The present invention relates to a method of manufacturing a bearing holder.
In general, a bearing holder is manufactured by injection molding. Specifically, as shown in
The melted resin injected into the cavity 140 is divided into two flows to both circumferential sides in the cavity 140, which again converge at an opposite position radially facing the resin injection gate 150 and are joined to each other to form a weld 100W. In general, since the resin bearing holder, which is manufactured by the injection molding, is just obtained as the melted resin is welded and integrated, the melted resin is not uniformly mixed and the strength is lowered at the weld 100W.
Also, when the melted resin is added with a reinforced fiber material such as glass fiber, carbon fiber, metal fiber and the like, as a reinforced material, the reinforced fiber material is vertically oriented with respect to a flowing direction of the melted resin at the weld 100W, so that a reinforcing effect is not expressed. Also, since the reinforced fiber material is oriented in parallel with the flowing direction of the melted resin at a part except for the weld 100W, a strength difference between the part and the weld increases.
Like this, the resin bearing holder manufactured by the injection molding may be damaged from the weld at which the strength is low, in many cases. Particularly, when the weld is formed at a part (for example, a bottom of a pocket at which an axial thickness is smallest, an R portion of a corner part at which an annular part and a column portion intersect with each other) at which stress is most likely to be concentrated, the part is likely to be damaged, so that the durability of the holder is lowered. Therefore, in the related art, following measures have been taken.
According to a method of manufacturing a synthetic resin holder of Patent Document 1, a cavity of a molding die is provided at a plurality of places in a circumferential direction with gates. Also, regarding a plurality of regions between the gates, circumferential distances of some regions are longer than those of the other regions. In the region having the longer circumferential distance, a resin reservoir is provided at a part at which the injected resin material converges. Thereby, the converged injected resin material is enabled to flow from the cavity into the resin reservoir so as to prevent the weld strength from being lowered.
According to a resin holder of Patent Document 2, a total number of pockets is an odd number by which the number of pockets to be disposed between the gates is most uniform. The resin reservoir is positioned at any one of column portions of both sides of a pocket positioned at a circumferential center between the gates between which the number of pockets is an odd number. Thereby, the weld, which is to be formed in the region between the gates between which the number of pockets is an odd number, is formed at a position deviating circumferentially from the bottom of the pocket, so that the rigidness of the holder is improved.
However, according the manufacturing method disclosed in Patent Document 1, the resin reservoir is provided at the place at which the injected resin material is to converge, i.e., at the position that coincides with the weld formation position. Therefore, the reinforced fiber material is likely to be vertically oriented with respect to the flowing direction of the resin material in the vicinity of a communication portion (an opening) of the resin reservoir configured to communicate with the cavity, so that it is not possible to sufficiently achieve the weld reinforcing effect.
According to the resin holder disclosed in Patent Document 2, in a region between the gates between which the number of the pockets is an even number and the resin reservoir is not provided, the column portion is formed with the weld in which the melted resin is simply welded and integrated, so that the weld strength may be insufficient depending on using conditions.
The present invention has been made in view of the above situations, and an object thereof is to provide a method of manufacturing a bearing holder capable of suppressing strength decrease.
The above object of the present invention is accomplished by following configurations.
(1) A method of manufacturing a bearing holder that is to be formed by injecting a melted resin, from a plurality of resin injection gates provided at a peripheral edge portion of a substantially annular cavity formed in a molding die, into the cavity,
wherein the bearing holder comprises:
a substantially annular base part,
a plurality of column portions protruding axially from one axial end face of the base part with predetermined intervals in a circumferential direction, and
pockets formed by facing surfaces of the pair of adjacent column portions and one axial end face of the base part, a number of the pockets being same as a number of the column portions,
wherein at least one column portion is provided with a resin reservoir capable of reserving therein the melted resin, and wherein a cross-sectional area of a communication portion of the resin reservoir configured to communicate with the column portion is equal to or smaller than ¼ of a cross-sectional area of the resin injection gate.
(2) The method of the above (1),
wherein the number of the column portions is an even number,
wherein each of the column portions is provided with any one of the resin injection gate and the resin reservoir,
wherein the plurality of resin injection gates and the plurality of resin reservoirs are alternately provided at the plurality of column portions in the circumferential direction,
wherein the resin injection gate is disposed at a position deviating from a circumferential center of the column portion towards one side in the circumferential direction, and
wherein the resin reservoir is disposed at the circumferential center of the column portion.
(3) The method of the above (1),
wherein the number of the resin injection gates is three,
wherein the number of the column portions is an even multiple of 3, and
wherein when regions between the adjacent resin injection gates are denoted as first to third regions,
the three resin injection gates are provided at positions deviating from a circumferential centers of the column portions towards one side in the circumferential direction so that the numbers of the pockets in the first to third regions are the same, and
the resin reservoirs capable of reserving therein the melted resin are respectively provided at the circumferential centers of the column portions most distant from both ends of the first to third regions.
(4) The method of the above (1),
wherein the resin injection gates is three,
wherein the number of the column portions is an even number which is not a multiple of 3, and
wherein when regions between the adjacent resin injection gates are denoted as first to third regions,
the numbers of the pockets in the first and second regions are the same and are an odd number,
the number of the pockets in the third region is an even number and is greater or smaller by one than the numbers of the pockets in the first and second regions,
the resin injection gate separating the first and second regions is provided at a position deviating from a circumferential center of the column portion towards the first region,
the resin injection gate separating the second and third regions is provided at a position deviating from a circumferential center of the column portion towards the third region,
the resin injection gate separating the third and first regions is provided at a position deviating from a circumferential center of the column portion towards the first region,
each of the column portions in the first to third regions is provided with the resin reservoir capable of reserving therein the melted resin,
the resin reservoirs in the first and second regions are respectively provided at a circumferential center of one column portion of a pair of column portions adjacent to the pocket positioned at a circumferential center of each of the first and second regions, and
the resin reservoir in the third region is provided at a circumferential center of the column portion positioned at a circumferential center of the third region.
(5) The method of the above (1),
wherein the number of the resin injection gates is three,
wherein the number of the column portions is an odd number, which is not a multiple of 3, and
wherein when regions between the adjacent resin injection gates are denoted as first to third regions,
the numbers of the pockets in the first and second regions are the same and are an even number,
the number of the pockets in the third region is an odd number and is greater or smaller by one than the numbers of the pockets in the first and second regions,
the resin injection gate separating the first and second regions is provided at a position deviating from a circumferential center of the column portion towards the first region,
the resin injection gate separating the second and third regions and the resin injection gate separating the third and first regions are provided at circumferential centers of the column portions,
each of the column portions in the first to third regions is provided with the resin reservoir capable of reserving therein the melted resin,
the resin reservoirs in the first and second regions are respectively provided at a circumferential center of the column portion positioned at a circumferential center of each of the first and second regions, and
the resin reservoir in the third region is provided at a circumferential center of one column portion of a pair of column portions adjacent to the pocket positioned at a circumferential center of the third region.
(6) The method of the above (1),
wherein the number of the resin injection gates is three,
wherein the number of the column portions is an odd multiple of 3, and
wherein when regions between the adjacent resin injection gates are denoted as first to third regions,
the three resin injection gates are respectively provided at the column portions so that the numbers of the pockets in the first to third regions are the same, and
the resin reservoir capable of reserving therein the melted resin is provided at one column portion of a pair of column portions adjacent to the pocket positioned at a circumferential center of each of the first to third regions.
(7) The method of the above (6),
wherein each of the resin reservoirs provided in the first to third regions is provided at the column portion, which is positioned at a same direction-side in the circumferential direction, of the pair of column portions adjacent to the pocket positioned at the circumferential center of each of the first to third regions.
(8) The method of the above (6),
wherein three resin injection gates are respectively provided at positions deviating from the circumferential centers of the column portions towards a same direction-side in the circumferential direction, and
wherein each of the resin reservoirs provided in the first to third regions is provided at the column portion, which is positioned at the same direction-side as a deviation direction of the three resin injection gates, of the pair of column portions adjacent to the pocket positioned at the circumferential center of each of the first to third regions.
According to the method of manufacturing a bearing holder of the present invention, since the cross-sectional area of the communication portion of the resin reservoir is equal to or smaller than ¼ of the cross-sectional area of the resin injection gate, the melted resin is introduced into the resin reservoir after the melted resin converges. Therefore, it is possible to further securely express the effect of controlling orientation of a reinforced fiber material by the forcible resin flow at the weld.
Hereinafter, a method of manufacturing a bearing holder in accordance with embodiments of the present invention will be described in detail with reference to the drawings.
In a method of manufacturing the holder 1, a multipoint gate type injection molding is adopted. Specifically, the holder 1 is formed by injecting a melted resin having a reinforced fiber material added thereto from a plurality of resin injection gates (hereinafter, simply referred to as ‘gate’) 51 provided at a peripheral edge portion of an outer periphery-side of an annular cavity (not shown), which is formed in a molding die, into the cavity and cooling and solidifying the melted resin. As the resin material, a resin composition in which a reinforced fiber material (for example, glass fiber or carbon fiber) of 10 to 50 wt % is added to a polyamide-based resin such as 46 nylon, 66 nylon and the like or a resin such as polybutylene terephthalate, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether nitrile (PEN) and the like is used, for example. Meanwhile, although the cavity is not shown in
To each gate 51, the melted resin is supplied from a substantially cylindrical sprue 55 via a substantially cylindrical runner 53 extending radially. The sprue 55 extends axially at a substantial center of the holder 1 (the cavity) and is connected to the runner 53. Therefore, the melted resin supplied from the sprue 55 reaches each gate 51 via each runner 53 and is then introduced into the cavity from each gate 51 at the same time.
One of the gate 51 and a resin reservoir 40 capable of reserving therein the melted resin is provided at a position corresponding to the column portion 20, i.e., at a position circumferentially overlapping with the column portion 20. The numbers of the gates 51 and the resin reservoirs 40 are respectively set to a half (seven, in the first embodiment) of the number of the column portions 20 or the pockets 30, and the plurality of gates 51 and the plurality of resin reservoirs 40 are alternately provided at the plurality of column portions 20 in the circumferential direction.
Each gate 51 is disposed at a position deviating from a circumferential center of the column portion 20 towards one side (a counterclockwise direction in
In the above configuration, the melted resin injected into the cavity from the gate 51 and flowing to both circumferential sides of the gate 51 converges at an intermediate position of the adjacent gates 51. Specifically, the melted resin converges at a position deviating from the circumferential center of the column portion 20 positioned at the midpoint of the adjacent gates 51 towards one side in the circumferential direction, so that a weld W is formed at the converging position. That is, the weld W is formed at the position deviating from the circumferential center of the column portion 20 towards one side in the circumferential direction, and the resin reservoir 40 is disposed at the circumferential center of the column portion 20. In this way, since the formation position of the weld W and the disposition position of the resin reservoir 40 deviate in the circumferential direction, it is possible to easily generate a pressure gradient of the melted resin between the weld W and the resin reservoir 40. A forcible resin flow is caused due to the pressure gradient, so that it is possible to suppress the reinforced fiber material from being vertically oriented with respect to a flowing direction of the melted resin at the weld W. Also, since the resin reservoir 40 is disposed at the circumferential center of the column portion 20, the melted resin is caused to forcibly flow in a direction in which a cross-sectional area of a flow path increases from the weld W towards the resin reservoir 40. Therefore, a region of the weld W in which a fiber orientation is disturbed moves to a part of which a cross-sectional area is large, so that the strength of the weld W is further improved. In this way, the orientation of the reinforced fiber material in the weld W is suppressed, so that the strength of the weld W is improved and the holder 1 is suppressed from being lowered in terms of the strength.
Here, a cross-sectional area of a communication portion 42 of the resin reservoir 40, which is configured to communicate with the column portion 20 and is an opening to the cavity, is set to be equal to or smaller than ¼ of a cross-sectional area of the gate 51. According to this setting, after the melted resin converges and the weld W is formed, the melted resin is introduced into the resin reservoir 40. Therefore, it is possible to further securely express the effect of controlling the orientation of the reinforced fiber material by the forcible resin flow at the weld W.
Subsequently, a method of manufacturing a bearing holder in accordance with a second embodiment of the present invention is described with reference to the drawing.
As shown in
Subsequently, a method of manufacturing a bearing holder in accordance with a third embodiment of the present invention is described with reference to the drawing.
As shown in
In a method of manufacturing the holder 1, a three-point gate type injection molding is adopted. Specifically, the holder 1 is formed by injecting a melted resin having a reinforced fiber material added thereto from three resin injection gates (hereinafter, simply referred to as ‘gates’) 51 provided at a peripheral edge portion of an outer periphery-side of an annular cavity (not shown), which is formed in a molding die, into the cavity and cooling and solidifying the melted resin. As the resin material, a resin composition in which a reinforced fiber material (for example, glass fiber or carbon fiber) of 10 to 50 wt % is added to a polyamide-based resin such as 46 nylon, 66 nylon and the like or a resin such as polybutylene terephthalate, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether nitrile (PEN) and the like is used, for example. Meanwhile, although the cavity is not shown in
To each gate 51, the melted resin is supplied from a substantially cylindrical sprue 55 via a substantially cylindrical runner 53 extending radially. The sprue 55 extends axially at a substantial center of the holder 1 (the cavity) and is connected to the runner 53. Therefore, the melted resin supplied from the sprue 55 reaches each gate 51 via each runner 53 and is then introduced into the cavity from each gate 51 at the same time.
When regions between the adjacent gates 51 are denoted as first to third regions S1 to S3, the three gates 51 are disposed so that the numbers of the pockets 30 in the first to third regions S1 to S3 are the same. In the fourth embodiment, the number of the pockets 30 is four in each of the first to third regions S1 to S3. Also, each of the three gates 51 is provided at a position deviating from a circumferential center of the column portion 20 towards one side (a counterclockwise direction in
A resin reservoir 40 capable of reserving therein the melted resin is provided at the column portion 20 most distant from both ends (positions at the gates 51 are provided) of the first to third regions S1 to S3. The resin reservoir 40 is configured to communicate with the outer peripheral surface of the circumferential center of the column portion 20.
In the above configuration, the melted resin injected into the cavity from the gates 51 converges in the vicinity of the column portion 20 most distant from both ends of the first to third regions S1 to S3 between the adjacent gates 51, more specifically, at a position deviating from the circumferential center of the column portion 20 towards one side in the circumferential direction, so that a weld W is formed. Here, since the resin reservoir 40 is provided at the circumferential center of the column portion 20, the formation position of the weld W and the disposition position of the resin reservoir 40 deviate in the circumferential direction, so that it is possible to easily generate a pressure gradient of the melted resin between the weld W and the resin reservoir 40. Therefore, a forcible resin flow is caused due to the pressure gradient, so that it is possible to suppress the reinforced fiber material from being vertically oriented with respect to a flowing direction of the melted resin at the weld W. In particular, as described above, since the weld W is formed at the position deviating from the circumferential center of the column portion 20 towards one side in the circumferential direction and the resin reservoir 40 is disposed at the circumferential center of the column portion 20, the melted resin is caused to forcibly flow in a direction in which a cross-sectional area of a flow path increases from the weld W towards the resin reservoir 40. Therefore, a region of the weld W in which a fiber orientation is disturbed moves to a part of which a cross-sectional area is large, so that the strength of the weld W is further improved. In this way, the orientation of the reinforced fiber material in the weld W is controlled, so that the strength of the weld W is improved and the holder 1 is suppressed from being lowered in terms of the strength.
Here, a cross-sectional area of a communication portion 42 of the resin reservoir 40, which is configured to communicate with the column portion 20 and is an opening to the cavity, is set to be equal to or smaller than ¼ of a cross-sectional area of the gate 51. According to this setting, after the melted resin converges and the weld W is formed, the melted resin is introduced into the resin reservoir 40. Therefore, it is possible to further securely express the effect of controlling the orientation of the reinforced fiber material by the forcible resin flow at the weld W.
Subsequently, a method of manufacturing a bearing holder in accordance with a fifth embodiment of the present invention is described with reference to the drawing.
As shown in
In a method of manufacturing the holder 1, a three-point gate type injection molding is adopted. Specifically, the holder 1 is formed by injecting a melted resin having a reinforced fiber material added thereto from three resin injection gates (hereinafter, simply referred to as ‘gates’) 51 provided at a peripheral edge portion of an outer periphery-side of an annular cavity (not shown), which is formed in a molding die, into the cavity and cooling and solidifying the melted resin. As the resin material, a resin composition in which a reinforced fiber material (for example, glass fiber or carbon fiber) of 10 to 50 wt % is added to a polyamide-based resin such as 46 nylon, 66 nylon and the like or a resin such as polybutylene terephthalate, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether nitrile (PEN) and the like is used, for example. Meanwhile, although the cavity is not shown in
To each gate 51, the melted resin is supplied from a substantially cylindrical sprue 55 via a substantially cylindrical runner 53 extending radially. The sprue 55 extends axially at a substantial center of the holder 1 (the cavity) and is connected to the runner 53. Therefore, the melted resin supplied from the sprue 55 reaches each gate 51 via each runner 53 and is then introduced into the cavity from each gate 51 at the same time.
Regions between the adjacent gates 51 are denoted as first to third regions S1 to S3. Here, the numbers of the pockets 30 in the first and second regions S1, S2 are the same, are odd numbers and are five in the sixth embodiment. Also, the number of the pockets 30 in the third region S3 is an even number and is set to be greater or smaller than the numbers of the pockets in the first and second regions S1, S2 by one (1). In the sixth embodiment, the number of the pockets 30 in the third region S3 is set to be smaller than the numbers of the pockets in the first and second regions S1 S2 by one, and is four.
Also, each of the three gates 51 is provided to communicate with a position deviating from a circumferential center of the column portion 20. More specifically, the gate 51 separating the first and second regions S1, S2 is provided at a position deviating from the circumferential center of the column portion 20 towards the first region S1. The gate 51 separating the second and third regions S2, S3 is provided at a position deviating from the circumferential center of the column portion 20 towards the third region S3. The gate 51 separating the third and first regions S3, S1 is provided at a position deviating from the circumferential center of the column portion 20 towards the first region S1.
A resin reservoir 40 capable of reserving therein the melted resin is respectively provided at the column portion 20 in the first to third regions S1 to S3. The resin reservoirs 40 in the first and second regions S1, S2 are respectively provided at a circumferential center of one column portion 20 of the pair of column portions 20 adjacent to the pocket 30 (the third pocket 30) positioned at a circumferential center of each of the first and second regions S1, S2. In the sixth embodiment, the resin reservoir 40 in the first region S1 is provided at the column portion 20 positioned at a counterclockwise direction-side of the pocket 30 positioned at the circumferential center, and the resin reservoir 40 in the second region S2 is provided at the column portion 20 positioned at a clockwise direction-side of the pocket 30 positioned at the circumferential center. On the other hand, the resin reservoir 40 in the first region S1 may be provided at the column portion 20 positioned at a clockwise direction-side of the pocket 30 positioned at the circumferential center, and the resin reservoir 40 in the second region S2 may be provided at the column portion 20 positioned at a counterclockwise direction-side of the pocket 30 positioned at the circumferential center. Also, the resin reservoir 40 in the third region S3 is provided at a circumferential center of the column portion 20 (the column portion 20 between the second and third pockets 30) positioned at a circumferential center of the third region S3. Meanwhile, in the sixth embodiment, the resin reservoir 40 is configured to communicate with the outer peripheral surface of the circumferential center of the column portion 20.
In the above configuration, the melted resin injected into the cavity from the gates 51 converges at the pockets 30 most distant from both ends of the first to third regions S1 to S3 between the adjacent gates 51, so that welds W are formed. The welds W in the first and second regions S1, S2 are formed in the vicinity of the circumferentially central portions of the pockets 30 and the weld W in the third region S3 is formed at a position deviating from the circumferential center of the pocket 30 towards the second region S2. Here, since the resin reservoir 40 is provided at the column portion 20, which is adjacent to the pocket 30 at which the weld W is formed, the formation position of the weld W and the disposition position of the resin reservoir 40 deviate in the circumferential direction, so that it is possible to easily generate a pressure gradient of the melted resin between the weld W and the resin reservoir 40. Therefore, a forcible resin flow is caused due to the pressure gradient, so that it is possible to suppress the reinforced fiber material from being vertically oriented with respect to a flowing direction of the melted resin at the weld W. In particular, as described above, since the weld W is formed at the pocket 30 and the resin reservoir 40 is disposed at the circumferential center of the column portion 20 adjacent to the pocket 30, the melted resin is caused to forcibly flow in a direction in which a cross-sectional area of a flow path increases from the weld W towards the resin reservoir 40. Therefore, a region of the weld W in which a fiber orientation is disturbed moves to a part of which a cross-sectional area is large, so that the strength of the weld W is further improved. In this way, the orientation of the reinforced fiber material in the weld W is controlled, so that the strength of the weld W is improved and the holder 1 is suppressed from being lowered in terms of the strength.
Here, a cross-sectional area of a communication portion 42 of the resin reservoir 40, which is configured to communicate with the column portion 20 and is an opening to the cavity, is set to be equal to or smaller than ¼ of a cross-sectional area of the gate 51. According to this setting, after the melted resin converges and the weld W is formed, the melted resin is introduced into the resin reservoir 40. Therefore, it is possible to further securely express the effect of controlling the orientation of the reinforced fiber material by the forcible resin flow at the weld W.
Subsequently, a method of manufacturing a bearing holder in accordance with a seventh embodiment of the present invention is described with reference to the drawing.
As shown in
In a method of manufacturing the holder 1, a three-point gate type injection molding is adopted. Specifically, the holder 1 is formed by injecting a melted resin having a reinforced fiber material added thereto from three resin injection gates (hereinafter, simply referred to as ‘gates’) 51 provided at a peripheral edge portion of an outer periphery-side of an annular cavity (not shown), which is formed in a molding die, into the cavity and cooling and solidifying the melted resin. As the resin material, a resin composition in which a reinforced fiber material (for example, glass fiber or carbon fiber) of 10 to 50 wt % is added to a polyamide-based resin such as 46 nylon, 66 nylon and the like or a resin such as polybutylene terephthalate, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether nitrile (PEN) and the like is used, for example. Meanwhile, although the cavity is not shown in
To each gate 51, the melted resin is supplied from a substantially cylindrical sprue 55 via a substantially cylindrical runner 53 extending radially. The sprue 55 extends axially at a substantial center of the holder 1 (the cavity) and is connected to the runner 53. Therefore, the melted resin supplied from the sprue 55 reaches each gate 51 via each runner 53 and is then introduced into the cavity from each gate 51 at the same time.
Regions between the adjacent gates 51 are denoted as first to third regions S1 to S3. Here, the numbers of the pockets 30 in the first and second regions S1, S2 are the same, are even numbers and are four in the eighth embodiment. Also, the number of the pockets 30 in the third region S3 is an odd number and is set to be greater or smaller than the numbers of the pockets in the first and second regions S1, S2 by one (1). In the eighth embodiment, the number of the pockets 30 in the third region S3 is set to be greater than the numbers of the pockets in the first and second regions S1, S2 by one, and is five.
Also, each of the three gates 51 is provided to communicate with the column portion 20 in each of the first to third regions S1 to S3. More specifically, the gate 51 separating the first and second regions S1, S2 is provided at a position deviating from the circumferential center of the column portion 20 towards the first region S1. The gate 51 separating the second and third regions S2, S3 and the gate 51 separating the third and first regions S3, S1 are provided at the circumferential centers of the column portions 20.
A resin reservoir 40 capable of reserving therein the melted resin is respectively provided at the column portion 20 in the first to third regions S1 to S3. The resin reservoirs 40 in the first and second regions S1, S2 are respectively provided at a circumferential center of the column portion 20 (the column portion 20 between the second and third pockets 30) positioned at a circumferential center of each of the first and second regions S1, S2. Also, the resin reservoir 40 in the third region S3 is provided at a circumferential center of one column portion 20 of the pair of column portions 20 adjacent to the pocket 30 (the third pocket 30) positioned at the circumferential center. In the eighth embodiment, the resin reservoir 40 in the third region S3 is provided at the column portion 20 positioned at a clockwise direction-side of the pocket 30 positioned at the circumferential center. On the other hand, the resin reservoir 40 in the third region S3 may be provided at the column portion 20 positioned at a counterclockwise direction-side of the pocket 30 positioned at the circumferential center. In the eighth embodiment, the resin reservoir 40 is configured to communicate with the outer peripheral surface of the circumferential center of the column portion 20.
In the above configuration, the melted resin injected into the cavity from the gates 51 converges at the pockets 30 most distant from both ends of the first to third regions S1 to S3 between the adjacent gates 51, so that welds W are formed. The weld W in the first region S1 is formed at a position deviating from the circumferential center of the pocket 30 towards the second region S2, the weld W in the second region S2 is formed at a position deviating from the circumferential center of the pocket 30 towards the third region S3 and the weld W in the third region S3 is formed in the vicinity of the circumferentially central portion of the pocket 30. Here, since the resin reservoir 40 is provided at the column portion 20, which is adjacent to the pocket 30 at which the weld W is formed, the formation position of the weld W and the disposition position of the resin reservoir 40 deviate in the circumferential direction, so that it is possible to easily generate a pressure gradient of the melted resin between the weld W and the resin reservoir 40. Therefore, a forcible resin flow is caused due to the pressure gradient, so that it is possible to suppress the reinforced fiber material from being vertically oriented with respect to a flowing direction of the melted resin at the weld W. In particular, as described above, since the weld W is formed at the pocket 30 and the resin reservoir 40 is disposed at the circumferential center of the column portion 20 adjacent to the pocket 30, the melted resin is caused to forcibly flow in a direction in which a cross-sectional area of a flow path increases from the weld W towards the resin reservoir 40. Therefore, a region of the weld W in which a fiber orientation is disturbed moves to a part of which a cross-sectional area is large, so that the strength of the weld W is further improved. In this way, the orientation of the reinforced fiber material in the weld W is controlled, so that the strength of the weld W is improved and the holder 1 is suppressed from being lowered in terms of the strength.
Here, a cross-sectional area of a communication portion 42 of the resin reservoir 40, which is configured to communicate with the column portion 20 and is an opening to the cavity, is set to be equal to or smaller than ¼ of a cross-sectional area of the gate 51. According to this setting, after the melted resin converges and the weld W is formed, the melted resin is introduced into the resin reservoir 40. Therefore, it is possible to further securely express the effect of controlling the orientation of the reinforced fiber material by the forcible resin flow at the weld W.
Subsequently, a method of manufacturing a bearing holder in accordance with a ninth embodiment of the present invention is described with reference to the drawing.
As shown in
In a method of manufacturing the holder 1, a three-point gate type injection molding is adopted. Specifically, the holder 1 is formed by injecting a melted resin having a reinforced fiber material added thereto from three resin injection gates (hereinafter, simply referred to as ‘gates’) 51 provided at a peripheral edge portion of an inner periphery-side of an annular cavity (not shown), which is formed in a molding die, into the cavity and cooling and solidifying the melted resin. As the resin material, a resin composition in which a reinforced fiber material (for example, glass fiber or carbon fiber) of 10 to 50 wt % is added to a polyamide-based resin such as 46 nylon, 66 nylon and the like or a resin such as polybutylene terephthalate, polyphenylene sulfide (PPS), polyether ether ketone (PEEK), polyether nitrile (PEN) and the like is used, for example. Meanwhile, although the cavity is not shown in
To each gate 51, the melted resin is supplied from a substantially cylindrical sprue 55 via a substantially cylindrical runner 53 extending radially. The sprue 55 extends axially at a substantial center of the holder 1 (the cavity) and is connected to the runner 53. Therefore, the melted resin supplied from the sprue 55 reaches each gate 51 via each runner 53 and is then introduced into the cavity from each gate 51 at the same time.
When regions between the adjacent gates 51 are denoted as first to third regions S1 to S3, the three gates 51 are disposed so that the numbers of the pockets 30 in the first to third regions S1 to S3 are the same. In the tenth embodiment, the number of the pockets 30 is five in each of the first to third regions S1 to S3. Also, each of the three gates 51 is provided at a circumferential center of the column portion 20.
A resin reservoir 40 capable of reserving therein the melted resin is provided at a circumferential center of one column portion 20 of the pair of column portions 20 adjacent to the pocket 30 (the third pocket 30) positioned at a circumferential center of each of the first to third regions S1 to S3. The resin reservoir 40 is configured to communicate with the outer peripheral surface of the circumferential center of the column portion 20. Meanwhile, in the tenth embodiment, each of the three resin reservoirs 40 provided in the first to third regions S1 to S3 is provided at the column portion 20, which is positioned at the same direction-side (the counterclockwise direction-side in
In the above configuration, the melted resin injected into the cavity from the three gates 51 converges at the circumferential centers of the adjacent gates 51, i.e., at the circumferential centers of the pockets 30 positioned at the circumferential centers of the first to third regions S1 to S3, so that welds W are formed. Here, since the resin reservoir 40 is provided at the circumferential center of one column portion 20 of the pair of column portions 20 adjacent to the pocket 30, the formation position of the weld W and the disposition position of the resin reservoir 40 deviate in the circumferential direction, so that it is possible to easily generate a pressure gradient of the melted resin between the weld W and the resin reservoir 40. Therefore, a forcible resin flow is caused due to the pressure gradient, so that it is possible to suppress the reinforced fiber material from being vertically oriented with respect to a flowing direction of the melted resin at the weld W.
In particular, since the weld W is formed at the circumferential center of the pocket 30 and the resin reservoir 40 is disposed at the circumferential center of the column portion 20 adjacent to the pocket 30, the melted resin is caused to forcibly flow in a direction in which a cross-sectional area of a flow path increases from the weld W towards the resin reservoir 40. Therefore, a region of the weld W in which a fiber orientation is disturbed moves to a part of which a cross-sectional area is large, so that the strength of the weld W is further improved. In this way, the orientation of the reinforced fiber material in the weld W is controlled, so that the strength of the weld W is improved and the holder 1 is suppressed from being lowered in terms of the strength.
Also, a portion in the vicinity of the portion at which the resin injection gate 51 or the resin reservoir 40 is provided has strength slightly lower than the other portion although it is not the strength of the portion at which the weld W is formed. However, in the tenth embodiment, since the resin injection gate 51 and the resin reservoir 40 are disposed at the circumferential centers of the thick column portions 20, it is possible to keep the strength of the bearing holder 1.
Here, a cross-sectional area of a communication portion 42 of the resin reservoir 40, which is configured to communicate with the column portion 20 and is an opening to the cavity, is set to be equal to or smaller than ¼ of a cross-sectional area of the gate 51. According to this setting, after the melted resin converges and the weld W is formed, the melted resin is introduced into the resin reservoir 40. Therefore, it is possible to further securely express the effect of controlling the orientation of the reinforced fiber material by the forcible resin flow at the weld W.
Subsequently, a method of manufacturing a bearing holder in accordance with an eleventh embodiment of the present invention is described with reference to the drawing.
As shown in
Subsequently, a method of manufacturing a bearing holder in accordance with a twelfth embodiment of the present invention is described with reference to the drawing.
As shown in
In the above configuration, the melted resin injected into the cavity from the three gates 51 converges at the circumferential centers of the adjacent gates 51, i.e., at the pockets 30 positioned at the circumferential centers of the first to third regions S1 to S3, so that welds W are formed. The weld W is formed at a position deviating from the circumferential center (bottom) of the pocket 30 towards the deviation direction (the counterclockwise direction-side in
Here, since the resin reservoir 40 is provided at the circumferential center of one column portion 20 of the pair of column portions 20 adjacent to the pocket 30 at which the weld W is formed, the formation position of the weld W and the disposition position of the resin reservoir 40 deviate in the circumferential direction, so that it is possible to easily generate a pressure gradient of the melted resin between the weld W and the resin reservoir 40. Therefore, a forcible resin flow is caused due to the pressure gradient, so that it is possible to suppress the reinforced fiber material from being vertically oriented with respect to a flowing direction of the melted resin at the weld W.
Also, the resin reservoir 40 is provided at the column portion 20, which is positioned at the same direction-side as the deviation direction (the counterclockwise direction-side in
On the other hand, a case is considered in which the resin reservoir 40 is provided at the column portion 20, which is positioned at an opposite direction-side to the deviation direction (the counterclockwise direction-side in
Like this, according to the twelfth embodiment, the orientation of the reinforced fiber material in the weld W is controlled, so that the strength of the weld W is improved and the holder 1 is suppressed from being lowered in terms of the strength.
Subsequently, a method of manufacturing a bearing holder in accordance with a thirteenth embodiment of the present invention is described with reference to the drawing.
As shown in
Subsequently, an analysis result of a relation between the cross-sectional area of the communication portion 42 of the resin reservoir 40 and the cross-sectional area of the resin injection gate 51 is described.
As shown in
As shown in Comparative Examples 1 to 3 of
On the other hand, as shown in Example 1 of
Like this, when the cross-sectional area of the communication portion 42 of the resin reservoir 40 is equal to or smaller than ¼ of the cross-sectional area of the resin injection gate 51, the melted resin G is not introduced into the resin reservoir 40 before the melted resin G converges, so that it is possible to clearly express the effect of controlling the orientation of the reinforced fiber material at the weld W.
In the meantime, the present invention is not limited to the respective embodiments and can be appropriately modified and improved.
For example, the resin reservoirs capable of reserving therein the melted resin is not necessarily provided at the plurality of column portions and may be provided at least for one column portion.
The method of manufacturing a bearing holder of the present invention can be applied to not only the crown-shaped holder but also a variety of holders such as a comb-shaped holder.
Also, since the bearing holder of the present invention is less lowered in terms of the strength and has the excellent durability, it can be favorably applied to a rolling bearing. That is, since the rolling bearing includes an inner ring, an outer ring, a plurality of rolling elements provided between the inner and outer rings and a bearing holder configured to rollably hold the rolling elements and having excellent durability, it is possible to satisfy requirements of high-speed rotation, high-load and the like.
The subject application is based on a Japanese Patent Application No. 2015-050957 filed on Mar. 13, 2015, the entire contents of which are incorporated herein by reference.
Number | Date | Country | Kind |
---|---|---|---|
2015-050957 | Mar 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/057859 | 3/11/2016 | WO | 00 |