Information
-
Patent Application
-
20020041308
-
Publication Number
20020041308
-
Date Filed
December 13, 200123 years ago
-
Date Published
April 11, 200222 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
A thermal ink jet print head with an orifice plate for defining numerous of orifice apertures and numerous strain relief elements. Each strain relief element is a closed slit between abutting and separable portions of the plate, such that a stress applied to the plate across the strain relief element will tend to open the slot, or cause the edges to move in a direction perpendicular to the plane of the plate, or otherwise provide a thin cross section that deforms more easily, thereby limiting strain in other portions of the plate.
Description
FIELD OF THE INVENTION
[0001] This invention relates to print head orifice plates for thermal ink jet printers, and more particularly to apparatus and methods for accommodating thermal expansion differences between orifices and supporting structures.
BACKGROUND AND SUMMARY OF THE INVENTION
[0002] Ink jet printing mechanisms use pens that shoot droplets of colorant onto a printable surface to generate an image. Such mechanisms may be used in a wide variety of applications, including computer printers, plotters, copiers, and facsimile machines. For convenience, the concepts of the invention are discussed in the context of a printer. An ink jet printer typically includes a print head having a multitude of independently addressable firing units. Each firing unit includes an ink chamber connected to a common ink source via channels in a substrate, to an ink outlet nozzle defined in a thin metal orifice plate common to all nozzles on a print head.
[0003] In some configurations, a three color pen has three different channels running parallel to each other and nearly spanning the entire substrate. Print heads are assembled by registering the corresponding rows of orifices with the ink channels in the substrate. The orifice plate is attached to the substrate with a barrier layer that serves as an adhesive gasket to isolate the orifices and ink channels from each other to prevent cross leakage. The adhesion is conducted under pressure and at elevated temperature. Because the metal plate has a greater coefficient of thermal expansion that the silicon substrate, thermal stresses are generated when the print head equilibrates at room temperature. The silicon substrate is normally strong enough to withstand the compressive forces generated by the stress in the print head, except that the ink channels weaken the substrate against forces perpendicular to the channels. With larger sized print head substrate dies, unwanted warpage may occur. When the assembled wafers are sawed apart into separate print head dies, chipping or wafer breakage may occur due to thermal stresses. Some breakage can be avoided by sawing at slower feed rates, but this increases manufacturing time and costs.
[0004] One technique for reducing thermal stresses is to provide expansion slots in the orifice plate along paths between adjacent ink channels. These paths consist of three rows of elongated slots. The slots of each row are aligned end to end in closely spaced relation, separated only by small solid portions to provide a connection between adjacent orifice plate portions. Adjacent rows are offset in the manner of convention expanded metal mesh, with the slots of one row aligned with the solid portions of the adjacent row or rows.
[0005] The use of open slots is effective to prevent stress build up because the slots expand slightly to accommodate much of the plate shrinkage upon cooling. However, the slots suffer the disadvantage that they provide a means for ink to enter from outside the plate and attack the adhesive barrier layer. This can result in loss of plate adhesion, and breakdown of barrier material between adjacent orifices causing electrical shorts via ink filling cracks, and ink cross talk as ink leaks from one chamber to another. This is particularly a problem with highly aggressive, highly wetting and low viscosity inks that are otherwise useful and desirable for ink jet printing.
[0006] Therefore, there exists a need for a thermal ink jet print head with an orifice plate for defining numerous of orifice apertures and numerous strain relief elements. Each strain relief element is a closed slit between abutting and separable portions of the plate, such that a stress applied to the plate across the strain relief element will tend to open the slot, or cause the edges to move in a direction perpendicular to the plane of the plate, or otherwise provide a thin cross section that deforms more easily, thereby limiting strain in other portions of the plate.
BRIEF DESCRIPTION OF THE DRAWINGS
[0007]
FIG. 1 is a plan view of an ink jet print head according to a preferred embodiment of the invention.
[0008]
FIG. 2 is a sectional side view of the print head of FIG. 1 taken along line 2-2.
[0009]
FIG. 3 is an enlarged sectional side view of the print head of FIG. 1.
[0010]
FIG. 4 is an enlarged sectional side view of the print head of FIG. 1 showing a manufacturing process.
DETAILED DESCRIPTION OF A PREFERRED EMBODIMENT
[0011]
FIGS. 1 and 2 show an ink jet print head 10 having a planar silicon die 12 providing a substrate for a metal orifice plate 14, which is laminarly adhered to a front surface 16 of the die with a polymeric barrier film layer 20. The die 12 defines three elongated ink channels 22 that are evenly spaced apart on the die, and which pass entirely through the thickness of the die to communicate with corresponding separate color ink reservoirs connected at the rear of the die. A solid, broad septum 24 of the die separates each adjacent pair of channels
[0012] A the plate 14 defines a row of ink orifices 26 on each side of each channel 22. For each channel, the rows on opposite sides are offset from each other so that an evenly spaced swath may be printed by firing all orifices on both sides. At an intermediate position above each die septum 24, the die defines an elongated array 30 of expansion relief slits 32. Each array 30 includes three adjacent parallel rows of slits in closely spaced end-to-end relation. The arrays 30 are parallel to the direction of the ink channels, centered between the adjacent channels, and span a major portion of the plate.
[0013] The adjacent rows of slits in each array are linearly offset from each other. Each row has solid webs 34 between linearly adjacent slits to provide integrity and strength. The slits of the center row of each array are each registered with the webs of the outer rows, so that the array stretches in response to application of tension perpendicular to the array and in the plane of the plate, in the manner of conventional expanded metal mesh.
[0014] The barrier layer 20 is coextensive with the die 12 and plate 14, except that it defines openings registered with the ink channels 22, with pockets 36 extending away from the channel, one for each orifice 26. A firing resistor 40 on the front surface of the is positioned beneath each orifice.
[0015]
FIG. 3 shows the features of the print head in greatly enlarged detail. In the preferred embodiment, the die 12 has a thickness of about 675 μm and sides of length 7855 μm by 8685 μm. The channels 22 are approximately 5690 μm long and 300 μm wide, with the septums 24 being about 2 mm wide. The entire print head has 192 resistors, with 32 being spaced in a row on each side of each ink channel at a pitch of 150 per inch. The barrier is formed of a polyimide material, and is 19 μm thick. The plate 14 is a palladium-coated nickel plate of 50 μm thickness, with the orifices having a diameter of 27 μm at the front surface of the plate. The slits are each about 1300 μm long, and are typically arranged with 5 in each row. The slit arrays 30 extend to within about 1000 μm of the edge of the plate, and are spaced apart from adjacent rows by approximately 3001 μm.
[0016] As seen in cross section taken perpendicular to its length, each slit defines a groove 42 opening to the lower surface 44 of the plate opposite the upper surface 46. As shown in FIG. 4, each groove is defined by opposed convex cylindrical side surfaces 50 that are tangent to each other and to the lower surface on opposite sides of the slit. Essentially, the lower surface 44 is flat until it approaches a slit, where it curves smoothly downward into the slit from each side to meet the opposite. Where the curved surfaces 50 meet, they approach perpendicular to the plane of the plate and abut each other at a knit line 52 that extends to the front surface 46 as shown in FIG. 1. The front surface is flat near the knit line, which extends to between ⅓ to ½ the thickness of the plate.
[0017] As illustrated in FIG. 4, the plate is manufactured by applying Nickel plating to a glass mandrel sheet 60. Where a slit feature is to be formed, a plating resistive pattern element 62 of a thin layer of silicon carbide has been applied to the mandrel. Plating occurs progressively, as illustrated schematically by the layers 64 that form the plate. Although plating occurs continuously and no distinct layers are actually formed in the preferred embodiment, the layers show how the thickness of the plate grows as viewed at even time intervals during the plating process.
[0018] At the surface of the mandrel, the plating applied initially actually adheres only to the glass and not to the pattern element 62. Each successive time interval's plating adheres to the existing plating and adds an incremental thickness. At the edge of the plating near the plating resistive element 62, the plating begins to obscure the edges of the element. During each time interval, the plating advances across the element by the amount it thickens in other regions. This forms a radiused advancing “toe” cross section as illustrated. When the plating thickness elsewhere has reached a thickness equal to half the width of the plating resistive element, the opposed “toes” meet to abut at the knit line 52. Because the plating process adds thickness only to exposed surfaces, the sharply angled deep V-groove 42 remains preserved as plating proceeds for a limited time after the sides meet, to ensure that the plating resistive element is fully obscured and the slit closed.
[0019] It is believed that the opposite sides of the slit do not fully fuse, permitting them to be separated slightly under the tension forces set up during assembly to relieve stresses. However, even if an alternative manufacturing approach were used to achieve a similar structure, the sharp groove apex would serve to concentrate stresses at a point of inherent weakness to ensure that any crack would form at that location before damage occurred elsewhere in the print head.
[0020] In the preferred embodiment, the plating resistive layer which defines the slit has a width of about 95 μm, and the plate is plated to a thickness of about 50 μm, ensuring that there is no substantial gap at the slit. The thickness of the plating resistive element 62 is 3500 Å, which is thin enough that the entire upper surface 46 may be considered as flat. The plates are formed in an array on a large sheet, and them broken apart for separate attachment to the substrates that are connected to each other in wafer form.
[0021] To assemble the print head, a barrier sheet is placed on each print head die with an orifice plate on top. The sandwich is subjected to 150 psi for 10 minutes at 200 C, followed by a bake process for 60 minutes at 220 C. After baking is complete, the wafer is allowed to cool to room temperature. As the plate has a thermal expansion coefficient of 13×10−6/° C., compared to 3×10−6/° C. for the silicon substrate, it will shrink by 15.5 μm more than the substrate, as measured along the edge perpendicular to the ink channels. Some of this stress is relieved by expansion of the slits, the slits open to a very small gap of up to about 2000 Å. With respect to the intrusion of even an aggressive low surface tension ink, this gap is so small as to be nonexistent and effectively closed to wicking or other means of entry by ink droplets. This protects the barrier layer beneath the slits from weakening and dissolution by the ink, which would possibly lead to delamination of the plate from the substrate. In addition, the sharp edges defining the knit line at the upper surface help to prevent wicking that might more readily occur in a tapered groove.
[0022] Because the substrate die 12, with a thickness of 675 μm is strong enough to withstand stresses longitudinal with the ink channels, no stress relieving slits are needed perpendicular to that direction. However, in alternative designs, slits may be oriented individually or in arrays in any direction based on the stresses that must be relieved.
[0023] While the above is discussed in terms of preferred and alternative embodiments, the invention is not intended to be so limited.
Claims
- 1. A method of manufacturing an orifice plate for a thermal ink jet print head comprising:
providing a mandrel with a plating receptive surface; generating a first pattern of orifice elements of a plating resistant material on the surface; generating a second pattern of strain relief elements of a plating resistant material on the surface; progressively plating an orifice plate material onto the mandrel, including covering each of the strain relief elements with orifice plate material, and maintaining at least an exposed portion of each of the orifice elements, such that the orifice plate defines a plurality of orifices and is enclosed at the strain relief elements.
- 2. The method of claim 1 wherein generating a first pattern includes generating elements having a preselected width, and wherein generating a second pattern of strain relief elements includes generating elongated elements having a width less than the width of the first pattern elements.
- 3. The method of claim 1 wherein generating the second pattern includes generating a first row of straight, elongated elements aligned on a common line.
- 4. The method of claim 3 including generating a second row of elements adjacent the first row.
- 5. The method of claim 4 wherein generating the second row includes positioning the centers of each second row element offset from the centers of the first row elements.
- 6. The method of claim 1 wherein plating includes overlapping the strain relief elements such that the strain relief elements are fully covered.
- 7. The method of claim 6 wherein plating includes progressively obscuring the strain relief element from its periphery to its center.
- 8. The method of claim 1 wherein plating includes generating a plurality of closed slits at the strain relief elements.
- 9. The method of claim 1 wherein plating includes generating a plurality of grooves, each corresponding to a strain relief element.
- 10. The method of claim 1 wherein each strain relief element is an elongated element with a selected width, and wherein plating includes plating to a thickness at least half as great as the width of the strain relief element, such that the strain relief element is obscured.
- 11. A method of manufacturing a thermal ink jet print head comprising the steps:
providing an orifice plate having a first coefficient of thermal expansion and defining a plurality of open orifices and having a plurality of closed expansion slits; adhering the orifice plate to a substrate having a second coefficient of thermal expansion, while the orifice plate and substrate are at a selected temperature above room temperature; lowering the temperature of the print head to room temperature, including accommodating the greater shrinkage of the plate relative to the substrate by deforming the expansion slits.
- 12. The method of claim 11 wherein the expansion slits of the orifice plate are arranged in an elongated slit path, and wherein the substrate defines at least a pair of ink channels separated by a solid septum, and wherein adhering the orifice plate to the substrate includes registering the slit path in with the septum.
- 13. The method of claim 11 wherein the expansion slits include a groove defined in a major grooved surface of the plate, and wherein adhering the orifice plate to the substrate comprises placing the grooved surface toward the substrate.
- 14. An orifice plate for a thermal ink jet print head comprising:
a planar plate defining a plurality of orifice apertures; the plate defining a plurality of strain relief elements; each strain relief element being a closed slit between abutting and separable portions of the plate, such that a stress applied to the plate across the strain relief element will tend to deform the slit to limit strain in other portions of the plate.
- 15. The apparatus of claim 14 wherein the strain relief elements define elongated grooves.
- 16. The apparatus of claim 14 wherein the strain relief elements are aligned in a common line and spaced apart from each other, such that they form a broken line of slits alternating with solid portions.
- 17. The apparatus of claim 16 wherein the strain relief elements are arranged in at least two adjacent lines, and wherein the slits of one line are registered with solid portions of the adjacent line.
- 18. The apparatus of claim 14 wherein the strain relief elements are arranged in an elongated slit path.
- 19. The apparatus of claim 18 including a substrate defining at least a pair of ink channels separated by a septum, and wherein the slit path is registered with the septum.
- 20. The apparatus of claim 14 wherein the abutting and separable portions of the plate have a flat lower surface, meet at a knit line extending partially through the depth of the plate, and each have a rounded upper surface smoothly transitioning from the knit line to an upper surface of the plate.
Continuations (1)
|
Number |
Date |
Country |
Parent |
09130179 |
Aug 1998 |
US |
Child |
10016886 |
Dec 2001 |
US |