This application claims the priority of Korean Patent Application No. 10-2004-0031670, filed on May 6, 2004, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field of the Invention
The present invention relates to a method of manufacturing a carbon nanotube (carbon nanotube) field emission device, and more particularly, to a method of manufacturing a field emission device in which a thermal impact caused by a high temperature process is reduced.
2. Description of the Related Art
Carbon nanotubes (carbon nanotubes) are widely used as field emitters for backlights used in field emission displays (FEDs) and liquid crystal displays (LCDs). Such carbon nanotubes have good electron emission characteristics and chemical and mechanical durability. The properties and applications of such carbon nanotubes have been studied.
Conventional field emitters are typically micro tips made of a metal such as molybdenum (Mo). However, the life span of such a micro tip is shortened due to effects of an atmospheric gas, a non-uniform electric field, and the like. Also, the work function of the micro tip must be reduced to drive the micro tip at a low voltage. However, there is a limit to reducing the work function. To solve these problems, carbon nanotubes having a high aspect ratio, high durability, and high conductivity are preferably adopted as field emitters.
In order to obtain a high current density from carbon nanotube emitters, carbon nanotubes must be uniformly distributed and be arranged perpendicularly to a substrate. In particular, the carbon nanotubes must electrically contact the substrate (or a cathode) such that all of the carbon nanotubes emit electrons.
The carbon nanotube emitters are generally grown from the substrate using chemical vapor deposition (CVD). The carbon nanotube emitters may be manufactured using a paste obtained by combining carbon nanotubes with a resin. This method is easier and less costly than CVD and thus preferred to CVD.
U.S. Pat. No. 6,339,281 entitled Method for fabricating triode-structure carbon nanotube field emitter array to Lee et al. discloses a field emitter array using a carbon nanotube paste and a method of fabricating the same. U.S. Pat. No. 6,440,761 entitled Carbon nanotube field emission array and method for fabricating the same to Choi et al. discloses a field emission array using carbon nanotubes obtained using a growing method and a method of fabricating the same.
Carbon nanotubes are generally grown from a substrate using CVD. Here, CVD is performed at a high temperature of more than 500° C. to increase the purity of the carbon nanotubes. Thus, a thermal impact on the substrate or a structure on the substrate is inevitable during CVD. When the CVD is performed at a low temperature, the purity of the carbon nanotubes is reduced. Therefore, CVD at a low temperature is not preferable. Furthermore, CVD equipment used for obtaining highly pure carbon nanotubes is high-priced, and thus CVD has a high manufacturing cost.
A carbon nanotube paste can be coated on a substrate (or a cathode) using screen printing, photolithography, or the like. Since the carbon nanotube paste includes various kinds of organic and inorganic solvents, it is difficult to obtain highly pure carbon nanotube electron emitters.
It is therefore an object of the present invention to provide an improved method of manufacturing a carbon nanotube emitter and a a carbon nanotube field emission device.
It is another object of the present invention to provide carbon nanotube emitters having high purity and good electric characteristics and a method of manufacturing a device using the same.
It is also an object of the present invention to provide carbon nanotube emitters with a simple manufacturing process and being capable of thermally protecting other components including a substrate, and a method of manufacturing a device using the same.
According to an aspect of the present invention, there is provided a method of manufacturing carbon nanotube emitters, including: adsorbing carbon nanotubes onto a first substrate; forming a second metal layer on a second substrate; forming a first metal layer on one of the carbon nanotubes and the second metal layer; pressing the first substrate against the second substrate; spacing the first substrate apart from the second substrate to cause the carbon nanotubes to be perpendicular to the second substrate; and further spacing the first substrate apart from the second substrate to separate the carbon nanotubes from the first substrate.
According to another aspect of the present invention, there is provided a method of manufacturing carbon nanotube emitters, including: adsorbing powdered carbon nanotubes onto a first substrate; forming a first metal layer in a predetermined pattern on the carbon nanotubes; forming a second metal layer on a second substrate; press-bonding the first metal layer to the second metal layer; spacing the first substrate apart from the second substrate to make the carbon nanotubes perpendicular to the second substrate; and further spacing the first substrate from the second substrate to separate the carbon nanotubes from the first substrate.
According to also another aspect of the present invention, there is provided a method of manufacturing carbon nanotube emitters, including: adsorbing powdered carbon nanotubes onto a first substrate; forming a second metal layer on a second substrate; forming a first metal layer in a predetermined pattern on the second metal layer; pressing the carbon nanotubes to bond the carbon nanotubes on the first substrate to the first metal layer; spacing the first substrate apart from the second substrate to make the carbon nanotubes perpendicular to the second substrate; and further spacing the first substrate from the second substrate to separate the carbon nanotubes from the first substrate.
According to still another aspect of the present invention, there is provided a method of manufacturing a carbon nanotube field emission device including a front plate including an inside surface on which an anode is formed, a rear plate which is spaced apart from the front plate and includes an inside surface on which a cathode is formed, and electron emitters which are formed of carbon nanotubes on the cathode. The method includes: forming a cathode on a rear plate; adsorbing powdered carbon nanotubes onto a stamp substrate; depositing a first metal on the carbon nanotubes to form a first metal layer on the carbon nanotubes; pressure-bonding the first metal layer on the stamp substrate to the cathode on the rear plate; spacing the stamp substrate from the rear plate to make the carbon nanotubes perpendicular to the cathode on the rear plate; and further spacing the stamp substrate from the rear plate to separate the carbon nanotubes from the stamp substrate.
According to yet another aspect of the present invention, there is provided a method of manufacturing a carbon nanotube field emission device including a front plate including an inside surface on which an anode is formed, a rear plate which is spared apart from the front plate and includes an inside surface on which a cathode is formed, and an electron emitter formed by carbon nanotubes on the cathode. The method includes: forming a cathode on a rear plate; forming a metallic bonding layer on the cathode; adsorbing powdered carbon nanotubes onto a stamp substrate; pressure-bonding the carbon nanotubes on the stamp substrate to the metallic bonding layer on the cathode; spacing the stamp substrate from the rear plate to make the carbon nanotubes perpendicular to the cathode; and further spacing the stamp substrate from the rear plate to separate the carbon nanotubes from the stamp substrate.
The adsorption of the carbon nanotubes onto the stamp substrate includes: mixing the powdered carbon nanotubes with a liquid dispersing agent; coating the stamp substrate with the dispersed carbon nanotubes; and removing the liquid dispersing agent to adsorb the carbon nanotubes onto the stamp substrate.
In the bonding, the second metal layer is heated together with the second substrate to a predetermined temperature to perform hot pressure bonding. As a result, carbon nanotubes can be efficiently bonded to the second substrate.
According to yet another aspect of the present invention, there is provided a method of manufacturing a carbon nanotube field emission device including a front plate including an inside surface on which an anode is formed, a rear plate which is spared apart from the front plate and includes an inside surface on which a cathode is formed, and electron emitters formed of carbon nanotubes on the cathode. The method includes: forming the cathode on the inside surface of the rear plate; adsorbing powdered carbon nanotubes facing the cathode onto an additional stamp substrate; depositing a metal on the carbon nanotubes dispersed on the stamp substrate to form a first metal layer on the carbon nanotubes; pressure-bonding the first metal layer on the stamp substrate to the cathode of the rear plate; spacing the stamp substrate from the rear plate to tense the carbon nanotubes that are bonded to the cathode on the rear plate by the first and second metal layers; and further spacing the stamp substrate from the rear plate to separate the carbon nanotubes from the stamp substrate.
The adsorption of the carbon nanotubes onto the first substrate or the stamp substrate includes: mixing the powdered carbon nanotubes with a liquid dispersing agent; coating the first substrate or the stamp substrate with the dispersed carbon nanotubes; and removing the liquid dispersing agent to adsorb the carbon nanotubes onto the first substrate or the stamp substrate. The liquid dispersing agent is an organic solvent, for example, ethanol, or an inorganic solvent such as water.
A more complete appreciation of the present invention, and many of the above and other features and advantages of the present invention, will be readily apparent as the same becomes better understood by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference symbols indicate the same or similar components, wherein:
Hereinafter, a method of manufacturing a carbon nanotube emitter and a method of manufacturing a field emission device adopting the carbon nanotube emitter according to embodiments of the present invention will be described in detail with reference to the attached drawings. In the drawings, a field emission device including carbon nanotubes is exaggerated for clarity. In particular, one element may be illustrated larger than other elements when necessary and may be omitted to more clearly describe the embodiment.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The above-described processes have been described regardless of the shape of the carbon nanotube emitters. However, carbon nanotube emitters have a predetermined shape and size, and thus a method of manufacturing such a carbon nanotube emitter is proposed.
As shown in
As shown in
After the first metal layer 3 is completed on the stack of the carbon nanotube powder as shown in
As shown in
As shown in
As shown in
When a surface of the first substrate 1 on which carbon nanotubes are formed faces the surface of the second substrate 4 on which the first and second metal layers 3′ and 5 are formed as shown in
As shown in
As shown in
An anode 11 is formed on the surface of the front plate 10 facing the rear plate 4, and a fluorescent layer 12 is formed on the anode 11. A cathode 5 (the second metal layer 5 in the above-described process) is formed on the surface of the rear plate 4 facing the front plate 10. A gate insulating layer 6 having throughholes 6a is formed on the cathode 5 so as to be opposed to the anode 11. A gate electrode 7 having gate holes 7a corresponding to the throughholes 6a is formed on the gate insulating layer 6.
Carbon nanotubes which are perpendicularly arrayed are provided at the bottoms of the throughholes 6a. The carbon nanotubes are bonded to a metallic boning layer 3 (3′) (the first metal layer 3 or 3′ in the above-described processes) bonded to the surface of the cathode 5.
A method of manufacturing a carbon nanotube field emission device having the above-described structure is performed according to conventional processes except for processes of forming a cathode and carbon nanotubes on the rear plate 4, i.e., the above-described method of manufacturing carbon nanotube emitters. In other words, carbon nanotube emitters are formed above the rear plate 4 using the above-described method, and then a gate insulating layer, a gate electrode, and the like are formed. If necessary, the cathode 5 and the gate insulating layer 6 may be formed on the rear plate 4, and then the carbon nanotube emitter may be formed.
The present invention may be applied to the manufacturing of a backlight device of a passive light emitting display such as an LCD. The backlight device manufactured according to the present invention has the same structure as a general backlight device except for an electron emitter used for exciting a fluorescent substance which is manufactured according to a method of manufacturing a carbon nanotube emitter as described above.
As described above, in a method of manufacturing a carbon nanotube field emission device, according to the present invention, carbon nanotube emitters can be manufactured perpendicularly to a substrate without using high temperature CVD. Moreover, since an organic or inorganic binder (except for an organic solvent) is not used, the carbon nanotube emitters can be highly pure. Thus, the carbon nanotube emitters can have a predetermined pattern in a large area without being limited by the size of the substrate, which is limited when using CVD. Also, since CVD is not adopted, high-priced equipment is not necessary. As a result, the carbon nanotube emitters can be manufactured at a relatively low cost. When carbon nanotube emitters manufactured using CVD require subsequent processes such as an activation process. However, in the present invention, such subsequent processes are not necessary. Furthermore, the carbon nanotube emitters can be manufactured at a low temperature. Thus, a thermal impact on the substrate and the other components caused by a high temperature process can be reduced.
In particular, in the carbon nanotube emitters of the present invention, carbon nanotubes can be bonded to a cathode by a bonding material having high conductivity. Thus, the carbon nanotube emitters can have good electric characteristics and emit electrons from most of the carbon nanotubes. As a result, a uniform current can be generated.
The method of manufacturing the carbon nanotube emitter according to the present invention can be applied to various fields. For example, the method of the present invention can be applied to a field emission display, a flat lamp, an electron emitter, and so forth. The method of the present invention may be independently performed or may be generally included in processes used in the various fields.
Number | Date | Country | Kind |
---|---|---|---|
10-2004-0031670 | May 2004 | KR | national |