Information
-
Patent Grant
-
5916397
-
Patent Number
5,916,397
-
Date Filed
Monday, June 17, 199628 years ago
-
Date Issued
Tuesday, June 29, 199925 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Sughrue, Mion, Zinn, Macpeak & Seas PLLC
-
CPC
-
US Classifications
Field of Search
US
- 156 51
- 156 52
- 156 212
- 156 166
- 156 169
- 156 172
- 156 180
- 174 137 A
- 174 209
- 174 212
- 174 138 C
- 174 141 C
- 174 140 C
- 174 DIG 8
-
International Classifications
-
Abstract
The present invention relates to a method of manufacturing an insulator made of a composite material and including a cylindrical casing provided with annular fins. The method includes the steps of manufacturing an epoxy resin cylinder provided with epoxy resin annular fins covering the resulting cylinder with a covering of a material that withstands the electrical potential gradient under atmospheric conditions.
Description
The present invention relates to a method of manufacturing an insulator made of a composite material.
More precisely, it relates to a method of manufacturing an insulator made of a composite material and comprising an epoxy resin cylindrical casing provided with annular fins.
BACKGROUND OF THE INVENTION
The term "insulator" is used to mean any insulating casing designed to contain electrical equipment, such as a circuit-breaker for example.
It is known that such an insulator may comprise a cylindrical casing made of epoxy resin and provided with annular fins made of silicone.
Unfortunately, epoxy resin deteriorates rapidly when it is exposed to atmospheric conditions. Such insulators therefore have particularly limited life spans because they deteriorate rapidly under the effect of inclement weather.
Furthermore, silicone is a particularly expensive material.
OBJECTS AND SUMMARY OF THE INVENTION
In order to solve those problems, the method of the invention comprises the following steps:
manufacturing an epoxy resin cylinder provided with epoxy resin annular fins; and
covering the resulting cylinder with a covering of a material that withstands the electrical potential gradient under atmospheric conditions.
The covering material may be silicone or EPDM.
In a first implementation, the cylinder is obtained by molding, a thread being machined at each of its ends, and metal support portions are screwed onto the threads, a respective sealing gasket being interposed between the cylinder and each metal portion.
In a second implementation, the cylinder is obtained by winding a filament or by lamination, with metal support portions being connected to the cylinder by the winding or lamination process.
Preferably, the covering is constituted by a heat-shrinkable silicone sleeve that is longer than the cylinder, and that shrinks when heated so that it intimately covers the cylinder.
The covering may also be overmolded or sprayed onto the cylinder.
Advantageously, an elastomer tube is disposed inside the cylinder, each of its ends being interposed between the cylinder and a respective one of the metal portions.
Preferably, the fins are glued to the cylinder.
The invention also provides an insulating casing made in this way.
BRIEF DESCRIPTION OF THE DRAWINGS
A preferred implementation of the invention is described below in more detail with reference to the accompanying drawings, in which:
FIGS. 1 to 4 show the various steps of a manufacturing method of the invention; and
FIG. 5 shows a variant implementation of the invention.
MORE DETAILED DESCRIPTION
In the preferred implementation, the main steps of which are shown in FIGS. 1 to 4, an epoxy resin cylinder 1 is obtained by conventional molding, by laminating fabric, by winding a filament, or the like, each end of the cylinder being machined to obtain a respective thread 2A, 2B, and annular fins 3 made of epoxy resin and preferably obtained by laminating a mat are distributed over the length of the tube 1 and glued thereto.
Support portions, e.g. constituted by metal collars 4A, 4B, are screwed onto the threads 2A, 2B, with respective sealing gaskets 5A, 5B being interposed between each collar and the respective end of the cylinder 1.
The resulting part is inserted into a heat-shrinkable silicone sleeve 6 that is longer than the cylinder.
On applying heat, the sleeve 6 shrinks so that it intimately covers the cylinder 1 and advantageously also intimately covers the metal collars 4A, 4B in part, so as to guarantee that the cylinder 1 remains covered even if the sleeve 6 contracts over time.
In the variant implementation shown in FIG. 5, the cylinder 1 is obtained by winding a filament or by lamination on a form 7, and the collars 4A, 4B are connected directly to the cylinder by the winding or lamination process.
Advantageously, an elastomer tube 8 for improving sealing is disposed inside the cylinder 1, each of its ends being interposed between the cylinder 1 and a respective collar 4A, 4B.
The silicone sleeve may be merely overmolded or sprayed onto the cylinder 1 instead of using a heat-shrinkable sleeve.
It is also possible to cover the cylinder with EPDM which withstands the electrical potential gradient under atmospheric conditions to an extent comparable with silicone.
Claims
- 1. A method of manufacturing an insulator made of a composite material and comprising a cylindrical casing provided with annular fins, said method comprising the following steps:
- manufacturing an epoxy resin cylinder provided with epoxy resin annular fins; and
- covering the resulting cylinder, including said fins, with a covering of a material that withstands the electrical potential gradient under atmospheric conditions.
- 2. A method according to claim 1, wherein the covering material is silicone.
- 3. A method according to claim 1, wherein the covering material is EPDM.
- 4. A method according to claim 1, wherein the cylinder is obtained by molding, a thread being machined at each of its ends, and wherein metal support portions are screwed onto the threads, a respective sealing gasket being interposed between the cylinder and each metal portion.
- 5. A method according to claim 1, wherein the cylinder is obtained by winding a filament, metal support portions being connected to the cylinder by the winding process.
- 6. A method according to claim 1, wherein the cylinder is obtained by lamination, metal support portions being connected to the cylinder by the lamination process.
- 7. A method according to claim 1, wherein the covering is constituted by a heat-shrinkable silicone sleeve that is longer than the cylinder, and that shrinks when heated so that it intimately covers the cylinder.
- 8. A method according to claim 1, wherein the covering is overmolded onto the cylinder.
- 9. A method according to claim 1, wherein the covering is sprayed onto the cylinder.
- 10. A method according to claim 4, wherein an elastomer tube is disposed inside the cylinder, each of its ends being interposed between the cylinder and a respective one of the metal portions.
- 11. A method according to claim 1, wherein the fins are glued to the cylinder.
Priority Claims (1)
Number |
Date |
Country |
Kind |
95 07351 |
Jun 1995 |
FRX |
|
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
4267403 |
Pargamin |
May 1981 |
|
4491687 |
Kaczerginski et al. |
Jan 1985 |
|
4729053 |
Maier et al. |
Mar 1988 |
|
4851955 |
Doone et al. |
Jul 1989 |
|
5147984 |
Mazeika et al. |
Sep 1992 |
|
Foreign Referenced Citations (3)
Number |
Date |
Country |
0120787A1 |
Oct 1984 |
EPX |
2576655A1 |
Aug 1986 |
FRX |
2672423A1 |
Aug 1992 |
FRX |