The present invention relates to soft capsule making and more particularly to a tumbler-dryer used for making soft capsules.
Typical soft encapsulation machines for use in making pharmaceutical medicines form at least two flexible gelatin sheets or ribbons by cooling molten gelatin on separate drums. The sheets are lubricated and guided into communication with each other over co-acting dies. Simultaneously, a desired quantity of fill material is dispensed between the sheets in synch with cavities in the outer surfaces of the dies to produce soft capsules. The soft capsules are transported from the encapsulation machine to a drying machine to dry (in other words, remove moisture from) the soft capsules and make them into their final form. The soft capsules are typically transported from the encapsulation machine to the dryer by a conveyor that extends along the front of the encapsulation machine.
The drying machine typically includes a plurality of axially aligned drying drums or baskets. The baskets are arranged adjacent one another and allow capsules to flow from one basket into the next adjacent basket. Heated air is routed through the various baskets to dry the capsules therein. Furthermore, after passing through the drying baskets, the capsules may also need to be routed through a drying tunnel wherein further moisture is removed from the capsules to obtain the desired state of dryness or moisture content. This drying process can require a significant number of baskets to dry the capsules to a desired moisture content. The capsules get dryer in each subsequent drying basket they flow into. This results in a large dryer requiring a large foot print or area of a factory in which it is employed. Furthermore, the use of drying tunnels also undesirably increases the area or footprint of the overall drying equipment required to dry the capsules to a desired moisture content.
Space in the manufacturing facility, however, may be at a premium. Therefore, it would be advantageous to reduce the size and/or footprint of the drying machines. Furthermore, it would be even more advantageous if a larger capacity or throughput can be achieved in the same or smaller footprint.
Typically, all of the baskets of conventional machinery are driven at a same rotational speed by a single belt drive unit. The required rotational speed of the baskets, however, can vary based upon the moisture content in the capsules. Thus, as the capsules get dryer and pass from one drying basket to the next, the required rotational speed may change. Since all the baskets are driven at the same rate of speed by a single belt drive mechanism, however, all of the baskets must be rotated at the same speed which will correspond to the speed of the most demanding of the drying baskets. The rotating of all the baskets at a same or uniform rotational speed can be inefficient and slow the drying process. Accordingly, it would be advantageous to be able to rotate the different baskets at different rotational speeds depending upon the needs of the capsules being dried therein.
A capsule dryer, according to the principles of the present invention, utilizes an upper level having a plurality of drying baskets and a lower level having a plurality of drying baskets disposed beneath the upper level of drying baskets. By providing upper and lower levels of drying baskets, the footprint of the capsule dryer can be reduced while providing the same or superior drying capabilities. Accordingly, the required area in a factory using the capsule dryer can be reduced thus allowing additional space in the factory for other equipment or tasks.
In another aspect of the present invention, the rotation of the drying baskets at the different levels are independently controlled and driven. This advantageously enables the upper and lower level baskets to be driven at different rotational speeds according to the needs of the capsules being dried therein. Accordingly, more efficient operation of the capsule dryer can be achieved along with an increase in throughput capacity.
In yet another aspect of the present invention, the capsule dryer utilizes a drive mechanism to rotate the drying drums. There is a programmable control device which is operable to control operation of the drive mechanism. The use of a control device is advantageous in that it facilitates the controlling of the operation and can also be integrated into or utilize the same control device that controls the encapsulation machine that produces the soft capsules. The control device can also control the routing of the capsules from one drying basket to the next drying basket. The control device is advantageous in that it can facilitate the transferring of capsules from one basket to the next and coordinate the same with all the baskets. This coordination can increase the throughput of the capsule dryer, increase the efficiency of the drying operation and reduce the complexity of the control system.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
A soft capsule making system 16 according to the principles of the present invention is shown in
Encapsulation machine 20 is essentially the same as that disclosed in U.S. patent application Ser. No. 10/677,141, entitled “Servo Control for Capsule Making Machine,” by Victorov et al., the disclosure of which is incorporated by reference herein. Encapsulation machine 20 produces two continuous flexible gelatin films/sheets/ribbons 21 on either side of the machine that are subsequently joined together with a fill material injected therebetween to form the soft gel capsules 22. The production of the two gelatin films are substantially the same for both sides of encapsulation machine 20 and are essentially mirror images of one another. A gelatin tank (not shown) provides a gelatin in a molten state that is fed through hoses (not shown) into spreader boxes 23 that are located above casting drums 24. Spreader boxes 23 spread molten gelatin on rotating casting drums 24. Casting drums 24 are internally liquid cooled and are externally air cooled. The cooling causes the molten gelatin that is spread on casting drums 24 to solidify and form flexible gelatin sheets 21. Each casting drum 24 produces a continuous flexible gelatin sheet that is used to form a portion of each capsule. Each of the casting drums 24 are driven by servomotors (not shown) which provide precise control of the rotation of casting drums 24.
The gelatin sheets formed on casting drums 24 flow through oil roller assemblies 26. The oil roller assemblies include three rollers, 28, 30, 32. First roller 28 is driven by a variable speed motor (not shown) which is operated to cause first roller 28 to rotate at a desired rate. Second and third rollers 30, 32 are mechanically linked to first roller 28 and, thus, their rate of rotation is also controlled by the rate rotation of first roller 28. One side of the gelatin sheet 21 is in contact with second roller 30 while the opposite side of the gelatin sheet is in contact with third roller 32. Second and third rollers 30, 32 each have a plurality of openings therein that allow an oil or lubricant to be applied to both sides of the gelatin sheet as it passes along the rollers.
The two gelatin sheets flow into contact with wedge assembly 34 and then through co-acting dies 36, 38. Wedge assembly 34 heats the sheets and supplies the fill material between the two gelatin sheets that is encapsulated within the soft gel capsules produced by dies 36, 38. The fill material is supplied to wedge assembly 34 from a fill mechanism 40. Fill supply mechanism 40 includes a fill material hopper 42 that supplies the fill material to a pump assembly 43 that pumps the fill material into wedge assembly 34.
The two gelatin sheets travel between wedge assembly 34 and die assembly 44 and fill material is injected between the sheets by wedge assembly 34. Dies 36, 38 rotate toward one another when producing soft gel capsules 22. Die 36 is driven by a servomotor (not shown). Die 38 is mechanically linked to die 36 so that dies 36, 38 rotate together. The mechanical link between dies 36, 38 provides synchronization of the two dies relative to one another during operation. The use of a mechanical linkage is advantageous in that it eliminates the need for another costly servomotor to drive the other die and the potential for non-synchronized operation due to programming or operator errors. The servomotor enables precise control of the rate of rotation of dies 36, 38 and of the exact position of dies 36, 38 at all times. Each die 36, 38 has a plurality of cavities thereon (not shown) that the gelatin sheets are pushed into by the fill material and cause the two sheets to be sealed together and cut along the cavities on the dies 36, 38 encapsulating the fill material therein and forming the soft gel capsules 22.
The soft gel capsules 22 produced between dies 36, 38 and the remaining gelatin sheets flow to a divider assembly 46. Divider assembly 46 includes a first pair of stripper rollers 48a that rotate at a relatively high speed very close to dies 36, 38 and a second pair of stripper rollers 48b that rotate at a relatively high speed in contact with the sheets to remove any soft gel capsules that are clinging to dies 36, 38 and/or the gelatin sheets. The stripper rollers 48a, 48b are driven by a variable speed motor (not shown) that allows the speed of striper rollers 48a, 48b to be controlled. The soft gel capsules 22 fall onto conveyors 50 that bring the soft gel capsules 22 to the front portion of the machine and onto a second conveyor 52, which takes capsules 22 to dryer machine 18.
The gelatin sheets, after passing along the stripper rollers 48a, 48b flow into a mangle roller assembly 54, wherein a pair of mangle rollers pull on the gelatin sheets and provide tension thereon. The mangle rollers are driven by a variable speed motor (not shown) so that the speed of rotation of the mangle rollers can be adjusted. The mangle rollers are operated to provide a desired amount of tension in the gelatin sheets throughout encapsulation machine 20.
Referring now to
Baskets 60 receive a fluid flow, such as air, and rotate while drying capsules 22. The air flow is provided by an air unit 78 which feeds air to a duct assembly 80. Duct assembly 80 directs a portion of the air flow therein to each basket 60. The air flow helps move the capsules 22 through each basket 60, as described below. Duct assembly 80 is operable to individually heat the different portions flowing to the individual baskets 60 of first group 66, as described in more detail below. A drive mechanism 84 drives the rotation of baskets 60, as described in more detail below. A programmable logic controller (hereinafter “PLC”) or control device 86, as shown in
Referring now to
End walls 90, 92 are spaced apart by a plurality of bars 98. Outer wall 94 is disposed between end walls 90, 92 and is configured to have recesses in which bars 98 reside. The engagement between bars 98 and the recesses prevent outer wall 94 from rotating relative to end walls 90, 92 and bars 98.
Outer wall 94 is perforated or meshed to allow the air supplied by duct assembly 80 to flow through cavity 88 and remove moisture from capsules 22 therein. The recesses in outer wall 94 within which bars 98 reside, form a plurality of ramps or bumps 100 that radially project into cavity 88. Bumps 100 interact with capsules 22 to lift and drop the capsules 22 within cavity 88 when basket 60 is rotating. Outer wall 94 is made of stainless steel. Additionally, bars 98 are also made of stainless steel.
Each end wall 90, 92 has a V-belt 102 that extends radially around its outer circumference. V-belt 102 engages with wheels or rollers of drive mechanism 84 to cause basket 60 to rotate, as described in more detail below. V-belts 102 are preferably made of urethane.
To route capsules 22 from one basket 60 to the next basket, to chute 70, or outlet 74, dryer machine 18 includes a plurality of gate assemblies 106 (best seen in
When gate 108 is in the open position, gate 108 extends into cavity 88 of an adjacent basket 60. When basket 60 is rotating, capsules 22 therein will be lifted upwardly by bumps 100 and fall downwardly as basket 60 rotates. A portion of the air flow supplied to each basket 60 is directed toward a downstream basket to push capsules 22 toward gate 108. As a result, some capsules 22 will land on gate 108 and slide along gate 108 into the next adjacent basket 60, chute 70, or outlet 74. On the other hand, when gate 108 is in the closed position, capsules 22 will be lifted and freely fall within cavity 88 of basket 60 without moving onward to the next adjacent basket 60, chute 70, or outlet 74. Thus, gate assemblies 106 can be selectively operated to advance capsules 22 throughout dryer machine 18 or maintain capsules 22 within their existing basket 60.
PLC 86 communicates with each gate assembly 106. Controller 86 controls the operation of gate 108 and commands actuator 111 to open and close gate 108 as needed to route capsules 22 throughout first and second groups 66, 68 of baskets 60, as described below.
Referring now to
Each drive unit 124, 126 includes a motor 130 and a gear box 132 that are coupled together. Gear boxes 132 of drive units 124, 126 are respectively coupled to driven drive shafts 120a, 122a to drive rotation of first and second groups of baskets 66, 68, respectively. As driven drive shafts 120a, 122a are rotated by respective drive units 124, 126, baskets 60 residing thereon will rotate. As baskets 60 are residing on both a driven and non-driven drive shaft, rotation of the baskets will cause non-driven drive shafts 120b, 122b to also rotate. Non-driven drive shafts 120b, 122b thereby facilitate the rotation of baskets 60 in response to rotation of driven drive shafts 120a, 122a. Drive units 124, 126 are independent of one another and can be individually operated.
Referring now to
Referring now to
Upper duct connectors 142, as shown schematically in
Operation of dryer machine 18 to dry capsules 22 is explained with reference to
PLC 86 also commands air unit 78 to supply a flow of air to main duct 140 which in turn flows into upper and lower duct connectors 142, 144. For example, air unit 78 can be commanded to supply an air flow, such as 6000 CFM, to main duct 140. PLC 86 independently commands each heater 148 to heat the air flow through upper duct connectors 142 prior to flowing into an associated basket 60 in first group of baskets 66. PLC 86 monitors the temperature of the air flowing to each basket 60 in first group of baskets 66 via inputs from temperature sensors 150. PLC 86 monitors the temperature flowing into the baskets and adjusts the temperature, as needed, to provide a desired drying profile along the length of first group of baskets 66. For example, air flowing into the first basket of first group 66 may be set in a range between about 30 to 60 degrees Celsius while air flowing into the last basket in first group of baskets 66 may be set in a range between about 30 to 60 degrees Celsius.
With first and second groups of baskets 66, 68 rotating and receiving an air flow from air unit 78, dryer machine 18 is ready to receive capsules 22. Conveyor 52 supplies capsules 22 to inlet 72. Inlet 72 directs capsules 22 into the first basket 60 of first group of baskets 66. Capsules 22 in the first basket are tumbled and moisture is removed therefrom. At the appropriate time, PLC 86 will command actuator 111 to open the gate 108 that is between the first and second baskets of first group of baskets 66 to allow some capsules within the first basket to flow into the adjacent basket. Once in the adjacent basket, the capsules therein will continue to be tumbled and continue having moisture removed therefrom. PLC 86 continues to command additional actuators 111 associated with additional gates 108 further downstream to open and close, as appropriate, to further advance capsules 22 from one basket into an adjacent basket. Simultaneously, additional capsules 22 continue to be fed into the first basket via inlet 72.
The capsules 22 continue to proceed sequentially through each basket 60 in first group of baskets 66 until entering chute 70 which directs capsules 22 into the first basket 60 of second group of baskets 68. PLC 86, at the appropriate time, commands actuators 111 associated with gates 108 disposed adjacent baskets 60 in second group of baskets 68 to selectively open and close to advance capsules 22 sequentially through each basket 60 in second group of baskets 68. Capsules 22 progress through each basket 60 in second group of baskets 68 until reaching outlet 74 wherein capsules 22 exit dryer machine 18 for packaging and/or further processing.
PLC 86 can utilize programmed algorithms, set points, lookup table(s), and/or individual adjustments thereto to control the rotational rates of the baskets, the operation of the various gates 108, the operation of air unit 78 and the heaters to remove a desired amount of moisture from capsules 22 flowing therethrough. The use of PLC 86 simplifies operation of dryer machine 18 while advantageously providing for customized control.
The dryer machine 18 made according to the principles of the present invention is predicted to provide superior drying capabilities and performance. For example, such a dryer machine is predicted to produce capsules 22 that exit the dryer machine with a moisture content in a range of about 7-80 percent in the shell (i.e., removal in the range of about 93-20 percent of the moisture from the shell) in the single process of flowing through first and second groups of baskets 66, 68. This is a significant improvement over heretofore prior art dryers which have typically been operable to remove about 18-24 percent of moisture in a single processing step. Accordingly, capsules 22 exiting dryer machine 18 may not require further processing and/or heat tunnels to remove additional moisture. Thus, the present invention can reduce the cycle time associated with drying capsules 22 and provide for a less expensive drying apparatus by avoiding the use of heating tunnels and/or additional trays and equipment to move capsules 22 through additional processing equipment. Furthermore, the drying can be done in the same or smaller size area in the manufacturing facility.
While the present invention has been shown and described by reference to specific embodiments and examples, it should be appreciated that variations and changes in capsule making system 16 and capsule dryer machine 18 can be employed without departing from the spirit and scope of the present invention. For example, heaters can be added to lower duct connectors 144 if desired. Furthermore, the number of baskets 60 in first and second groups of baskets 66, 68 can vary from the number shown. The total number of baskets in each group 66, 68 will depend upon the drying needs of the capsules 22 to be dried therein. Additionally, while dryer machine 18 is shown as having two groups of baskets 66, 68 with one disposed above the other, a 2×2 machine can be employed wherein there are two rows of baskets on a first level and two rows of baskets disposed therebelow or any number of upper and lower groups of baskets, such as a 3×2, 3×3, 1×3, 1×4, etc., as desired. Moreover, dryer machine 18 can have more than two rows, such as three, four or more rows, as desired. Additionally, the rows do not need to be stacked one on top of the other. Rather, the rows can be adjacent or offset. Furthermore, a sorter or similar device can be employed to sort the capsules into various groups, such as by size or shape, with each group being routed to a specific group of baskets for drying therein, although all of the advantages may not be realized. Moreover, PLC 86 can be a stand alone controller that operates only drying machine 18, can be a component of the controller that operates the capsule making system 16 and/or encapsulation machine 20, or can be the same controller that operates encapsulation machine 20 and/or capsule making system 16. Accordingly, the present invention is merely exemplary in nature and such variations are not to be regarded as a departure from the spirit and scope of the present invention.
This application is a divisional of U.S. patent application Ser. No. 10/955,957, filed Sep. 30, 2004, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
Parent | 10955957 | Sep 2004 | US |
Child | 11879326 | Jul 2007 | US |