et al. Jun 1999 A
5919893 Roby et al. Jul 1999 A
5922005 Richter et al. Jul 1999 A
5922393 Jayaraman Jul 1999 A
5925720 Kataoka et al. Jul 1999 A
5928279 Shannon et al. Jul 1999 A
5932299 Katoot Aug 1999 A
5935135 Bramfitt et al. Aug 1999 A
5935506 Schmitz et al. Aug 1999 A
5942209 Leavitt et al. Aug 1999 A
5948018 Dereume et al. Sep 1999 A
5948428 Lee et al. Sep 1999 A
5954744 Phan et al. Sep 1999 A
5955509 Webber et al. Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5958385 Tondeur et al. Sep 1999 A
5962138 Kolluri et al. Oct 1999 A
5965720 Gryaznov et al. Oct 1999 A
5968091 Pinchuk et al. Oct 1999 A
5971954 Conway et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5976182 Cox Nov 1999 A
5980564 Stinson Nov 1999 A
5980928 Terry Nov 1999 A
5980972 Ding Nov 1999 A
5981568 Kunz et al. Nov 1999 A
5984449 Tajika et al. Nov 1999 A
5986169 Gjunter Nov 1999 A
5997468 Wolff et al. Dec 1999 A
5997517 Whitbourne Dec 1999 A
6010445 Armini et al. Jan 2000 A
6010530 Goicoechea Jan 2000 A
6010573 Bowlin Jan 2000 A
6011125 Lohmeijer et al. Jan 2000 A
6013099 Dinh et al. Jan 2000 A
6015541 Greff et al. Jan 2000 A
6030371 Pursley Feb 2000 A
6033582 Lee et al. Mar 2000 A
6034204 Mohr et al. Mar 2000 A
6042875 Ding et al. Mar 2000 A
6045899 Wang et al. Apr 2000 A
6048964 Lee et al. Apr 2000 A
6051576 Ashton et al. Apr 2000 A
6051648 Rhee et al. Apr 2000 A
6054553 Groth et al. Apr 2000 A
6056993 Leidner et al. May 2000 A
6059714 Armini et al. May 2000 A
6060451 DiMaio et al. May 2000 A
6060518 Kabanov et al. May 2000 A
6066156 Yan May 2000 A
6068202 Hynes et al. May 2000 A
6071266 Kelley Jun 2000 A
6071305 Brown et al. Jun 2000 A
6074659 Kunz et al. Jun 2000 A
6080177 Igaki et al. Jun 2000 A
6080488 Hostettler et al. Jun 2000 A
6083258 Yadav Jul 2000 A
6093463 Thakrar Jul 2000 A
6096070 Ragheb et al. Aug 2000 A
6096525 Patnaik Aug 2000 A
6099562 Ding et al. Aug 2000 A
6103230 Billiar et al. Aug 2000 A
6106889 Beavers et al. Aug 2000 A
6107416 Patnaik et al. Aug 2000 A
6110188 Narciso, Jr. Aug 2000 A
6110483 Whitbourne et al. Aug 2000 A
6113629 Ken Sep 2000 A
6117979 Hendriks et al. Sep 2000 A
6120491 Kohn et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6120788 Barrows Sep 2000 A
6120847 Yang et al. Sep 2000 A
6120904 Hostettler et al. Sep 2000 A
6121027 Clapper et al. Sep 2000 A
6125523 Brown et al. Oct 2000 A
6126686 Badylak et al. Oct 2000 A
6127173 Eckstein et al. Oct 2000 A
6129755 Mathis et al. Oct 2000 A
6129761 Hubbell Oct 2000 A
6129928 Sarangapani et al. Oct 2000 A
6136333 Cohn et al. Oct 2000 A
6140127 Sprague Oct 2000 A
6140431 Kinker et al. Oct 2000 A
6143354 Koulik et al. Nov 2000 A
6143370 Panagiotou et al. Nov 2000 A
6150630 Perry et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
4776337 Palmaz Dec 2000 A
6156373 Zhong et al. Dec 2000 A
6159951 Karpeisky et al. Dec 2000 A
6159978 Myers et al. Dec 2000 A
6160084 Langer et al. Dec 2000 A
6160240 Momma et al. Dec 2000 A
6165212 Dereume et al. Dec 2000 A
6165267 Torczynski Dec 2000 A
6166130 Rhee et al. Dec 2000 A
6169170 Gryaznov et al. Jan 2001 B1
6171334 Cox Jan 2001 B1
6171609 Kunz Jan 2001 B1
6172167 Stapert et al. Jan 2001 B1
6174329 Callol et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6177523 Reich et al. Jan 2001 B1
6180632 Myers et al. Jan 2001 B1
6183505 Mohn, Jr. et al. Feb 2001 B1
6187045 Fehring et al. Feb 2001 B1
6194034 Nishi et al. Feb 2001 B1
6197013 Reed et al. Mar 2001 B1
6203551 Wu Mar 2001 B1
6203569 Wijay Mar 2001 B1
6206915 Fagan et al. Mar 2001 B1
6210715 Starling et al. Apr 2001 B1
6211249 Cohn et al. Apr 2001 B1
6214115 Taylor et al. Apr 2001 B1
6214901 Chudzik et al. Apr 2001 B1
6224626 Steinke May 2001 B1
6228072 Omaleki et al. May 2001 B1
6228845 Donovan et al. May 2001 B1
6231600 Zhong May 2001 B1
6235340 Lee et al. May 2001 B1
6240616 Yan Jun 2001 B1
6244575 Vaartstra et al. Jun 2001 B1
6245076 Yan Jun 2001 B1
6245099 Edwin et al. Jun 2001 B1
6245103 Stinson Jun 2001 B1
6245753 Byun et al. Jun 2001 B1
6245760 He et al. Jun 2001 B1
6248129 Froix Jun 2001 B1
6248344 Ylanen et al. Jun 2001 B1
6248398 Talieh et al. Jun 2001 B1
6251135 Stinson et al. Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6251142 Bernacca et al. Jun 2001 B1
6254632 Wu et al. Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258371 Koulik et al. Jul 2001 B1
6261320 Tam et al. Jul 2001 B1
6262034 Mathiowitz et al. Jul 2001 B1
6270504 Lorentzen Cornelius et al. Aug 2001 B1
6270788 Koulik et al. Aug 2001 B1
6273878 Muni Aug 2001 B1
6273908 Ndondo-Lay Aug 2001 B1
6273910 Limon Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6277449 Kolluri et al. Aug 2001 B1
6279368 Escano et al. Aug 2001 B1
6281262 Shikinami Aug 2001 B1
6283947 Mirzaee Sep 2001 B1
6283949 Roorda Sep 2001 B1
6284305 Ding et al. Sep 2001 B1
6284333 Wang et al. Sep 2001 B1
6287249 Tam et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6293966 Frantzen Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6303901 Perry et al. Oct 2001 B1
6306165 Patnaik et al. Oct 2001 B1
6306176 Whitbourne Oct 2001 B1
6312459 Huang et al. Nov 2001 B1
6322847 Zhong et al. Nov 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6331191 Chobotov Dec 2001 B1
6331313 Wong et al. Dec 2001 B1
4733665 Palmaz Jan 2002 C2
6335029 Kamath et al. Jan 2002 B1
6344035 Chudzik et al. Feb 2002 B1
6346110 Wu Feb 2002 B2
6358556 Ding et al. Mar 2002 B1
6358567 Pham et al. Mar 2002 B2
6364903 Tseng et al. Apr 2002 B2
6368658 Schwarz et al. Apr 2002 B1
6372283 Shim et al. Apr 2002 B1
6375826 Wang et al. Apr 2002 B1
6379381 Hossainy et al. Apr 2002 B1
6383215 Sass May 2002 B1
6387118 Hanson May 2002 B1
6387121 Alt May 2002 B1
6387379 Goldberg et al. May 2002 B1
6388043 Langer et al. May 2002 B1
6395326 Castro et al. May 2002 B1
6407009 You et al. Jun 2002 B1
6409761 Jang Jun 2002 B1
6416543 Hilaire et al. Jul 2002 B1
6419692 Yang et al. Jul 2002 B1
6423092 Datta et al. Jul 2002 B2
6435798 Satoh Aug 2002 B1
6440221 Shamouilian et al. Aug 2002 B2
6451373 Hossainy et al. Sep 2002 B1
6461632 Gogolewski Oct 2002 B1
6464720 Boatman et al. Oct 2002 B2
6475779 Mathiowitz et al. Nov 2002 B2
6479565 Stanley Nov 2002 B1
6482834 Spada et al. Nov 2002 B2
6485512 Cheng Nov 2002 B1
6492615 Flanagan Dec 2002 B1
6494862 Ray et al. Dec 2002 B1
6494908 Huxel et al. Dec 2002 B1
6495156 Wenz et al. Dec 2002 B2
6503538 Chu et al. Jan 2003 B1
6503556 Harish et al. Jan 2003 B2
6503954 Bhat et al. Jan 2003 B1
6506437 Harish et al. Jan 2003 B1
6511748 Barrows Jan 2003 B1
6517534 McGovern et al. Feb 2003 B1
6517888 Weber Feb 2003 B1
6517889 Jayaraman Feb 2003 B1
6521284 Parsons et al. Feb 2003 B1
6524347 Myers et al. Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527863 Pacetti et al. Mar 2003 B1
6528526 Myers et al. Mar 2003 B1
6530950 Alvarado et al. Mar 2003 B1
6530951 Bates et al. Mar 2003 B1
6534112 Bouchier et al. Mar 2003 B1
6537589 Chae et al. Mar 2003 B1
6539607 Fehring et al. Apr 2003 B1
6540776 Sanders Millare et al. Apr 2003 B2
6540777 Stenzel Apr 2003 B2
6544223 Kokish Apr 2003 B1
6544543 Mandrusov et al. Apr 2003 B1
6544582 Yoe Apr 2003 B1
6554854 Flanagan Apr 2003 B1
6555157 Hossainy Apr 2003 B1
6558733 Hossainy et al. May 2003 B1
6562136 Chappa et al. May 2003 B1
6565599 Hong et al. May 2003 B1
6565659 Pacetti et al. May 2003 B1
6569191 Hogan May 2003 B1
6569193 Cox et al. May 2003 B1
6572644 Moein Jun 2003 B1
6572651 De Scheerder et al. Jun 2003 B1
6572672 Yadav et al. Jun 2003 B2
6574851 Mirizzi Jun 2003 B1
6575933 Wittenberger et al. Jun 2003 B1
6585755 Jackson et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6585926 Mirzaee Jul 2003 B1
6592614 Lenker et al. Jul 2003 B2
6592617 Thompson Jul 2003 B2
6605154 Villareal Aug 2003 B1
6610087 Zarbatany et al. Aug 2003 B1
6613072 Lau et al. Sep 2003 B2
6613432 Zamora et al. Sep 2003 B2
6616765 Hossainy et al. Sep 2003 B1
6620617 Mathiowitz et al. Sep 2003 B2
6623448 Slater Sep 2003 B2
6625486 Lundkvist et al. Sep 2003 B2
6626939 Burnside et al. Sep 2003 B1
6635269 Jennissen Oct 2003 B1
6641611 Jayaraman Nov 2003 B2
6645135 Bhat Nov 2003 B1
6645195 Bhat et al. Nov 2003 B1
6645243 Vallana et al. Nov 2003 B2
6656162 Santini, Jr. et al. Dec 2003 B2
6656216 Hossainy et al. Dec 2003 B1
6656506 Wu et al. Dec 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663880 Roorda et al. Dec 2003 B1
6664335 Krishnan Dec 2003 B2
6666214 Canham Dec 2003 B2
6666880 Chiu et al. Dec 2003 B1
6667049 Janas et al. Dec 2003 B2
6669723 Killion et al. Dec 2003 B2
6673154 Pacetti et al. Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6676697 Richter Jan 2004 B1
6676700 Jacobs et al. Jan 2004 B1
6679980 Andreacchi Jan 2004 B1
6682771 Zhong et al. Jan 2004 B2
6689099 Mirzaee Feb 2004 B2
6689350 Uhrich Feb 2004 B2
6689375 Wahlig et al. Feb 2004 B1
6695920 Pacetti et al. Feb 2004 B1
6706013 Bhat et al. Mar 2004 B1
6706273 Roessler Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6709514 Hossainy Mar 2004 B1
6712845 Hossainy Mar 2004 B2
6713119 Hossainy et al. Mar 2004 B2
6716444 Castro et al. Apr 2004 B1
6719934 Stinson Apr 2004 B2
6719989 Matsushima et al. Apr 2004 B1
6720402 Langer et al. Apr 2004 B2
6723120 Yan Apr 2004 B2
6723373 Narayanan et al. Apr 2004 B1
6730064 Ragheb et al. May 2004 B2
6733768 Hossainy et al. May 2004 B2
6740040 Mandrusov et al. May 2004 B1
6743462 Pacetti Jun 2004 B1
6746773 Llanos et al. Jun 2004 B2
6749626 Bhat et al. Jun 2004 B1
6752826 Holloway et al. Jun 2004 B2
6753007 Haggard et al. Jun 2004 B2
6753071 Pacetti et al. Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6759054 Chen et al. Jul 2004 B2
6764505 Hossainy et al. Jul 2004 B1
6776796 Falotico et al. Aug 2004 B2
6780424 Claude Aug 2004 B2
6790228 Hossainy et al. Sep 2004 B2
6818063 Kerrigan Nov 2004 B1
6824559 Michal Nov 2004 B2
6846323 Yip et al. Jan 2005 B2
6860946 Hossainy et al. Mar 2005 B2
6887510 Villareal May 2005 B2
6890583 Chudzik et al. May 2005 B2
6955723 Pacetti et al. Oct 2005 B2
20010007083 Roorda Jul 2001 A1
20010029351 Falotico et al. Oct 2001 A1
20010037145 Guruwaiya et al. Nov 2001 A1
20010044652 Moore Nov 2001 A1
20020002399 Huxel et al. Jan 2002 A1
20020004060 Heublein et al. Jan 2002 A1
20020004101 Ding et al. Jan 2002 A1
20020005206 Falotico et al. Jan 2002 A1
20020007213 Falotico et al. Jan 2002 A1
20020007214 Falotico Jan 2002 A1
20020007215 Falotico et al. Jan 2002 A1
20020038767 Trozera Apr 2002 A1
20020050220 Schueller et al. May 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020062148 Hart May 2002 A1
20020065553 Weber May 2002 A1
20020077693 Barclay et al. Jun 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020091433 Ding et al. Jul 2002 A1
20020111590 Davila et al. Aug 2002 A1
20020116050 Kocur Aug 2002 A1
20020138133 Lenz et al. Sep 2002 A1
20020161114 Gunatillake et al. Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020176849 Slepian Nov 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020188037 Chudzik et al. Dec 2002 A1
20020188277 Roorda et al. Dec 2002 A1
20030004141 Brown Jan 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030028244 Bates et al. Feb 2003 A1
20030031780 Chudzik et al. Feb 2003 A1
20030032767 Tada et al. Feb 2003 A1
20030033001 Igaki Feb 2003 A1
20030036794 Ragheb et al. Feb 2003 A1
20030039689 Chen et al. Feb 2003 A1
20030040712 Ray et al. Feb 2003 A1
20030040790 Furst Feb 2003 A1
20030059520 Chen et al. Mar 2003 A1
20030060877 Falotico et al. Mar 2003 A1
20030065377 Davila et al. Apr 2003 A1
20030069629 Jadhav et al. Apr 2003 A1
20030072868 Harish et al. Apr 2003 A1
20030073961 Happ Apr 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083739 Cafferata May 2003 A1
20030088307 Shulze et al. May 2003 A1
20030093107 Parsonage et al. May 2003 A1
20030097088 Pacetti May 2003 A1
20030097173 Dutta May 2003 A1
20030100865 Santini, Jr. et al. May 2003 A1
20030105518 Dutta Jun 2003 A1
20030105530 Pirhonen Jun 2003 A1
20030113439 Pacetti et al. Jun 2003 A1
20030150380 Yoe Aug 2003 A1
20030158517 Kokish Aug 2003 A1
20030171053 Sanders Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030208259 Penhasi Nov 2003 A1
20030209835 Chun et al. Nov 2003 A1
20030211230 Pacetti et al. Nov 2003 A1
20030215564 Heller et al. Nov 2003 A1
20030226833 Shapovalov et al. Dec 2003 A1
20030236563 Fifer Dec 2003 A1
20040018296 Castro et al. Jan 2004 A1
20040029952 Chen et al. Feb 2004 A1
20040047978 Hossainy et al. Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040052858 Wu et al. Mar 2004 A1
20040052859 Wu et al. Mar 2004 A1
20040054104 Pacetti Mar 2004 A1
20040060508 Pacetti et al. Apr 2004 A1
20040062853 Pacetti et al. Apr 2004 A1
20040063805 Pacetti et al. Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040072922 Hossainy et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040086542 Hossainy et al. May 2004 A1
20040086550 Roorda et al. May 2004 A1
20040093077 White et al. May 2004 A1
20040096504 Michal May 2004 A1
20040098095 Burnside et al. May 2004 A1
20040098117 Hossainy et al. May 2004 A1
20040111149 Stinson Jun 2004 A1
20040127970 Saunders et al. Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040167610 Fleming, III Aug 2004 A1
20040191405 Kerrigan Sep 2004 A1
20040213893 Boulais Oct 2004 A1
20040232120 Wessner Nov 2004 A1
20050069630 Fox et al. Mar 2005 A1
20050074544 Pacetti et al. Apr 2005 A1
Foreign Referenced Citations (109)
Number Date Country
42 24 401 Jan 1994 DE
44 07 079 Sep 1994 DE
197 31 021 Jan 1999 DE
198 56 983 Dec 1999 DE
199 01 530 Jul 2000 DE
0 108 171 May 1984 EP
0 144 534 Jun 1985 EP
0 301 856 Feb 1989 EP
0 364 787 Apr 1990 EP
0 396 429 Nov 1990 EP
0 397 500 Nov 1990 EP
0 464 755 Jan 1992 EP
0 493 788 Jul 1992 EP
0 514 406 Nov 1992 EP
0 554 082 Aug 1993 EP
0 578 998 Jan 1994 EP
0 604 022 Jun 1994 EP
0 621 017 Oct 1994 EP
0 623 354 Nov 1994 EP
0 627 226 Dec 1994 EP
0 665 023 Aug 1995 EP
0 701 802 Mar 1996 EP
0 709 068 May 1996 EP
0 716 836 Jun 1996 EP
0 809 999 Dec 1997 EP
0 832 655 Apr 1998 EP
0 850 651 Jul 1998 EP
0 875 218 Nov 1998 EP
0 879 595 Nov 1998 EP
0 897 701 Feb 1999 EP
0 910 584 Apr 1999 EP
0 923 953 Jun 1999 EP
0 953 320 Nov 1999 EP
0 970 711 Jan 2000 EP
0 982 041 Mar 2000 EP
1 023 879 Aug 2000 EP
1 192 957 Apr 2002 EP
1 273 314 Jan 2003 EP
2 247 696 Mar 1992 GB
05009726 Jan 1993 JP
11299901 Nov 1999 JP
2001-190687 Jul 2001 JP
872531 Oct 1981 SU
876663 Oct 1981 SU
905228 Feb 1982 SU
790725 Feb 1983 SU
1016314 May 1983 SU
811750 Sep 1983 SU
1293518 Feb 1987 SU
WO 8903232 Apr 1989 WO
WO 9001969 Mar 1990 WO
WO 9004982 May 1990 WO
WO 9006094 Jun 1990 WO
WO 9112846 Sep 1991 WO
WO 9117744 Nov 1991 WO
WO 9117789 Nov 1991 WO
WO 9210218 Jun 1992 WO
WO 9306792 Apr 1993 WO
WO 9409760 May 1994 WO
WO 9421196 Sep 1994 WO
WO 9510989 Apr 1995 WO
WO 9524929 Sep 1995 WO
WO 9529647 Nov 1995 WO
WO 9640174 Dec 1996 WO
WO 9710011 Mar 1997 WO
WO 9745105 Dec 1997 WO
WO 9746590 Dec 1997 WO
WO 9804415 Feb 1998 WO
WO 9808463 Mar 1998 WO
WO 9817331 Apr 1998 WO
WO 9823228 Jun 1998 WO
WO 9832398 Jul 1998 WO
WO 9836784 Aug 1998 WO
WO 9901118 Jan 1999 WO
WO 9903515 Jan 1999 WO
WO 9916386 Apr 1999 WO
WO 9938546 Aug 1999 WO
WO 9942147 Aug 1999 WO
WO 9963981 Dec 1999 WO
WO 0002599 Jan 2000 WO
WO 0012147 Mar 2000 WO
WO 0018446 Apr 2000 WO
WO 0064506 Nov 2000 WO
WO 0100112 Jan 2001 WO
WO 0101890 Jan 2001 WO
WO 0115751 Mar 2001 WO
WO 0117577 Mar 2001 WO
WO 0145763 Jun 2001 WO
WO 0149338 Jul 2001 WO
WO 0151027 Jul 2001 WO
WO 0152772 Jul 2001 WO
WO 0174414 Oct 2001 WO
WO 0191918 Dec 2001 WO
WO 0203890 Jan 2002 WO
WO 0226162 Apr 2002 WO
WO 0234311 May 2002 WO
WO 02056790 Jul 2002 WO
WO 02058753 Aug 2002 WO
WO 02102283 Dec 2002 WO
WO 03000308 Jan 2003 WO
WO 03022323 Mar 2003 WO
WO 03028780 Apr 2003 WO
WO 03037223 May 2003 WO
WO 03039612 May 2003 WO
WO 03080147 Oct 2003 WO
WO 03082368 Oct 2003 WO
WO 2004000383 Dec 2003 WO
WO 2004009145 Jan 2004 WO
WO 2004023985 Mar 2004 WO
Related Publications (1)
Number Date Country
20060287715 A1 Dec 2006 US