Method of manufacturing electrical conductor tracks in a region of an intravascular blood pump

Information

  • Patent Grant
  • 12194287
  • Patent Number
    12,194,287
  • Date Filed
    Thursday, May 30, 2019
    5 years ago
  • Date Issued
    Tuesday, January 14, 2025
    19 days ago
Abstract
A method of manufacturing electrical tracks in a region of an intravascular blood pump is provided. The method can include providing an intravascular blood pump with a flow cannula including a spiral structure, a sensor and an electrical connection region, applying a conductor structure to a coatable material of the flow cannula, electrically connecting a first portion of the conductor track structure to the sensor and a second portion of the conductor track structure to the electrical connection region and closing the spiral structure using a flexible material where the flexible material can be silicone or polyurethane.
Description
BACKGROUND
Field

The present invention relates to an intravascular blood pump, which can in particular be used as a cardiac support system. The invention further relates to a method for producing electrical conductor tracks in such a blood pump.


Description of the Related Art

So-called left ventricular assist devices (LVAD) are a known option for supporting the pumping function of the heart. These are surgically implantable mechanical pumps that support the heart. By continuously pumping blood, the blood is pumped from the left ventricle into the aorta, so that enough oxygen-rich blood can circulate in the body in a heart failure patient. So-called balloon pumps are known for this purpose. Moreover, rotary blood pumps have already been developed that can in particular also be inserted into the left ventricle and the aorta in a minimally invasive manner. The right side of the heart, for example, can also be supported in a corresponding manner. Such systems place high demands on overall size. The necessary small dimensions are achieved, for example, by reducing the wall thicknesses to a minimum. However, the integration of active electronic components or sensors in general with suitable connections is difficult. The international patent application WO 2013/160443 A1 describes an intravascular rotary blood pump in which an optical pressure sensor is integrated into the system, wherein the optical connection via optical fibers is implemented in a complex manner using neutral fibers along the flow cannula of the blood pump.


SUMMARY

The object of the invention is to provide an improved intravascular blood pump and a method for producing such a blood pump. One object of the invention is in particular to create an intravascular blood pump, which [enables] the operation of electrical components, in particular the operation of sensors disposed, for example, in the region of a tip of the blood pump, and/or evaluation electronics disposed in said location.


This object is achieved by an intravascular blood pump having the features described herein. Such a blood pump can be produced with the method described herein.


The invention provides an intravascular blood pump, which is in particular based on the rotary pump principle, that can in particular be used as a cardiac support system. The blood pump comprises a tip, a first region with at least one blood through-opening, a flow cannula, a second region with at least one blood through-opening, a motor-operated pump device and a conducting cable for the electrical supply and control of the system. The blood pump is characterized in that at least one electrical conductor track is provided by a surface coating structure at least in the region of the flow cannula. Electrical connections and/or sensors can be realized via the electrical conductor track(s). At least one electronic component can thus be disposed in the region of the tip, in particular one or more active electronic components, for the electrical connection of which the at least one electrical conductor track is used. Such electrical conductor tracks make it possible to reduce the thickness of the electrical connecting lines to a minimum in a particularly advantageous manner. This satisfies the need for small size for such systems. Such surface coating structures in particular make it possible to bridge the region of the flow cannula. However, other regions of the blood pump can also be bridged; for example the regions of the blood through-openings and the pump device or parts thereof. Electronic components in the tip of the system can thus be electrically connected to further away regions of the system, in particular to the conducting cable, so that power transmission and/or data transmission from or to external control devices and/or evaluation devices, for example, is possible. The invention permits a very advantageous electrical contacting of electronic components in the tip or also at another position, whereby the implementation of the electrical contacting or connection to the conducting cable can be very thin and space-saving and, at the same time, very firm, stable and reliable due to the electrical surface functionalization. The assembly process required for this can be realized in a cost-effective manner.


The electronic components in the region of the tip can in particular be sensors, for example pressure sensors, flow measuring sensors, temperature sensors, etc. Optical sensors, acceleration or rotation rate sensors and acoustic sensors (microphones), for example, are possible as well. Any sensors or other electronic components and electrode surfaces that are suitable for medical monitoring of the patient and/or the function of the intravascular blood pump and/or for controlling the blood pump can be used.


As an alternative or in addition to an electrical connection of electronic components via the conductor tracks, sensors can be realized using the conductor tracks themselves, for example strain sensors and/or breakage sensors and/or temperature sensors. In this way, sensors can be integrated into the surface structure in a very advantageous manner. The use of exposed electrodes for recording electrical excitation signals or for performing an electrical impedance measurement is possible as well. Such sensors can be realized by sensor regions within the surface coating structure which comprise meandering conductor tracks. The conductor tracks in the sensor region(s) can also be made of a different material than the conductor tracks outside the sensor regions. The conductor tracks in a sensor region can be made of platinum, for example, which allows the sensor region to be used as a temperature sensor. Such sensor regions can furthermore also be used as electrical sensors, so that the sensors can be used for dielectric characterization of the surrounding blood, for example. The coupling can be conductive or capacitive, comparable to an impedance spectroscopy. It is also possible to integrate a thin surface wave sensor, for example as a thin ceramic disc, for example for determining the blood viscosity.


The flow cannula of the intravascular blood pump preferably comprises one or more coatable materials. A hose guide made of a coatable material can in particular be provided. The surface coating structure is applied to the coatable material or materials to realize the electrical conductor tracks. As a general rule, it is useful for the flow cannula to be flexible. For this purpose, the hose guide can, for example, be equipped with a flexible skeletal structure, for example a spiral structure. Other options include zigzag or wave structures. The flexible structure (e.g. the spiral structure) is expediently designed such that there is a continuous web structure on which the electrical conductor tracks are held. Such flexible structures are particularly advantageously at least partially made of the coatable material. Metallic materials, for example titanium and/or stainless steel, can be used as coatable materials. Nickel-titanium alloys (NiTiNoI), which are already used in medical technology due to their particularly advantageous properties, are particularly preferred. In addition to their advantages in terms of their deformation properties, nickel-titanium alloys also have the advantage of being directly coatable. Other suitable coatable materials are, for example, glass and/or ceramic.


The surface coating structure can preferably have a multilayer structure, for example a two-layer structure, whereby the lower layer in the space between two conductor structures can be used for metallizing a further conductor layer, so that multiple conductor track layers are nested inside one another. On the one hand, this allows the overall conductor width to be reduced. On the other hand, the layer thickness of the conductor structure as a whole is reduced.


For electrical contacting of the conductor tracks it is preferable that electrical contact pads are provided. The contact pads can be disposed at the end of the flow cannula, for example, opposite the tip of the system.


The invention further involves a method for producing electrical conductor tracks at least in the region of a flow cannula of an intravascular blood pump, wherein, concerning this blood pump, reference is made to the above description. The electrical conductor tracks are produced using a surface coating, in particular using surface lithographic techniques. First and foremost, optical lithographic methods (e.g. UV lithography) can be used. Flat 2D wafer processes can be used on cylindrical bodies, for example, so that conventional lithography processes can in principle be used by adapting the exposure devices. Photolithographic methods, in particular three-dimensional UV photolithographic methods, are particularly suitable. Magnetron sputtering and, if necessary, wet chemical etching methods can in particular be used to produce the surface structuring.


In a preferred embodiment of the method, after a possibly necessary initial cleaning and surface activation of the material to be coated, an insulating base layer can first be applied to the coatable material. This can be an oxide layer that is applied by sputtering, for example, or a polyimide. A photoresist is then applied and structured in accordance with the conductor tracks to be applied. For this purpose, a lithography mask is expediently applied, for example made of chrome-coated quartz substrate, before the photoresist is exposed and developed. The metallic conductor track structure is then applied by sputtering. For reasons of biocompatibility, gold is preferably used as the material for the conductor tracks. The photoresist is then removed. Finally, an electrically insulating and preferably biocompatible surface is applied. This too can again be done by sputtering oxide, for example, or by applying polyimide or parylene or something else. The layer thickness of the resulting sputtered surfaces is preferably in a range of several hundred nanometers.


In particular for applications that require a high conductivity of the conductor track structures, a conductor track structure with an increased layer thickness (for example several micrometers) can be provided using the design variant of the method described in the following. For this purpose, an in principle complete conductive surface coating is produced first. This is windowed by a structured photoresist and the exposed windows are then galvanically thickened. Specifically, in this variant, after a possibly necessary initial cleaning and surface activation, an insulating base layer is applied first, for example an oxide layer by sputtering or a base layer of polyimide. Then an initial metallic conductor layer (e.g. gold) is applied. A photoresist is applied to the initial conductor layer and structured in accordance with the conductor tracks to be applied.


The exposed metallic conductor tracks or the exposed windows are then thickened using a wet chemical electroplating process so that the desired conductivity can be produced in the exposed metal structures. The photoresist is removed. To remove the initial metal conductor layer outside the conductor track structures, the surface is etched so that the electrical conductor track structures are exposed. Lastly, an electrically insulating and preferably biocompatible surface is applied, for example by sputtering oxide or by applying polyimide or parylene or other materials.


In addition to the surface structuring for producing the conductor tracks, the process preferably also includes the structuring of the pipe material, in which a web structure is produced on which the conductor tracks are held (for example a spiral structure). This structuring can occur before or after the production of the conductor tracks. Finally, the windows of the web structure are closed with silicone or polyurethane, for example.


Further features and advantages of the invention emerge from the following description of design examples in conjunction with the drawing. The individual features can be realized individually or in combination with one another.





BRIEF DESCRIPTION OF THE DRAWINGS

Advantageous embodiments of the invention are shown schematically in the drawings and are described in the following.


The figures show:



FIG. 1 a sectional view of a human heart and lung with an inserted intravascular blood pump;



FIG. 2 components of an intravascular blood pump (LVAD system);



FIG. 3 an isometric illustration of a flexible hose guide of the flow cannula of an intravascular blood pump;



FIG. 4 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention for the formation of conductor tracks;



FIG. 5 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention with the configuration of sensor regions by the conductor tracks;



FIG. 6 a detail view of the hose guide of a flow cannula having a surface coating structure according to the invention showing electrical contact pads;



FIG. 7 a detail view of a cross-section through a flow cannula having a surface coating structure according to the invention;



FIG. 8 a further detail view of a cross-section through a flow cannula having a surface coating structure according to the invention with a two-layer structure;



FIG. 9 a further detail view of a cross-section through a surface coating structure with a multilayer structure; and



FIG. 10 a further detail view of a cross-section through a surface coating structure with a multilayer structure and shielding.





DETAILED DESCRIPTION


FIG. 1 shows a human heart 10 and the surrounding lungs 20, wherein an intravascular blood pump 100 is inserted in the left ventricle 11. Pumping the blood pump 100 supports the pumping function of the heart 10 by moving oxygen-rich blood coming into the left ventricle 11 from the pulmonary vein 12 into the aorta 13. The intravascular blood pump can be designed for continuous pumping, for example, or the pump is based on a pulsatile system, for example, in which the pump speed is modulated.



FIG. 2 schematically shows the components of an intravascular blood pump 100 that is equipped according to the invention with a surface coating structure for the formation of electrical conductor tracks. The blood pump 100 comprises a tip 110, wherein one or more electronic components 112, in particular sensors, can be provided in a region within the tip 110. The tip is closed by a slidable cap 111. A first region 120 (inlet cage) with blood through-openings 121 adjoins the tip 110. Blood can be drawn into the blood pump, for example from the left ventricle, through the blood through-openings 121. This is adjoined by a flow cannula 130 and a second region 140 (impeller cage) having further blood through-openings 141. This is adjoined by region 150 for a motor-operated pump device. Inside the region 140 there is a rotor (impeller), for example, that is operated via the pump device 150, so that the pumped blood can exit through the blood through-openings 141. The pump device 150 is adjoined by a back end 160, via which the electrical connection is made. A supply cable 170 is provided for electrical supply and control. The motor-operated pump device is preferably a rotary pump (flow machine), wherein a reversal of the conveying direction can also be provided if necessary.


The surface coating structure according to the invention allows sensors or sensor regions, for example breakage sensors or strain sensors or temperature sensors, to be realized, in particular in the region of the flow cannula. The surface coating structures can also be used to electrically connect any existing electronic components 112 of the tip 110 to the supply cable 170. This allows the length of the flow cannula 130 in particular, but also the regions 120 and 140 and the region with the motor-operated pump device 150, to be bridged. Different components can be combined and realized as one structural element. For example, the first region 120 can be combined with the flow cannula 130 to one structural element, which can then very advantageously be equipped with the surface coating structure according to the invention for the formation of conductor tracks.



FIG. 3 shows a combined configuration of the first region with blood through-openings 221, which is directly adjoined by the flow cannula 230. The flow cannula 230 is advantageously realized as a flexible inlet hose or as a flexible hose guide. In this example, the flexible flow cannula 230 is realized by a spiral-shaped structure formed by circumferential windowed webs 300. A laser-structured tube made of NiTiNoI material, for example, can be provided as the coatable material for this purpose. On the right side of the laser structured tube there is an elongated opening, which is provided for the passage of a guide wire in a per se known manner during the implantation process. The skeleton or web structures 300 of the NiTiNoI material are electrically functionalized by surface coating for the formation of the conductor tracks, whereby the conductor tracks can in particular be used for electrically connecting electronic components and/or for the formation of sensors. The spiral structure of the NiTiNoI tube can be produced by laser structuring. The exposed windows of the laser structured form can be closed by flexible materials, for example by silicone or polyurethane. The flexibility of the hose guide can also be achieved with other structures, for example by zigzag or wave patterns. The surface coating structure as such can be applied according to the method already described above. In this context, reference is also made to an article by Bechtold et al. (Biomed Microdevices, 2016 December; 18(6): 106) and an article by Lima de Miranda et al. (Rev. Sci. Instrum., 2009 January; 80(1): 015103), whereby these articles deal with surface structuring in general. Bechtold et al. describe the coating of thin films made of a nickel-titanium alloy to form insulated electrodes on the outer surface. Lima de Miranda et al. describe a rotational UV lithography for cylindrical geometries. The laser structuring of the NiTiNoI tube to form the spiral structure, for example, can take place before or after the electrical functionalization.



FIG. 4 shows a detail view of the resulting exemplary conductor track structures on the flow cannula 230. The webs 300 of the laser-structured spiral structure (see FIG. 3), which to a certain extent form the framework of the flexible flow cannula 230, leave windows 301 open. The windows 301 are preferably closed in a flexible manner, for example using silicone or polyurethane. The webs 300 together with the closed windows 301 form the hose guide of the flow cannula 230. According to the invention, electrical conductor track structures 302, 303 are applied to the webs 300 using lithography and coating technologies.


For the actual production of the electrical conductor tracks, a lithography mask comprising the corresponding coating structures (electrical conductor track structures) is applied for each layer. The lithography mask can be a chrome-coated quartz substrate, for example. Non-conductors such as photoresist or polyimide can be applied over a large area by dipping, for example. Non-conductors such as parylene C can be deposited in a vacuum, for example. Initial metallic layers are in particular applied by sputtering, thicker layers by electrodeposition.


There are two main approaches that can be used in the production process: According to Method 1, the tube material (for example NiTiNoI) is first provided with the electrical surface coating for the formation of the conductor tracks. In the next step, the flexible structure is produced, for example, by laser cutting (laser structuring), whereby the coating structure and the laser cutting contour are geometrically aligned to one another. In the last step, the windows of the flexible structure are closed, for example by dipping or overmolding. According to Method 2, the pipe material is structured first. The surface functionalization for the formation of the conductor tracks is then produced using the lithographic processes. Lastly, the windows of the flexible structure are closed as in Method 1. Method 1 has the advantage that the lithography process is simplified. Method 2 has the advantage that shape embossments in the NiTiNoI material are possible directly after the structuring of the pipe material; for example to “save” bends or cross-sectional changes to the cross-section of the starting material (e.g. widenings of the cross-section). Because of the process temperatures needed for the shape embossment, it is generally advantageous to perform this step before the lithographic surface coating.



FIG. 5 shows particularly preferred configurations of the conductor tracks, in which the conductor track structure is designed as a sensor (left) or as an electrical connection and additionally as a sensor (right). As in FIG. 4, the flow cannula 230 is equipped with conductor tracks 302,303, which are formed by surface structuring of the webs 300 of the flow cannula 230 (right part of the illustration). Meandering conductor tracks are provided as well, which form the sensor regions 304 (left) or the additional sensor region 305 (right). Straight sections of the conductor tracks can be provided between individual sensor regions 304, or the sensor region 305 is formed by a continuously meandering conductor track. The input and output lines 306, 307 of the sensor regions 304 can be made of a different material than the sensor regions themselves. A plurality of sensor regions can be implemented via separate input lines or even with a common return channel line 308, for example.


For a temperature sensor, for example, it can be provided that the conductor tracks of the sensor regions 304 or 305 are made of platinum, because platinum has a very linear resistance-temperature relationship. The input and output tracks 306, 307, 308 expediently have the lowest possible resistance in order to have little influence on the sensor signal. The conductor track structures can also be used as strain or breakage sensors, for example. They can also be used as capacitive sensors, electrode surfaces or contact pads for further sensors, for example.



FIG. 6 shows a preferred electrical contacting of the conductor tracks 302, 303 via electrical contact pads 310, 311, 312, 313. This electrical contacting can take place, for example, at the end of the flow cannula 230, i.e. in the direction toward the second region 140. However, it is also possible for the conductor tracks to also be guided over other components of the blood pump, for example over the region 140, 150 to the electrical connection region 160. The electrical connection can be established by conductive gluing, soldering, bonding or frictional connection, for example. The connection can be made directly from NiTiNoI component to NiTiNoI component, for example, or from NiTiNoI component directly to a cable or a thin-film substrate, depending on the configuration of the blood pump.



FIG. 7 shows a cross-section through the resulting layer structure that realizes the electrical conductor tracks. 710 represents the underlying NiTiNoI structure or another coatable material as the support structure of the flow cannula. 720 represents an insulating base layer, for example made of silicon oxide or polyimide. 730 shows the metallic conductor track structures, for example made of gold. 740 represents an insulating cover layer, for example made of silicon oxide, polyimide or parylene. A multilayer structure, for example a two-layer structure as illustrated in FIG. 8, can be created by repeating the surface coating several times (surface lithography). 710, 720, 730 and 740 represent the coatable structure, the insulating base layer, the first layer of the conductor track structures or the insulating cover layer, as in FIG. 7. A further conductor track 750 disposed at a slightly higher level is additionally provided in the spaces between the conductor track structures 730. During production, the space (empty space) between the conductor track structures 730 on the lower layer is used for the metallization of the upper layer by disposing the metallic conductor layer in this space. This offset arrangement of the conductor tracks on different levels prevents the formation of larger protrusions or roughnesses of the surface structure in the regions in which metallic conductor tracks would be on top of one another. This can occur in particular in higher multilayer structures having six or more layers. In this respect, this embodiment with an offset arrangement has the advantage over a purely coaxial embodiment that the resulting layer thickness of the conductor structure as a whole is reduced. This embodiment is also particularly advantageous compared to a coplanar design, because the overall conductor width is reduced. If an offset arrangement of the conductor tracks is not desired or possible, it is alternatively also possible to compensate any unevenness that may occur due to superimposed conductor tracks, for example with a silicone layer or the like.



FIG. 9 shows a further structure of a multilayered conductor track structure. Four narrow conductor tracks 910 and two wide conductor tracks 920 are disposed one above the other on the coatable material (not shown in detail). The narrow conductor tracks 910 serve as a communication bus for a pressure sensor and a temperature sensor in the tip of the blood pump, for example. The wide conductor tracks 920 have a lower resistance (electrical power) and are used, for example, to connect an ultrasonic element in the tip of the blood pump. To produce such a structure, a total of seven layers are required for the surface coating. FIG. 10 shows a similar example of a 5 multilayered structure having four narrow conductor tracks 1010 and two wide conductor tracks 1020. Metallizations, which shield the conductor tracks 1010 and 1020 against one another and to the outside, are additionally provided as a shielding 1030, so that a defined line impedance and less high-frequency radiation are achieved along with a shielded routing of the signals. A total of 11 layers are required to produce such a structure. In the contact pad region, the up to 11 layers can expediently be widened accordingly and, for example, passed into the top metal layer through a vertical through-connection.

Claims
  • 1. A method of manufacturing electrical conductor tracks in a region of an intravascular blood pump, the method comprising: providing the intravascular blood pump comprising: a flow cannula comprising a spiral structure;a sensor; andan electrical connection region;applying a conductor track structure to a coatable material of the flow cannula;electrically connecting a first portion of the conductor track structure to the sensor;electrically connecting a second portion of the conductor track structure to the electrical connection region; andclosing the spiral structure using a flexible material, wherein the flexible material comprises silicone or polyurethane.
  • 2. The method of claim 1, wherein applying the conductor track structure comprises applying the conductor track structure about the spiral structure of the flow cannula.
  • 3. The method according to claim 1, wherein providing the intravascular blood pump comprises providing the intravascular blood pump having the sensor disposed in a tip region of the intravascular blood pump.
  • 4. The method according to claim 3, wherein the sensor comprises an ultrasonic element.
  • 5. The method according to claim 3, wherein the sensor comprises a pressure sensor.
  • 6. The method according to claim 3, wherein the sensor comprises a temperature sensor.
  • 7. The method according to claim 1, wherein providing the intravascular blood pump comprises providing the intravascular blood pump having the sensor integrated into a surface coating structure of the intravascular blood pump.
  • 8. The method according to claim 7, wherein the sensor comprises at least one of a strain sensor, a breakage sensor, and a temperature sensor.
  • 9. The method according to claim 7, wherein applying the conductor track structure comprises applying one or more meandering conductor tracks forming one or more sensor regions of the sensor.
  • 10. The method according to claim 9, wherein applying the one or more meandering conductor tracks forming the one or more sensor regions comprises applying a different material than one or more conductor tracks outside the sensor regions.
  • 11. The method according to claim 9, wherein applying the one or more meandering conductor tracks forming the one or more sensor regions comprises applying platinum.
  • 12. The method according to claim 1, wherein applying the conductor track structure to the coatable material comprises applying the conductor track structure to a material of the flow cannula comprising at least one of: nickel-titanium alloys, titanium, stainless steel, glass, and ceramic.
  • 13. The method according to claim 1, wherein applying the conductor track structure comprises applying a multilayer structure.
  • 14. The method according to claim 1, wherein electrically connecting at least the first portion or the second portion of the conductor track structure comprises forming a frictional connection.
  • 15. The method according to claim 1, wherein applying the conductor track structure comprises: applying an insulating base layer to the coatable material;applying a photoresist material;applying the conductor track structure, wherein the conductor track structure is applied by sputtering;removing the photoresist material; andapplying an electrically insulating surface, wherein the electrical insulating surface is biocompatible.
  • 16. The method according to claim 15, wherein the intravascular blood pump further comprises: a tip;a first region comprising at least one blood through-opening;a flow cannula;a second region comprising at least one blood through-opening;a motor-operated pump device; anda conducting cable.
  • 17. The method according to claim 16, wherein providing the intravascular blood pump comprises providing the intravascular blood pump having the sensor disposed in a tip region of the intravascular blood pump.
  • 18. The method according to claim 1, wherein applying the conductor track structure comprises: applying an insulating base layer to the coatable material;applying an initial metallic conductor layer, wherein the initial metallic conductor layer is applied by sputtering;applying a photoresist material;thickening exposed portions of the initial metallic conductor layer using a wet chemical electroplating process;removing the photoresist material;removing portions of the initial metallic conductor layer outside conductor tracks;applying an electrically insulating surface, wherein the electrically insulating surface is biocompatible.
  • 19. The method according to claim 18, wherein the intravascular blood pump further comprises: a tip;a first region comprising at least one blood through-opening;a flow cannula;a second region comprising at least one blood through-opening;a motor-operated pump device; anda conducting cable.
  • 20. The method according to claim 19, wherein providing the intravascular blood pump comprises providing the intravascular blood pump having the sensor disposed in a tip region of the intravascular blood pump.
Priority Claims (1)
Number Date Country Kind
10 2018 208 538.2 May 2018 DE national
PCT Information
Filing Document Filing Date Country Kind
PCT/EP2019/064154 5/30/2019 WO
Publishing Document Publishing Date Country Kind
WO2019/229220 12/5/2019 WO A
US Referenced Citations (1115)
Number Name Date Kind
2254698 Hansen, Jr. Sep 1941 A
2310923 Bean Feb 1943 A
3085407 Tomlinson Apr 1963 A
3088323 Welkowitz et al. May 1963 A
3505987 Heilman Apr 1970 A
3568659 Karnegis Mar 1971 A
3614181 Meeks Oct 1971 A
3747998 Klein et al. Jul 1973 A
3807813 Milligan Apr 1974 A
3995617 Watkins et al. Dec 1976 A
4023562 Hynecek et al. May 1977 A
4115040 Knorr Sep 1978 A
4471252 West Sep 1984 A
4522194 Normann Jun 1985 A
4559952 Angelsen et al. Dec 1985 A
4625712 Wampler Dec 1986 A
4643641 Clausen et al. Feb 1987 A
4753221 Kensey et al. Jun 1988 A
4779614 Moise Oct 1988 A
4781525 Hubbard et al. Nov 1988 A
4785795 Singh et al. Nov 1988 A
4817586 Wampler Apr 1989 A
4846152 Wampler et al. Jul 1989 A
4888011 Kung et al. Dec 1989 A
4889131 Salem et al. Dec 1989 A
4895557 Moise et al. Jan 1990 A
4896754 Carlson et al. Jan 1990 A
4902272 Milder et al. Feb 1990 A
4908012 Moise et al. Mar 1990 A
4927407 Dorman May 1990 A
4943275 Stricker Jul 1990 A
4944722 Carriker et al. Jul 1990 A
4968300 Moutafis et al. Nov 1990 A
4971768 Ealba Nov 1990 A
4985014 Orejola Jan 1991 A
5044897 Dorman Sep 1991 A
5045051 Milder et al. Sep 1991 A
5061256 Wampler Oct 1991 A
5089016 Millner et al. Feb 1992 A
5090957 Moutafis et al. Feb 1992 A
5112292 Hwang et al. May 1992 A
5112349 Summers et al. May 1992 A
5116305 Milder et al. May 1992 A
5195877 Kletschka Mar 1993 A
5269811 Hayes Dec 1993 A
5289821 Swartz Mar 1994 A
5297940 Buse Mar 1994 A
5313765 Martin May 1994 A
5344443 Palma et al. Sep 1994 A
5354271 Voda Oct 1994 A
5376114 Jarvik Dec 1994 A
5399145 Ito et al. Mar 1995 A
5405383 Barr Apr 1995 A
5443503 Yamane Aug 1995 A
5456715 Liotta Oct 1995 A
5527159 Bozeman, Jr. et al. Jun 1996 A
5599173 Chen et al. Feb 1997 A
5613935 Jarvik Mar 1997 A
5676651 Larson, Jr. et al. Oct 1997 A
5695471 Wampler Dec 1997 A
5720771 Snell Feb 1998 A
5746709 Rom et al. May 1998 A
5749855 Reitan May 1998 A
5752976 Duffin et al. May 1998 A
5766207 Potter et al. Jun 1998 A
5827203 Nita Oct 1998 A
5831365 Keim et al. Nov 1998 A
5888241 Jarvik Mar 1999 A
5888242 Antaki et al. Mar 1999 A
5904646 Jarvik May 1999 A
5904708 Goedeke May 1999 A
5911685 Siess et al. Jun 1999 A
5921913 Siess Jul 1999 A
5964694 Siess et al. Oct 1999 A
5980465 Elgas Nov 1999 A
6001056 Jassawalla et al. Dec 1999 A
6007478 Siess et al. Dec 1999 A
6018208 Maher et al. Jan 2000 A
6024704 Meador et al. Feb 2000 A
6050975 Poirier Apr 2000 A
6053873 Govari et al. Apr 2000 A
6071093 Hart Jun 2000 A
6116862 Rau et al. Sep 2000 A
6123659 le Blanc et al. Sep 2000 A
6135710 Araki et al. Oct 2000 A
6149405 Abe et al. Nov 2000 A
6155969 Schima et al. Dec 2000 A
6158984 Cao et al. Dec 2000 A
6161838 Balsells Dec 2000 A
6176822 Nix et al. Jan 2001 B1
6176848 Rau et al. Jan 2001 B1
6183412 Benkowsi et al. Feb 2001 B1
6185460 Thompson Feb 2001 B1
6186665 Maher et al. Feb 2001 B1
6190324 Kieval et al. Feb 2001 B1
6210318 Lederman Apr 2001 B1
6217541 Yu Apr 2001 B1
6220832 Schob Apr 2001 B1
6227820 Jarvik May 2001 B1
6231498 Pfeiffer et al. May 2001 B1
6245007 Bedingham Jun 2001 B1
6254359 Aber Jul 2001 B1
6264205 Balsells Jul 2001 B1
6264601 Jassawalla et al. Jul 2001 B1
6264645 Jonkman Jul 2001 B1
6293752 Clague et al. Sep 2001 B1
6314322 Rosenberg Nov 2001 B1
6351048 Schob et al. Feb 2002 B1
6361292 Chang et al. Mar 2002 B1
6398734 Cimochowski et al. Jun 2002 B1
6432136 Weiss et al. Aug 2002 B1
6438409 Malik et al. Aug 2002 B1
6445956 Laird et al. Sep 2002 B1
6447266 Antaki et al. Sep 2002 B2
6512949 Combs et al. Jan 2003 B1
6527698 Kung et al. Mar 2003 B1
6530876 Spence Mar 2003 B1
6533716 Schmitz-Rode et al. Mar 2003 B1
6540658 Fasciano et al. Apr 2003 B1
6540659 Milbocker Apr 2003 B1
6544216 Sammler et al. Apr 2003 B1
6561975 Pool et al. May 2003 B1
6579257 Elgas et al. Jun 2003 B1
6592620 Lancisi et al. Jul 2003 B1
6595743 Kazatchkov et al. Jul 2003 B1
6602182 Milbocker Aug 2003 B1
6605032 Benkowsi et al. Aug 2003 B2
6623475 Siess Sep 2003 B1
6652447 Benkowsi et al. Nov 2003 B2
6719791 Nüsser et al. Apr 2004 B1
6731976 Penn et al. May 2004 B2
6794789 Siess et al. Sep 2004 B2
6841910 Gery Jan 2005 B2
6879126 Paden et al. Apr 2005 B2
6912423 Ley Jun 2005 B2
6942611 Siess Sep 2005 B2
6949066 Bearnson et al. Sep 2005 B2
6969345 Jassawalla et al. Nov 2005 B2
6984201 Khaghani et al. Jan 2006 B2
7014620 Kim Mar 2006 B2
7022100 Aboul-Hosn et al. Apr 2006 B1
7024244 Muhlenberg et al. Apr 2006 B2
7027875 Siess et al. Apr 2006 B2
7011620 Siess May 2006 B1
7070398 Olsen et al. Jul 2006 B2
7070555 Siess Jul 2006 B2
7083588 Shmulewitz et al. Aug 2006 B1
7138776 Gauthier et al. Nov 2006 B1
7144364 Barbut et al. Dec 2006 B2
7160243 Medvedev Jan 2007 B2
7175588 Morello Feb 2007 B2
7177681 Xhu Feb 2007 B2
7238151 Frazier Jul 2007 B2
7241257 Ainsworth et al. Jul 2007 B1
7264606 Jarvik et al. Sep 2007 B2
7393181 McBride et al. Jul 2008 B2
7396327 Morello Jul 2008 B2
7462019 Allarie et al. Dec 2008 B1
7479102 Jarvik Jan 2009 B2
7502648 Okubo et al. Mar 2009 B2
7513864 Kantrowitz et al. Apr 2009 B2
7520850 Brockway Apr 2009 B2
7591777 LaRose Sep 2009 B2
7736296 Siess et al. Jun 2010 B2
7744560 Struble Jun 2010 B2
7762941 Jarvik Jul 2010 B2
7794384 Sugiura et al. Sep 2010 B2
7798952 Tansley et al. Sep 2010 B2
7819916 Yaegashi Oct 2010 B2
7841976 McBride et al. Nov 2010 B2
7850593 Vincent et al. Dec 2010 B2
7850594 Sutton et al. Dec 2010 B2
7856335 Morello et al. Dec 2010 B2
7862501 Woodward et al. Jan 2011 B2
7878967 Khanal Feb 2011 B1
7934909 Jenson Feb 2011 B2
7914436 Kung Mar 2011 B1
7951062 Morello May 2011 B2
7951129 Chinchoy May 2011 B2
7959551 Jarvik Jun 2011 B2
7963905 Salmonsen et al. Jun 2011 B2
7988728 Ayre Aug 2011 B2
7998190 Gharib et al. Aug 2011 B2
8012079 Delgado, III Sep 2011 B2
8075472 Zilbershlag et al. Dec 2011 B2
8088059 Jarvik Jan 2012 B2
8114008 Hidaka et al. Feb 2012 B2
8123669 Siess et al. Feb 2012 B2
RE43299 Siess Apr 2012 E
8152845 Bourque Apr 2012 B2
8177703 Smith et al. May 2012 B2
8190390 Morello et al. May 2012 B2
8211028 Karamanoglu et al. Jul 2012 B2
8216122 Kung Jul 2012 B2
8303482 Schima et al. Nov 2012 B2
8323173 Benkowsi et al. Dec 2012 B2
8371997 Shifflette Feb 2013 B2
8376926 Benkowsi et al. Feb 2013 B2
8382695 Patel Feb 2013 B1
8388565 Shifflette Mar 2013 B2
8419609 Shambaugh, Jr. et al. Apr 2013 B2
8435182 Tamura May 2013 B1
8449443 Rodefeld et al. May 2013 B2
8449444 Poirier May 2013 B2
8480555 Kung Jul 2013 B2
8485961 Campbell et al. Jul 2013 B2
8512012 Akdis et al. Aug 2013 B2
8535211 Campbell et al. Sep 2013 B2
8545380 Farnan et al. Oct 2013 B2
8562508 Dague et al. Oct 2013 B2
8585572 Mehmanesh Nov 2013 B2
8591393 Walters et al. Nov 2013 B2
8591538 Gellman Nov 2013 B2
8591539 Gellman Nov 2013 B2
8594790 Kjellstrom et al. Nov 2013 B2
8597170 Walters et al. Dec 2013 B2
8617239 Reitan Dec 2013 B2
8622949 Zafirelis et al. Jan 2014 B2
8641594 LaRose et al. Feb 2014 B2
8657733 Ayre et al. Feb 2014 B2
8657875 Kung et al. Feb 2014 B2
8684362 Balsells et al. Apr 2014 B2
8684904 Campbell et al. Apr 2014 B2
8690749 Nunez Apr 2014 B1
8715151 Poirier May 2014 B2
8721517 Zeng et al. May 2014 B2
8727959 Reitan et al. May 2014 B2
8731664 Foster et al. May 2014 B2
8734331 Evans et al. May 2014 B2
8747293 Arndt et al. Jun 2014 B2
8814933 Siess Aug 2014 B2
8849398 Evans Sep 2014 B2
8864642 Scheckel Oct 2014 B2
8864643 Reichenbach et al. Oct 2014 B2
8864644 Yomtov Oct 2014 B2
8876685 Crosby et al. Nov 2014 B2
8882477 Fritz, IV et al. Nov 2014 B2
8888728 Aboul-Hosn et al. Nov 2014 B2
8894387 White Nov 2014 B2
8897873 Schima et al. Nov 2014 B2
8900060 Liebing Dec 2014 B2
8900115 Bolling et al. Dec 2014 B2
8903492 Soykan et al. Dec 2014 B2
8932246 Ferrari Jan 2015 B2
8992406 Corbett Mar 2015 B2
8992407 Smith et al. Mar 2015 B2
9028216 Schumacher et al. May 2015 B2
9028392 Shifflette May 2015 B2
9033863 Jarvik May 2015 B2
9091271 Bourque Jul 2015 B2
9138518 Campbell et al. Sep 2015 B2
9144638 Zimmermann et al. Sep 2015 B2
9162017 Evans et al. Oct 2015 B2
9192705 Yanai et al. Nov 2015 B2
9199020 Siess Dec 2015 B2
9265870 Reichenbach et al. Feb 2016 B2
9297735 Graichen et al. Mar 2016 B2
9308305 Chen et al. Apr 2016 B2
9314556 Tuseth Apr 2016 B2
9327067 Zeng et al. May 2016 B2
9327068 Aboul-Hosn et al. May 2016 B2
9345824 Mohl et al. May 2016 B2
9370613 Hsu et al. Jun 2016 B2
9371826 Yanai et al. Jun 2016 B2
9381286 Spence et al. Jul 2016 B2
9421311 Tanner et al. Aug 2016 B2
9427508 Reyes et al. Aug 2016 B2
9433713 Corbett et al. Sep 2016 B2
9440013 Dowling et al. Sep 2016 B2
9474840 Siess Oct 2016 B2
9486566 Siess Nov 2016 B2
9492601 Casas et al. Nov 2016 B2
9511179 Casas et al. Dec 2016 B2
9533084 Siess et al. Jan 2017 B2
9539378 Tuseth Jan 2017 B2
9550017 Spanier et al. Jan 2017 B2
9555173 Spanier Jan 2017 B2
9555175 Bulent et al. Jan 2017 B2
9556873 Yanai et al. Jan 2017 B2
9561313 Taskin Feb 2017 B2
9566374 Spence et al. Feb 2017 B2
9579433 LaRose et al. Feb 2017 B2
9585991 Spence Mar 2017 B2
9592397 Hansen et al. Mar 2017 B2
9616157 Akdis Apr 2017 B2
9623162 Graham et al. Apr 2017 B2
9623163 Fischi Apr 2017 B1
9636442 Karmon et al. May 2017 B2
9656010 Burke May 2017 B2
9669142 Spanier et al. Jun 2017 B2
9669144 Spanier et al. Jun 2017 B2
9675738 Tanner et al. Jun 2017 B2
9675739 Tanner et al. Jun 2017 B2
9675740 Zeng et al. Jun 2017 B2
9682180 Hoarau et al. Jun 2017 B2
9694123 Bourque et al. Jul 2017 B2
9713701 Sarkar et al. Jul 2017 B2
9731058 Siebenhaar et al. Aug 2017 B2
9744282 Rosenberg et al. Aug 2017 B2
9759222 Zimmermann et al. Sep 2017 B2
9770543 Tanner et al. Sep 2017 B2
9789238 Aboul-Hosn et al. Oct 2017 B2
9801990 Lynch Oct 2017 B2
9814813 Corbett Nov 2017 B2
9821100 Corbett et al. Nov 2017 B2
9833550 Siess Dec 2017 B2
9848899 Sliwa et al. Dec 2017 B2
9849223 LaRose Dec 2017 B2
9849224 Angwin et al. Dec 2017 B2
9872948 Siess Jan 2018 B2
9878087 Richardson Jan 2018 B2
9907890 Muller Mar 2018 B2
9919087 Pfeffer et al. Mar 2018 B2
9943236 Bennett et al. Apr 2018 B2
9950101 Smith et al. Apr 2018 B2
9950102 Spence et al. Apr 2018 B2
9968719 Colella May 2018 B2
9974894 Morello May 2018 B2
9999714 Spanier et al. Jun 2018 B2
10010662 Wiesener et al. Jul 2018 B2
10022480 Greatrex et al. Jul 2018 B2
10029037 Muller et al. Jul 2018 B2
10052420 Medvedev et al. Aug 2018 B2
10123875 Wildhirt et al. Nov 2018 B2
10124102 Bulent et al. Nov 2018 B2
10130742 Tuseth Nov 2018 B2
10149932 McBride et al. Dec 2018 B2
10179197 Kaiser et al. Jan 2019 B2
10201645 Muller Feb 2019 B2
10207038 Neumann Feb 2019 B2
10220129 Ayre et al. Mar 2019 B2
10232099 Peters et al. Mar 2019 B2
10238782 Barry Mar 2019 B2
10238783 Aboul-Hosn et al. Mar 2019 B2
10251986 Larose et al. Apr 2019 B2
10279093 Reichenbach et al. May 2019 B2
10293090 Bonde et al. May 2019 B2
10300185 Aboul-Hosn et al. May 2019 B2
10300249 Tao et al. May 2019 B2
10322217 Spence Jun 2019 B2
10342906 D'Ambrosio et al. Jul 2019 B2
10350342 Thomas et al. Jul 2019 B2
10357598 Aboul-Hosn et al. Jul 2019 B2
10361617 Mueller et al. Jul 2019 B2
10371150 Wu et al. Aug 2019 B2
10376162 Edelman et al. Aug 2019 B2
10413651 Yomtov et al. Sep 2019 B2
10420869 Cornen Sep 2019 B2
10426879 Farnan Oct 2019 B2
10434232 Wu et al. Oct 2019 B2
10449275 Corbett Oct 2019 B2
10449279 Muller Oct 2019 B2
10478538 Scheckel et al. Nov 2019 B2
10478539 Pfeffer et al. Nov 2019 B2
10478542 Jahangir Nov 2019 B2
10500322 Karch Dec 2019 B2
10500323 Heuring et al. Dec 2019 B2
10512537 Corbett et al. Dec 2019 B2
10525178 Zeng Jan 2020 B2
10537670 Tuseth et al. Jan 2020 B2
10537672 Tuseth et al. Jan 2020 B2
10549020 Spence et al. Feb 2020 B2
10557475 Roehn Feb 2020 B2
10561771 Heilman et al. Feb 2020 B2
10561772 Schumacher Feb 2020 B2
10561773 Ferrari et al. Feb 2020 B2
10576191 LaRose Mar 2020 B2
10584589 Schumacher et al. Mar 2020 B2
10589012 Toellner et al. Mar 2020 B2
10589013 Bourque Mar 2020 B2
10610626 Spanier et al. Apr 2020 B2
10617808 Hastie et al. Apr 2020 B2
10632241 Schenck et al. Apr 2020 B2
10660998 Hodges May 2020 B2
10662967 Scheckel May 2020 B2
10668195 Flores Jun 2020 B2
10669855 Toellner et al. Jun 2020 B2
10722631 Salahieh et al. Jul 2020 B2
10732583 Rudser Aug 2020 B2
10814053 Throckmorton et al. Oct 2020 B2
10857273 Hodges et al. Dec 2020 B2
10857275 Granegger Dec 2020 B2
11027114 D'Ambrosio et al. Jun 2021 B2
11033729 Scheckel et al. Jun 2021 B2
11045638 Keenan et al. Jun 2021 B2
RE48649 Siess Jul 2021 E
11058863 Demou Jul 2021 B2
11058865 Fitzgerald et al. Jul 2021 B2
11065434 Egler et al. Jul 2021 B2
11067085 Granegger et al. Jul 2021 B2
11092158 Siess et al. Aug 2021 B2
11097092 Siess et al. Aug 2021 B2
11103689 Siess et al. Aug 2021 B2
11103690 Epple Aug 2021 B2
11107626 Siess et al. Aug 2021 B2
11120908 Agnello et al. Sep 2021 B2
11123538 Epple et al. Sep 2021 B2
11123539 Pfeffer et al. Sep 2021 B2
11123541 Corbett et al. Sep 2021 B2
11129978 Pfeffer et al. Sep 2021 B2
11131968 Rudser Sep 2021 B2
11141579 Steingräber Oct 2021 B2
11147960 Spanier et al. Oct 2021 B2
11154701 Reyes et al. Oct 2021 B2
11154702 Kadrolkar et al. Oct 2021 B2
11160970 Muller et al. Nov 2021 B2
11167124 Pfeffer et al. Nov 2021 B2
11173297 Muller Nov 2021 B2
11179557 Georges et al. Nov 2021 B2
11185678 Smith et al. Nov 2021 B2
11185680 Tuval et al. Nov 2021 B2
11185682 Farnan Nov 2021 B2
11191944 Tuval et al. Dec 2021 B2
11191945 Siess et al. Dec 2021 B2
11197618 Edelman et al. Dec 2021 B2
11197989 Arslan et al. Dec 2021 B2
11202901 Barry Dec 2021 B2
11217344 Agnello Jan 2022 B2
11219756 Tanner et al. Jan 2022 B2
11229786 Zeng et al. Jan 2022 B2
11235138 Gross-Hardt et al. Feb 2022 B2
11235139 Kudlik Feb 2022 B2
11235140 Siess et al. Feb 2022 B2
11241568 Keenan et al. Feb 2022 B2
11241569 Delgado, III Feb 2022 B2
11241572 Dague et al. Feb 2022 B2
11253693 Pfeffer et al. Feb 2022 B2
11260212 Tuval et al. Mar 2022 B2
11260213 Zeng et al. Mar 2022 B2
11260215 Scheckel et al. Mar 2022 B2
11273299 Wolman et al. Mar 2022 B2
11273300 Schafir Mar 2022 B2
11273301 Pfeffer et al. Mar 2022 B2
11278711 Liebing Mar 2022 B2
11280345 Bredenbreuker et al. Mar 2022 B2
11285309 Tuval et al. Mar 2022 B2
11285310 Curran et al. Mar 2022 B2
11285311 Siess et al. Mar 2022 B2
11291824 Schwammenthal et al. Apr 2022 B2
11291825 Tuval et al. Apr 2022 B2
11291826 Tuval et al. Apr 2022 B2
11298519 Josephy et al. Apr 2022 B2
11298520 Schwammenthal et al. Apr 2022 B2
11298521 Schwammenthal et al. Apr 2022 B2
11298523 Tuval et al. Apr 2022 B2
11298524 El Katerji et al. Apr 2022 B2
11298525 Jahangir Apr 2022 B2
11305103 Larose et al. Apr 2022 B2
11305105 Corbett et al. Apr 2022 B2
11311711 Casas et al. Apr 2022 B2
11311712 Zeng et al. Apr 2022 B2
11313228 Schumacher et al. Apr 2022 B2
11316679 Agnello Apr 2022 B2
D951435 Motomura et al. May 2022 S
11318295 Reyes et al. May 2022 B2
11320382 Aikawa May 2022 B2
11324395 Banik et al. May 2022 B2
11324940 Earles et al. May 2022 B2
11324941 Xu et al. May 2022 B2
11331082 Itoh et al. May 2022 B2
11331465 Epple May 2022 B2
11331466 Keen et al. May 2022 B2
11331467 King et al. May 2022 B2
11331470 Muller et al. May 2022 B2
11337724 Masubuchi et al. May 2022 B2
11338124 Pfeffer et al. May 2022 B2
11338125 Liu et al. May 2022 B2
11344716 Taskin May 2022 B2
11344717 Kallenbach et al. May 2022 B2
11351356 Mohl Jun 2022 B2
11351357 Mohl Jun 2022 B2
11351358 Nix et al. Jun 2022 B2
11351359 Clifton et al. Jun 2022 B2
11357438 Stewart et al. Jun 2022 B2
11357967 Zeng et al. Jun 2022 B2
11357968 El Katerji et al. Jun 2022 B2
11364373 Corbett et al. Jun 2022 B2
11368081 Vogt et al. Jun 2022 B2
11369785 Callaway et al. Jun 2022 B2
11369786 Menon et al. Jun 2022 B2
11376415 Mohl Jul 2022 B2
11376419 Reyes et al. Jul 2022 B2
11389639 Casas Jul 2022 B2
11389641 Nguyen et al. Jul 2022 B2
11413443 Hodges et al. Aug 2022 B2
11413444 Nix et al. Aug 2022 B2
11413445 Brown et al. Aug 2022 B2
11413446 Siess et al. Aug 2022 B2
11415150 Richert et al. Aug 2022 B2
11420041 Karch Aug 2022 B2
11421701 Schumacher et al. Aug 2022 B2
11428236 McBride et al. Aug 2022 B2
11433168 Wu et al. Sep 2022 B2
11434921 McBride et al. Sep 2022 B2
11434922 Roehn Sep 2022 B2
11439806 Kimball et al. Sep 2022 B2
11446481 Wolman et al. Sep 2022 B2
11446482 Kirchhoff et al. Sep 2022 B2
11452859 Earles et al. Sep 2022 B2
11460030 Shambaugh et al. Oct 2022 B2
11471662 Akkerman et al. Oct 2022 B2
11471663 Tuval et al. Oct 2022 B2
11471665 Clifton et al. Oct 2022 B2
11478627 Siess et al. Oct 2022 B2
11478628 Muller et al. Oct 2022 B2
11478629 Harjes et al. Oct 2022 B2
11484698 Radman Nov 2022 B2
11484699 Tuval et al. Nov 2022 B2
11486400 Schumacher Nov 2022 B2
11491320 Siess Nov 2022 B2
11491322 Muller et al. Nov 2022 B2
11497896 Tanner et al. Nov 2022 B2
11497906 Grace et al. Nov 2022 B2
11511101 Hastie et al. Nov 2022 B2
11511103 Salahieh et al. Nov 2022 B2
11511104 Dur et al. Nov 2022 B2
11517726 Siess et al. Dec 2022 B2
11517736 Earles et al. Dec 2022 B2
11517737 Struthers et al. Dec 2022 B2
11517738 Wisniewski Dec 2022 B2
11517739 Toellner Dec 2022 B2
11517740 Agarwa et al. Dec 2022 B2
11521723 Liu et al. Dec 2022 B2
11524137 Jahangir Dec 2022 B2
11524165 Tan et al. Dec 2022 B2
11527322 Agnello et al. Dec 2022 B2
11529062 Moyer et al. Dec 2022 B2
11534596 Schafir et al. Dec 2022 B2
11554260 Reyes et al. Jan 2023 B2
11565103 Farago et al. Jan 2023 B2
11569015 Mourran et al. Jan 2023 B2
11572879 Mohl Feb 2023 B2
11574741 Tan et al. Feb 2023 B2
11577067 Breidall et al. Feb 2023 B2
11577068 Spence et al. Feb 2023 B2
11581083 El Katerji et al. Feb 2023 B2
11583659 Pfeffer et al. Feb 2023 B2
11583670 Pfeifer et al. Feb 2023 B2
11583671 Nguyen et al. Feb 2023 B2
11583672 Weber et al. Feb 2023 B2
11587337 Lemay et al. Feb 2023 B2
11590336 Harjes et al. Feb 2023 B2
11590337 Granegger et al. Feb 2023 B2
11590338 Barry Feb 2023 B2
11592028 Schumacher et al. Feb 2023 B2
11596727 Siess et al. Mar 2023 B2
11602627 Leonhardt Mar 2023 B2
11617876 Scheckel et al. Apr 2023 B2
11622695 Adriola et al. Apr 2023 B1
11628293 Gandhi et al. Apr 2023 B2
11632015 Sconzert et al. Apr 2023 B2
11633586 Tanner et al. Apr 2023 B2
11638813 West May 2023 B2
11639722 Medvedev et al. May 2023 B2
11642511 Delgado, III May 2023 B2
11648386 Poirer May 2023 B2
11648387 Schwammenthal et al. May 2023 B2
11648388 Siess et al. May 2023 B2
11648389 Wang et al. May 2023 B2
11648390 Spanier et al. May 2023 B2
11648391 Schwammenthal et al. May 2023 B2
11648392 Tuval et al. May 2023 B2
11648393 Taskin et al. May 2023 B2
11653841 Reyes et al. May 2023 B2
11654273 Granegger et al. May 2023 B2
11654275 Brandt May 2023 B2
11654276 Fitzgerald et al. May 2023 B2
11660441 Fitzgerald et al. May 2023 B2
11666746 Ferrari et al. Jun 2023 B2
11666747 Tuval et al. Jun 2023 B2
11666748 Kronstedt et al. Jun 2023 B2
11668321 Richert et al. Jun 2023 B2
11674517 Mohl Jun 2023 B2
11676718 Agnello et al. Jun 2023 B2
11679234 King et al. Jun 2023 B2
11679249 Scheckel et al. Jun 2023 B2
11684275 Tuval et al. Jun 2023 B2
11684276 Cros et al. Jun 2023 B2
11684769 Harjes et al. Jun 2023 B2
11690521 Tuval et al. Jul 2023 B2
11690996 Siess et al. Jul 2023 B2
11694539 Kudlik et al. Jul 2023 B2
11694813 El Katerji et al. Jul 2023 B2
11696782 Carlson et al. Jul 2023 B2
11697016 Epple Jul 2023 B2
11701510 Demou Jul 2023 B2
11702938 Schumacher et al. Jul 2023 B2
11703064 Bredenbreuker et al. Jul 2023 B2
11707617 Reyes et al. Jul 2023 B2
11708833 McBride et al. Jul 2023 B2
11712167 Medvedev et al. Aug 2023 B2
11744987 Siess et al. Sep 2023 B2
11745005 Delgado, III Sep 2023 B2
11746906 Balta et al. Sep 2023 B1
11752322 Aboulhosn et al. Sep 2023 B2
11752323 Edwards et al. Sep 2023 B2
11754075 Schuelke et al. Sep 2023 B2
11754077 Mohl Sep 2023 B1
11759612 Tanner et al. Sep 2023 B2
11759622 Siess et al. Sep 2023 B2
11766555 Matthes et al. Sep 2023 B2
D1001145 Lussier et al. Oct 2023 S
D1001146 Lussier et al. Oct 2023 S
11771884 Siess et al. Oct 2023 B2
11771885 Liu et al. Oct 2023 B2
11779234 Harjes et al. Oct 2023 B2
11779751 Earles et al. Oct 2023 B2
11781550 Siess et al. Oct 2023 B2
11786386 Brady et al. Oct 2023 B2
11786700 Pfeffer et al. Oct 2023 B2
11786720 Muller Oct 2023 B2
11790487 Barbato et al. Oct 2023 B2
11793994 Josephy et al. Oct 2023 B2
11804767 Vogt et al. Oct 2023 B2
11806116 Tuval et al. Nov 2023 B2
11806117 Tuval et al. Nov 2023 B2
11806517 Petersen Nov 2023 B2
11806518 Michelena et al. Nov 2023 B2
11813079 Lau et al. Nov 2023 B2
11813443 Hanson et al. Nov 2023 B2
11813444 Siess et al. Nov 2023 B2
11818782 Doudian et al. Nov 2023 B2
11819678 Siess et al. Nov 2023 B2
11824381 Conyers et al. Nov 2023 B2
11826127 Casas Nov 2023 B2
11832793 McWeeney et al. Dec 2023 B2
11832868 Smail et al. Dec 2023 B2
11833278 Siess et al. Dec 2023 B2
11833342 Tanner et al. Dec 2023 B2
11837364 Lee et al. Dec 2023 B2
11839754 Tuval et al. Dec 2023 B2
11844592 Tuval et al. Dec 2023 B2
11844940 D'Ambrosio et al. Dec 2023 B2
11850073 Wright et al. Dec 2023 B2
11850412 Grauwinkel et al. Dec 2023 B2
11850413 Zeng et al. Dec 2023 B2
11850414 Schenck et al. Dec 2023 B2
11850415 Schwammenthal et al. Dec 2023 B2
D1012284 Glaser et al. Jan 2024 S
11857345 Hanson et al. Jan 2024 B2
11857743 Fantuzzi et al. Jan 2024 B2
11857777 Earles et al. Jan 2024 B2
11864878 Duval et al. Jan 2024 B2
11865238 Siess et al. Jan 2024 B2
11872384 Cotter Jan 2024 B2
11883005 Golden et al. Jan 2024 B2
11883207 El Katerji et al. Jan 2024 B2
11883310 Nolan et al. Jan 2024 B2
11883641 Dur et al. Jan 2024 B2
D1014552 Lussier et al. Feb 2024 S
11890082 Cros et al. Feb 2024 B2
11890212 Gilmartin et al. Feb 2024 B2
11896199 Lent et al. Feb 2024 B2
11896482 Delaloye et al. Feb 2024 B2
11898642 Stanton et al. Feb 2024 B2
11900660 Saito et al. Feb 2024 B2
11903657 Geric et al. Feb 2024 B2
11904104 Jahangir Feb 2024 B2
11906411 Graichen et al. Feb 2024 B2
11911550 Itamochi et al. Feb 2024 B2
11911579 Tanner et al. Feb 2024 B2
D1017634 Lussier et al. Mar 2024 S
D1017699 Moore et al. Mar 2024 S
11918470 Jarral et al. Mar 2024 B2
11918496 Folan Mar 2024 B2
11918726 Siess et al. Mar 2024 B2
11918800 Muller et al. Mar 2024 B2
11923078 Fallen et al. Mar 2024 B2
11923093 Moffitt et al. Mar 2024 B2
11925356 Anderson et al. Mar 2024 B2
11925570 Lydecker et al. Mar 2024 B2
11925794 Malkin et al. Mar 2024 B2
11925795 Muller et al. Mar 2024 B2
11925796 Tanner et al. Mar 2024 B2
11925797 Tanner et al. Mar 2024 B2
11931073 Walsh et al. Mar 2024 B2
11931528 Rohl et al. Mar 2024 B2
11931588 Aghassian Mar 2024 B2
11938311 Corbett et al. Mar 2024 B2
11944805 Stotz Apr 2024 B2
11980385 Haselman May 2024 B2
11986274 Edelman May 2024 B2
11986604 Siess May 2024 B2
12005248 Vogt et al. Jun 2024 B2
20010009645 Noda Jul 2001 A1
20010016686 Okada et al. Aug 2001 A1
20010037093 Benkowski et al. Nov 2001 A1
20010039828 Shin et al. Nov 2001 A1
20010041934 Yamazaki et al. Nov 2001 A1
20020076322 Maeda et al. Jun 2002 A1
20020147495 Petroff Oct 2002 A1
20020151761 Viole et al. Oct 2002 A1
20020153664 Schroeder Oct 2002 A1
20030060685 Houser Mar 2003 A1
20030069465 Benkowski et al. Apr 2003 A1
20030091450 Davis et al. May 2003 A1
20030100816 Siess May 2003 A1
20030111800 Kreutzer Jun 2003 A1
20030130581 Salo et al. Jul 2003 A1
20030139643 Smith et al. Jul 2003 A1
20030167002 Nagar et al. Sep 2003 A1
20030191357 Frazier Oct 2003 A1
20040022640 Siess et al. Feb 2004 A1
20040044266 Siess et al. Mar 2004 A1
20040065143 Husher Apr 2004 A1
20040102674 Zadini et al. May 2004 A1
20040115038 Nuesser et al. Jun 2004 A1
20040167376 Peters et al. Aug 2004 A1
20040167410 Hettrick Aug 2004 A1
20040225177 Coleman et al. Nov 2004 A1
20040234391 Izraelev Nov 2004 A1
20040241019 Goldowsky Dec 2004 A1
20040260346 Overall et al. Dec 2004 A1
20050006083 Chen et al. Jan 2005 A1
20050019167 Nusser et al. Jan 2005 A1
20050085683 Bolling et al. Apr 2005 A1
20050107658 Brockway May 2005 A1
20050126268 Ouriev et al. Jun 2005 A1
20050220636 Henein et al. Oct 2005 A1
20050267322 LaRose Dec 2005 A1
20060030809 Barzilay et al. Feb 2006 A1
20060062672 McBride et al. Mar 2006 A1
20060108901 Mao-Chin May 2006 A1
20060122583 Pesach et al. Jun 2006 A1
20060155158 Aboul-Hosn Jul 2006 A1
20060196277 Allen et al. Sep 2006 A1
20060224110 Scott et al. Oct 2006 A1
20060229488 Ayre et al. Oct 2006 A1
20060276682 Bolling et al. Dec 2006 A1
20060287600 McEowen Dec 2006 A1
20060287604 Hickey Dec 2006 A1
20070004959 Carrier et al. Jan 2007 A1
20070060787 Peters et al. Mar 2007 A1
20070073352 Euler et al. Mar 2007 A1
20070088214 Shuros et al. Apr 2007 A1
20070142696 Crosby et al. Jun 2007 A1
20070156006 Smith et al. Jul 2007 A1
20070255352 Roline et al. Nov 2007 A1
20070266778 Corey et al. Nov 2007 A1
20070282209 Lui et al. Dec 2007 A1
20080015517 Geistert et al. Jan 2008 A1
20080058925 Cohen Mar 2008 A1
20080082005 Stern et al. Apr 2008 A1
20080086027 Siess et al. Apr 2008 A1
20080091239 Johansson et al. Apr 2008 A1
20080097595 Gabbay Apr 2008 A1
20080102096 Molin et al. May 2008 A1
20080108901 Baba et al. May 2008 A1
20080108930 Weitzel et al. May 2008 A1
20080114339 McBride et al. May 2008 A1
20080133006 Crosby et al. Jun 2008 A1
20080146996 Smisson Jun 2008 A1
20080210016 Zwirn et al. Sep 2008 A1
20080262289 Goldowsky Oct 2008 A1
20080262361 Gutfinger et al. Oct 2008 A1
20080269822 Ljungstrom et al. Oct 2008 A1
20080275339 Thiemann et al. Nov 2008 A1
20080292478 Baykut et al. Nov 2008 A1
20080306328 Ercolani Dec 2008 A1
20090004037 Ito Jan 2009 A1
20090024042 Nunez et al. Jan 2009 A1
20090025459 Zhang et al. Jan 2009 A1
20090064755 Fleischli et al. Mar 2009 A1
20090105799 Hekmat et al. Apr 2009 A1
20090112312 Larose et al. Apr 2009 A1
20090131765 Roschak et al. May 2009 A1
20090203957 LaRose et al. Aug 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204205 Larose et al. Aug 2009 A1
20090226328 Morello Sep 2009 A1
20090312650 Maile et al. Dec 2009 A1
20100010354 Skerl et al. Jan 2010 A1
20100041939 Siess Feb 2010 A1
20100082099 Vodermayer et al. Apr 2010 A1
20100087742 Bishop et al. Apr 2010 A1
20100160801 Takatani et al. Jun 2010 A1
20100191035 Kang et al. Jul 2010 A1
20100219967 Kaufmann Sep 2010 A1
20100222632 Poirier Sep 2010 A1
20100222633 Poirier Sep 2010 A1
20100222635 Poirier Sep 2010 A1
20100222878 Poirier Sep 2010 A1
20100268017 Siess Oct 2010 A1
20100298625 Reichenbach et al. Nov 2010 A1
20100324378 Tran et al. Dec 2010 A1
20110004075 Stahmann et al. Jan 2011 A1
20110022057 Eigler et al. Jan 2011 A1
20110071336 Yomtov Mar 2011 A1
20110144744 Wampler Jun 2011 A1
20110184224 Garrigue Jul 2011 A1
20110184301 Holmstrom Jul 2011 A1
20110218435 Srinivasan et al. Sep 2011 A1
20110230821 Babic Sep 2011 A1
20110237863 Ricci et al. Sep 2011 A1
20110238172 Akdis Sep 2011 A1
20120022645 Burke Jan 2012 A1
20120035645 Gross Feb 2012 A1
20120084024 Norcross, Jr. Apr 2012 A1
20120088954 Foster Apr 2012 A1
20120093628 Liebing Apr 2012 A1
20120134793 Wu et al. May 2012 A1
20120150089 Penka et al. Jun 2012 A1
20120172655 Campbell et al. Jul 2012 A1
20120178986 Campbell et al. Jul 2012 A1
20120203476 Dam Aug 2012 A1
20120247200 Ahonen et al. Oct 2012 A1
20120283506 Meister et al. Nov 2012 A1
20120310036 Peters et al. Dec 2012 A1
20120310037 Choi et al. Dec 2012 A1
20120330214 Peters et al. Dec 2012 A1
20130041204 Heilman et al. Feb 2013 A1
20130046129 Medvedev et al. Feb 2013 A1
20130053623 Evans Feb 2013 A1
20130066141 Doerr et al. Mar 2013 A1
20130066142 Doerr et al. Mar 2013 A1
20130072846 Heide et al. Mar 2013 A1
20130085318 Toellner Apr 2013 A1
20130116575 Mickle et al. May 2013 A1
20130144379 Najafi et al. Jun 2013 A1
20130209292 Baykut et al. Aug 2013 A1
20130281761 Kapur Oct 2013 A1
20130289376 Lang Oct 2013 A1
20130303830 Zeng et al. Nov 2013 A1
20130303831 Evans Nov 2013 A1
20130303832 Wampler Nov 2013 A1
20130330219 LaRose et al. Dec 2013 A1
20140005467 Farnan et al. Jan 2014 A1
20140013852 Brown et al. Jan 2014 A1
20140051908 Khanal et al. Feb 2014 A1
20140079557 LaRose et al. Mar 2014 A1
20140100414 Tamez et al. Apr 2014 A1
20140107399 Spence Apr 2014 A1
20140114202 Hein et al. Apr 2014 A1
20140128659 Heuring et al. May 2014 A1
20140167545 Bremner et al. Jun 2014 A1
20140194717 Wildhirt et al. Jul 2014 A1
20140200389 Yanai et al. Jul 2014 A1
20140207232 Garrigue Jul 2014 A1
20140243688 Caron et al. Aug 2014 A1
20140275720 Ferrari Sep 2014 A1
20140275721 Yanai et al. Sep 2014 A1
20140296677 McEowen Oct 2014 A1
20140303426 Kerkhoffs et al. Oct 2014 A1
20140330069 Hastings et al. Nov 2014 A1
20140341726 Wu et al. Nov 2014 A1
20150031936 LaRose et al. Jan 2015 A1
20150032007 Ottevanger et al. Jan 2015 A1
20150051435 Siess et al. Feb 2015 A1
20150051438 Taskin Feb 2015 A1
20150099923 Magovern et al. Apr 2015 A1
20150141832 Yu et al. May 2015 A1
20150141842 Spanier et al. May 2015 A1
20150157216 Stigall et al. Jun 2015 A1
20150171694 Dallas Jun 2015 A1
20150174307 Eckman et al. Jun 2015 A1
20150190092 Mori Jul 2015 A1
20150250935 Anderson et al. Sep 2015 A1
20150273184 Scott et al. Oct 2015 A1
20150290372 Muller et al. Oct 2015 A1
20150290373 Rudser et al. Oct 2015 A1
20150306290 Rosenberg et al. Oct 2015 A1
20150306291 Bonde et al. Oct 2015 A1
20150327921 Govari Nov 2015 A1
20150335804 Marseille et al. Nov 2015 A1
20150343179 Schumacher et al. Dec 2015 A1
20150365738 Purvis et al. Dec 2015 A1
20160000983 Mohl et al. Jan 2016 A1
20160008531 Wang et al. Jan 2016 A1
20160022889 Bluvshtein et al. Jan 2016 A1
20160022890 Schwammenthal et al. Jan 2016 A1
20160030649 Zeng Feb 2016 A1
20160038663 Taskin et al. Feb 2016 A1
20160045165 Braido et al. Feb 2016 A1
20160045654 Connor Feb 2016 A1
20160095968 Rudser Apr 2016 A1
20160101230 Ochsner et al. Apr 2016 A1
20160144089 Woo et al. May 2016 A1
20160144166 Decréet al. May 2016 A1
20160166747 Frazier et al. Jun 2016 A1
20160213828 Sievers Jul 2016 A1
20160223086 Balsells et al. Aug 2016 A1
20160250399 Tiller et al. Sep 2016 A1
20160278856 Panescu Sep 2016 A1
20160279311 Cecere et al. Sep 2016 A1
20160338629 Doerr Nov 2016 A1
20160367739 Wiesener et al. Dec 2016 A1
20160375187 Lee et al. Dec 2016 A1
20170010144 Lenner et al. Jan 2017 A1
20170021069 Hodges Jan 2017 A1
20170021070 Petersen Jan 2017 A1
20170021074 Opfermann et al. Jan 2017 A1
20170035952 Muller Feb 2017 A1
20170049945 Halvorsen et al. Feb 2017 A1
20170049947 Corbett et al. Feb 2017 A1
20170080136 Janeczek et al. Mar 2017 A1
20170086780 Sokulin et al. Mar 2017 A1
20170087286 Spanier et al. Mar 2017 A1
20170087288 Groß-HardtTim et al. Mar 2017 A1
20170112985 Yomtov Apr 2017 A1
20170128644 Foster May 2017 A1
20170128646 Karch May 2017 A1
20170136164 Yeatts May 2017 A1
20170136225 Siess et al. May 2017 A1
20170143952 Siess et al. May 2017 A1
20170157309 Begg et al. Jun 2017 A1
20170202575 Stanfield et al. Jul 2017 A1
20170209633 Cohen Jul 2017 A1
20170224279 Cahan et al. Aug 2017 A1
20170239407 Hayward Aug 2017 A1
20170258980 Katsuki et al. Sep 2017 A1
20170274128 Tamburino et al. Sep 2017 A1
20170333607 Zarins Nov 2017 A1
20170333608 Zeng Nov 2017 A1
20170340787 Corbett et al. Nov 2017 A1
20170340788 Korakianitis et al. Nov 2017 A1
20170340789 Bonde et al. Nov 2017 A1
20170343043 Walsh et al. Nov 2017 A1
20170348470 D'Ambrosio et al. Dec 2017 A1
20170354812 Callaghan et al. Dec 2017 A1
20180015214 Lynch Jan 2018 A1
20180021494 Muller et al. Jan 2018 A1
20180021495 Muller et al. Jan 2018 A1
20180050141 Corbett et al. Feb 2018 A1
20180055979 Corbett et al. Mar 2018 A1
20180064860 Nunez et al. Mar 2018 A1
20180078159 Edelman et al. Mar 2018 A1
20180093070 Cottone Apr 2018 A1
20180099076 LaRose Apr 2018 A1
20180110907 Keenan et al. Apr 2018 A1
20180110910 Rodemerk et al. Apr 2018 A1
20180133379 Farnan et al. May 2018 A1
20180154058 Menon et al. Jun 2018 A1
20180169312 Barry Jun 2018 A1
20180169313 Schwammenthal et al. Jun 2018 A1
20180207336 Solem Jul 2018 A1
20180221551 Tanner et al. Aug 2018 A1
20180221553 Taskin Aug 2018 A1
20180228950 Janeczek et al. Aug 2018 A1
20180228953 Siess et al. Aug 2018 A1
20180243004 von Segesser et al. Aug 2018 A1
20180243489 Haddadi Aug 2018 A1
20180250456 Nitzan et al. Sep 2018 A1
20180250457 Morello et al. Sep 2018 A1
20180256796 Hansen Sep 2018 A1
20180256797 Schenck et al. Sep 2018 A1
20180256800 Conyers et al. Sep 2018 A1
20180264182 Spanier et al. Sep 2018 A1
20180280598 Curran et al. Oct 2018 A1
20180289877 Schumacher et al. Oct 2018 A1
20180303990 Siess et al. Oct 2018 A1
20180311423 Zeng et al. Nov 2018 A1
20180316209 Gliner Nov 2018 A1
20180318483 Dague et al. Nov 2018 A1
20180318547 Yokoyama Nov 2018 A1
20180326131 Muller et al. Nov 2018 A1
20180326132 Maimon et al. Nov 2018 A1
20180335037 Shambaugh et al. Nov 2018 A1
20180345028 Aboud et al. Dec 2018 A1
20180353667 Moyer et al. Dec 2018 A1
20180361042 Fitzgerald et al. Dec 2018 A1
20180369469 Le Duc De Lillers et al. Dec 2018 A1
20190001034 Taskin et al. Jan 2019 A1
20190001038 Yomtov et al. Jan 2019 A1
20190004037 Zhang et al. Jan 2019 A1
20190030228 Keenan et al. Jan 2019 A1
20190046702 Siess et al. Feb 2019 A1
20190046703 Shambaugh et al. Feb 2019 A1
20190054223 Frazier et al. Feb 2019 A1
20190060539 Siess et al. Feb 2019 A1
20190060543 Khanal et al. Feb 2019 A1
20190076167 Fantuzzi et al. Mar 2019 A1
20190083690 Siess et al. Mar 2019 A1
20190099532 Er Apr 2019 A1
20190101130 Bredenbreuker et al. Apr 2019 A1
20190105437 Siess et al. Apr 2019 A1
20190117865 Walters et al. Apr 2019 A1
20190125948 Stanfield et al. May 2019 A1
20190143016 Corbett et al. May 2019 A1
20190143018 Salahieh et al. May 2019 A1
20190154053 McBride et al. May 2019 A1
20190167122 Obermiller et al. Jun 2019 A1
20190167875 Simon et al. Jun 2019 A1
20190167878 Rowe Jun 2019 A1
20190170153 Scheckel Jun 2019 A1
20190175806 Tuval et al. Jun 2019 A1
20190184078 Zilbershlag et al. Jun 2019 A1
20190184080 Mohl Jun 2019 A1
20190192752 Tiller et al. Jun 2019 A1
20190192753 Liu et al. Jun 2019 A1
20190201603 Siess et al. Jul 2019 A1
20190209755 Nix et al. Jul 2019 A1
20190209758 Tuval et al. Jul 2019 A1
20190211836 Schumacher et al. Jul 2019 A1
20190211846 Liebing Jul 2019 A1
20190216995 Kapur et al. Jul 2019 A1
20190217002 Urakabe Jul 2019 A1
20190223877 Nitzen et al. Jul 2019 A1
20190240680 Hayakawa Aug 2019 A1
20190254543 Hartholt et al. Aug 2019 A1
20190269840 Tuval et al. Sep 2019 A1
20190275224 Hanson et al. Sep 2019 A1
20190282741 Franano et al. Sep 2019 A1
20190282744 D'Ambrosio et al. Sep 2019 A1
20190290817 Guo et al. Sep 2019 A1
20190298902 Siess et al. Oct 2019 A1
20190316591 Toellner Oct 2019 A1
20190321527 King et al. Oct 2019 A1
20190321529 Korakianitis et al. Oct 2019 A1
20190321531 Cambronne et al. Oct 2019 A1
20190336664 Liebing Nov 2019 A1
20190344000 Kushwaha et al. Nov 2019 A1
20190344001 Salahieh et al. Nov 2019 A1
20190351117 Cambronne et al. Nov 2019 A1
20190351118 Graichen et al. Nov 2019 A1
20190351119 Cambronne et al. Nov 2019 A1
20190351120 Kushwaha et al. Nov 2019 A1
20190358378 Schumacher Nov 2019 A1
20190358379 Wiessler et al. Nov 2019 A1
20190358384 Epple Nov 2019 A1
20190365975 Muller et al. Dec 2019 A1
20190383298 Toellner Dec 2019 A1
20200016309 Kallenbach et al. Jan 2020 A1
20200023109 Epple Jan 2020 A1
20200030507 Higgins et al. Jan 2020 A1
20200030509 Siess et al. Jan 2020 A1
20200030510 Higgins Jan 2020 A1
20200030511 Higgins Jan 2020 A1
20200030512 Higgins et al. Jan 2020 A1
20200038567 Siess et al. Feb 2020 A1
20200038568 Higgins et al. Feb 2020 A1
20200038571 Jahangir Feb 2020 A1
20200060559 Edelman et al. Feb 2020 A1
20200069857 Schwammenthal et al. Mar 2020 A1
20200088207 Schumacher et al. Mar 2020 A1
20200114053 Salahieh et al. Apr 2020 A1
20200129684 Pfeffer et al. Apr 2020 A1
20200139028 Scheckel et al. May 2020 A1
20200139029 Scheckel et al. May 2020 A1
20200147283 Tanner et al. May 2020 A1
20200164125 Muller et al. May 2020 A1
20200164126 Muller May 2020 A1
20200253583 Brisken et al. Aug 2020 A1
20200312450 Agnello et al. Oct 2020 A1
20200345337 Muller et al. Nov 2020 A1
20200350812 Vogt et al. Nov 2020 A1
20210052793 Struthers et al. Feb 2021 A1
20210236803 Stotz Aug 2021 A1
20210268264 Stotz Sep 2021 A1
20210290087 Schlebusch Sep 2021 A1
20210290929 Stotz Sep 2021 A1
20210290930 Kassel Sep 2021 A1
20210290932 Stotz Sep 2021 A1
20210290933 Stotz Sep 2021 A1
20210290937 Baumbach Sep 2021 A1
20210313869 Strasswiemer et al. Oct 2021 A1
20210316133 Kassel et al. Oct 2021 A1
20210322756 Vollmer et al. Oct 2021 A1
20210330958 Stotz et al. Oct 2021 A1
20210338999 Stotz et al. Nov 2021 A1
20210339002 Schlebusch et al. Nov 2021 A1
20210339004 Schlebusch et al. Nov 2021 A1
20210339005 Stotz et al. Nov 2021 A1
20210346674 Baumbach et al. Nov 2021 A1
20210346675 Schlebusch et al. Nov 2021 A1
20210346676 Schlebusch et al. Nov 2021 A1
20210346677 Baumbach et al. Nov 2021 A1
20210346678 Baumbach et al. Nov 2021 A1
20210346680 Vogt et al. Nov 2021 A1
20210378523 Budde Dec 2021 A1
20210379352 Schlebusch et al. Dec 2021 A1
20210379355 Schuelke et al. Dec 2021 A1
20210379359 Schellenberg Dec 2021 A1
20210379360 Schellenberg Dec 2021 A1
20210384812 Vollmer et al. Dec 2021 A1
20210393944 Wenning Dec 2021 A1
20220008714 Stotz Jan 2022 A1
20220016411 Winterwerber Jan 2022 A1
20220032032 Schlebusch et al. Feb 2022 A1
20220032036 Baumbach et al. Feb 2022 A1
20220039669 Schlebusch et al. Feb 2022 A1
20220047173 Stotz et al. Feb 2022 A1
20220050037 Stotz et al. Feb 2022 A1
20220072296 Mori Mar 2022 A1
20220072297 Tuval et al. Mar 2022 A1
20220072298 Spanier et al. Mar 2022 A1
20220076807 Agnello Mar 2022 A1
20220079457 Tuval et al. Mar 2022 A1
20220080178 Salahieh et al. Mar 2022 A1
20220080180 Siess et al. Mar 2022 A1
20220080182 Earles et al. Mar 2022 A1
20220080183 Earles et al. Mar 2022 A1
20220080184 Clifton et al. Mar 2022 A1
20220080185 Clifton et al. Mar 2022 A1
20220105337 Salahieh et al. Apr 2022 A1
20220105339 Nix et al. Apr 2022 A1
20220126083 Grauwinkel et al. Apr 2022 A1
20220126085 Farnan Apr 2022 A1
20220126086 Schlebusch et al. Apr 2022 A1
20220142462 Douk et al. May 2022 A1
20220161018 Mitze et al. May 2022 A1
20220161019 Mitze et al. May 2022 A1
20220161021 Mitze et al. May 2022 A1
20220241580 Stotz et al. Aug 2022 A1
20220407403 Vogt et al. Dec 2022 A1
20230001178 Corbett et al. Jan 2023 A1
20230173250 Stigloher Jun 2023 A1
20230191141 Wenning et al. Jun 2023 A1
20230277833 Sharma et al. Sep 2023 A1
20230277836 Schellenberg et al. Sep 2023 A1
20230293878 Christof et al. Sep 2023 A1
20230364411 Bette Nov 2023 A1
20240011808 Winzer et al. Jan 2024 A1
20240074828 Wenning Mar 2024 A1
20240075277 Schellenberg Mar 2024 A1
20240102475 Schuelke et al. Mar 2024 A1
Foreign Referenced Citations (615)
Number Date Country
7993698 Feb 1999 AU
2002308409 Dec 2005 AU
2012261669 Jan 2013 AU
2013203301 May 2013 AU
2013273663 Jan 2014 AU
PI0904483-3 Jul 2011 BR
2 026 692 Apr 1992 CA
2 026 693 Apr 1992 CA
2 664 835 Feb 2008 CA
2 796 357 Oct 2011 CA
3 122 415 Jul 2020 CA
2 947 984 Nov 2022 CA
1192351 Sep 1998 CN
1222862 Jul 1999 CN
1254598 May 2000 CN
1376523 Oct 2002 CN
2535055 Feb 2003 CN
1118304 Aug 2003 CN
2616217 May 2004 CN
1202871 May 2005 CN
1661338 Aug 2005 CN
1833736 Sep 2006 CN
200977306 Nov 2007 CN
101112628 Jan 2008 CN
101128168 Feb 2008 CN
101208045 Jun 2008 CN
101214158 Jul 2008 CN
201150675 Nov 2008 CN
101351237 Jan 2009 CN
101448535 Jun 2009 CN
101460094 Jun 2009 CN
101579233 Nov 2009 CN
201437016 Apr 2010 CN
101711683 May 2010 CN
201618200 Nov 2010 CN
201658687 Dec 2010 CN
201710717 Jan 2011 CN
201894758 Jul 2011 CN
102421372 Apr 2012 CN
102475923 May 2012 CN
102545538 Jul 2012 CN
202314596 Jul 2012 CN
102743801 Oct 2012 CN
102803923 Nov 2012 CN
103143072 Jun 2013 CN
103328018 Sep 2013 CN
103845766 Jun 2014 CN
103857326 Jun 2014 CN
103861162 Jun 2014 CN
103957957 Jul 2014 CN
203842087 Sep 2014 CN
104105449 Oct 2014 CN
104188687 Dec 2014 CN
104208763 Dec 2014 CN
104208764 Dec 2014 CN
203971004 Dec 2014 CN
104274873 Jan 2015 CN
204106671 Jan 2015 CN
204219479 Mar 2015 CN
103877630 Feb 2016 CN
205215814 May 2016 CN
103977464 Aug 2016 CN
104162192 Sep 2016 CN
106104229 Nov 2016 CN
106333707 Jan 2017 CN
104888293 Mar 2017 CN
106512117 Mar 2017 CN
206007680 Mar 2017 CN
104225696 Jun 2017 CN
107019824 Aug 2017 CN
206443963 Aug 2017 CN
107281567 Oct 2017 CN
104707194 Nov 2017 CN
107530479 Jan 2018 CN
107632167 Jan 2018 CN
107921187 Apr 2018 CN
105498002 Jun 2018 CN
106310410 Jul 2018 CN
109939282 Jun 2019 CN
106902404 Aug 2019 CN
209790495 Dec 2019 CN
110665079 Jan 2020 CN
210020563 Feb 2020 CN
111166948 May 2020 CN
111166949 May 2020 CN
1 001 642 Jan 1957 DE
1 165 144 Mar 1964 DE
26 24 058 Dec 1977 DE
3 545 214 Jul 1986 DE
195 20 920 Dec 1995 DE
195 46 336 May 1997 DE
695 01 834 Oct 1998 DE
198 54 724 May 1999 DE
198 21 307 Oct 1999 DE
199 10 872 Oct 1999 DE
199 56 380 Nov 1999 DE
100 59 714 May 2002 DE
100 60 275 Jun 2002 DE
101 55 011 Nov 2005 DE
601 19 592 Sep 2006 DE
20 2005 020 288 Jun 2007 DE
10 2006 001 180 Sep 2007 DE
10 2008 060 357 Jun 2010 DE
10 2009 007 216 Aug 2010 DE
10 2009 011 726 Sep 2010 DE
10 2009 025 464 Jan 2011 DE
10 2009 039 658 Mar 2011 DE
10 2009 047 845 Mar 2011 DE
20 2009 018 416 Aug 2011 DE
10 2011 106 142 Dec 2012 DE
20 2011 110 389 Sep 2013 DE
10 2012 022 456 May 2014 DE
10 2013 007 562 Nov 2014 DE
10 2015 004 177 Oct 2015 DE
10 2014 210 299 Dec 2015 DE
10 2014 212 323 Dec 2015 DE
11 2014 001 418 Dec 2015 DE
10 2014 224 151 Jun 2016 DE
20 2015 009 422 Jul 2017 DE
10 2012 207 042 Sep 2017 DE
10 2016 013 334 Apr 2018 DE
10 2017 212 193 Jan 2019 DE
10 2018 207 611 Nov 2019 DE
10 2018 208 945 Dec 2019 DE
10 2018 211 327 Jan 2020 DE
10 2018 212 153 Jan 2020 DE
10 2018 213 350 Feb 2020 DE
11 2020 003 063 Mar 2022 DE
11 2020 003 151 Mar 2022 DE
11 2020 004 148 Jun 2022 DE
0 050 814 May 1982 EP
0 629 412 Dec 1994 EP
0 764 448 Mar 1997 EP
0 794 411 Sep 1997 EP
0 855 515 Jul 1998 EP
0 890 179 Jan 1999 EP
0 916 359 May 1999 EP
1 013 294 Jun 2000 EP
1 062 959 Dec 2000 EP
1 339 443 Nov 2001 EP
1 186 873 Mar 2002 EP
1 011 803 Sep 2004 EP
1 475 880 Nov 2004 EP
1 169 072 May 2005 EP
1 176 999 Jul 2005 EP
1 354 606 Jun 2006 EP
1 801 420 Jun 2007 EP
2 009 233 Dec 2008 EP
2 098 746 Sep 2009 EP
2 143 385 Jan 2010 EP
2 175 770 Apr 2010 EP
2 403 109 Jan 2012 EP
2 187 807 Jun 2012 EP
2 570 143 Mar 2013 EP
2 401 003 Oct 2013 EP
3 326 567 Oct 2014 EP
1 871 441 Nov 2014 EP
1 898 971 Mar 2015 EP
2 859 911 Apr 2015 EP
2 519 273 Aug 2015 EP
2 438 936 Oct 2015 EP
2 438 937 Oct 2015 EP
2 960 515 Dec 2015 EP
2 968 718 Jan 2016 EP
1 996 252 May 2016 EP
2 475 415 Jun 2016 EP
2 906 265 Jul 2016 EP
2 213 227 Aug 2016 EP
2 835 141 Aug 2016 EP
3 069 739 Sep 2016 EP
3 088 016 Nov 2016 EP
3 127 562 Feb 2017 EP
2 585 129 Mar 2017 EP
3 222 301 Sep 2017 EP
3 222 302 Sep 2017 EP
2 945 661 Nov 2017 EP
2 136 861 Dec 2017 EP
3 020 426 Dec 2017 EP
3 038 669 Jan 2018 EP
3 062 730 Jan 2018 EP
3 180 050 Feb 2018 EP
3 287 154 Feb 2018 EP
1 789 129 Jun 2018 EP
2 366 412 Aug 2018 EP
3 205 359 Aug 2018 EP
3 205 360 Aug 2018 EP
3 456 367 Mar 2019 EP
3 119 451 Jun 2019 EP
3 389 738 Aug 2019 EP
3 542 835 Sep 2019 EP
3 542 836 Sep 2019 EP
3 062 877 Dec 2019 EP
3 668 560 Jun 2020 EP
3 711 785 Sep 2020 EP
3 711 786 Sep 2020 EP
3 711 787 Sep 2020 EP
3 142 722 Dec 2020 EP
3 579 894 Dec 2020 EP
3 753 594 Dec 2020 EP
3 188 769 Jan 2021 EP
3 357 523 Jan 2021 EP
3 490 122 Jan 2021 EP
2 869 866 Feb 2021 EP
3 398 626 Feb 2021 EP
3 487 549 Feb 2021 EP
3 490 628 Feb 2021 EP
3 113 806 Mar 2021 EP
3 487 548 Mar 2021 EP
3 509 661 Mar 2021 EP
3 515 523 Mar 2021 EP
3 528 863 Mar 2021 EP
3 615 103 Mar 2021 EP
4 271 461 Mar 2021 EP
2 344 218 Apr 2021 EP
3 436 104 Apr 2021 EP
3 749 383 Apr 2021 EP
3 131 600 Jun 2021 EP
3 131 615 Jun 2021 EP
3 338 825 Jun 2021 EP
3 432 944 Jun 2021 EP
3 684 439 Jul 2021 EP
2 582 414 Aug 2021 EP
3 407 930 Aug 2021 EP
3 782 665 Aug 2021 EP
3 782 666 Aug 2021 EP
3 782 668 Aug 2021 EP
3 858 397 Aug 2021 EP
3 216 467 Sep 2021 EP
3 463 505 Sep 2021 EP
3 884 968 Sep 2021 EP
3 884 969 Sep 2021 EP
3 884 970 Sep 2021 EP
2 599 510 Oct 2021 EP
3 003 421 Oct 2021 EP
3 027 241 Oct 2021 EP
3 668 561 Oct 2021 EP
3 579 904 Nov 2021 EP
2 628 493 Dec 2021 EP
3 164 168 Dec 2021 EP
3 344 129 Dec 2021 EP
3 556 409 Jan 2022 EP
3 624 868 Jan 2022 EP
3 624 867 Mar 2022 EP
3 651 822 Mar 2022 EP
3 689 389 Mar 2022 EP
3 697 464 Mar 2022 EP
3 737 436 Mar 2022 EP
3 972 661 Mar 2022 EP
2 967 630 Apr 2022 EP
3 142 721 Apr 2022 EP
3 520 834 Apr 2022 EP
3 586 887 Apr 2022 EP
3 638 336 Apr 2022 EP
3 689 388 Apr 2022 EP
3 765 110 Apr 2022 EP
3 782 667 Apr 2022 EP
3 829 673 Apr 2022 EP
3 976 129 Apr 2022 EP
3 984 589 Apr 2022 EP
3 986 528 Apr 2022 EP
3 649 926 May 2022 EP
3 653 113 May 2022 EP
3 654 006 May 2022 EP
3 735 280 May 2022 EP
3 897 814 May 2022 EP
3 219 339 Jun 2022 EP
3 737 310 Jul 2022 EP
2 999 400 Aug 2022 EP
3 711 788 Aug 2022 EP
3 899 994 Aug 2022 EP
3 487 550 Sep 2022 EP
3 606 575 Sep 2022 EP
3 694 573 Sep 2022 EP
3 834 876 Sep 2022 EP
3 000 492 Oct 2022 EP
3 600 477 Oct 2022 EP
3 897 768 Oct 2022 EP
3 914 310 Oct 2022 EP
3 914 311 Oct 2022 EP
3 000 493 Nov 2022 EP
3 858 422 Nov 2022 EP
3 866 876 Nov 2022 EP
3 941 546 Nov 2022 EP
2 892 583 Jan 2023 EP
3 370 797 Jan 2023 EP
3 393 542 Jan 2023 EP
3 597 231 Jan 2023 EP
3 656 292 Jan 2023 EP
3 668 562 Jan 2023 EP
3 768 345 Jan 2023 EP
3 856 275 Jan 2023 EP
2 868 332 Feb 2023 EP
3 003 420 Feb 2023 EP
3 397 299 Feb 2023 EP
3 539 585 Feb 2023 EP
3 956 010 Feb 2023 EP
3 046 594 Mar 2023 EP
3 127 563 Mar 2023 EP
3 256 186 Mar 2023 EP
3 288 609 Mar 2023 EP
3 538 173 Mar 2023 EP
3 606 576 Mar 2023 EP
3 927 390 Mar 2023 EP
3 384 940 Apr 2023 EP
3 441 616 Apr 2023 EP
3 938 005 Apr 2023 EP
3 946 511 Apr 2023 EP
3 685 562 May 2023 EP
3 544 649 Jun 2023 EP
3 634 528 Jun 2023 EP
3 397 298 Jul 2023 EP
3 809 959 Jul 2023 EP
3 912 673 Jul 2023 EP
2 072 150 Sep 2023 EP
2 961 984 Sep 2023 EP
3 352 808 Sep 2023 EP
3 768 156 Sep 2023 EP
3 554 576 Oct 2023 EP
3 737 435 Oct 2023 EP
3 795 208 Oct 2023 EP
4 052 754 Oct 2023 EP
4 149 606 Oct 2023 EP
3 157 596 Nov 2023 EP
3 515 525 Nov 2023 EP
3 621 669 Nov 2023 EP
3 744 362 Nov 2023 EP
3 766 428 Nov 2023 EP
3 781 027 Nov 2023 EP
3 808 390 Nov 2023 EP
4 061 470 Nov 2023 EP
4 070 720 Nov 2023 EP
3 449 958 Dec 2023 EP
3 687 596 Dec 2023 EP
3 710 076 Dec 2023 EP
3 768 340 Dec 2023 EP
3 787 707 Dec 2023 EP
3 926 194 Dec 2023 EP
3 784 305 Jan 2024 EP
3 801 675 Jan 2024 EP
3 925 659 Jan 2024 EP
4 115 919 Jan 2024 EP
3 566 636 Feb 2024 EP
3 634 526 Feb 2024 EP
3 768 342 Feb 2024 EP
3 768 347 Feb 2024 EP
3 769 799 Feb 2024 EP
3 790 606 Feb 2024 EP
3 930 780 Feb 2024 EP
3 397 147 Mar 2024 EP
3 782 695 Mar 2024 EP
3 854 448 Mar 2024 EP
4 140 532 May 2024 EP
2 913 485 Jun 2022 ES
1458525 Mar 1966 FR
0 648 739 Jan 1951 GB
2 213 541 Aug 1989 GB
2 345 387 Jul 2000 GB
2 451 161 Dec 2011 GB
2 545 062 Jun 2017 GB
2 545 750 Jun 2017 GB
S59-080229 May 1984 JP
59-119788 Aug 1984 JP
S61-500059 Jan 1986 JP
S61-125329 Jun 1986 JP
S62-113555 Jul 1987 JP
S62-204733 Sep 1987 JP
S62-282284 Dec 1987 JP
S64-68236 Mar 1989 JP
H02-055886 Feb 1990 JP
2-79738 Mar 1990 JP
H02-234750 Sep 1990 JP
H04-176471 Jun 1992 JP
H04-108384 Sep 1992 JP
H05-079875 Mar 1993 JP
H06-218044 Aug 1994 JP
H07-047025 May 1995 JP
H08-057042 Mar 1996 JP
H08-066398 Mar 1996 JP
H08-327527 Dec 1996 JP
H10-052489 Feb 1998 JP
H10-505766 Jun 1998 JP
2888609 May 1999 JP
2889384 May 1999 JP
H11-239617 Sep 1999 JP
2000-512191 Sep 2000 JP
2001-037728 Feb 2001 JP
2001-506140 May 2001 JP
2001-515375 Sep 2001 JP
2001-276213 Oct 2001 JP
2002-525175 Aug 2002 JP
2003-019197 Jan 2003 JP
2003-047656 Feb 2003 JP
2003-062065 Mar 2003 JP
2004-515278 May 2004 JP
2004-278375 Oct 2004 JP
2005-028137 Feb 2005 JP
2005-507039 Mar 2005 JP
2005-192687 Jul 2005 JP
2006-528006 Dec 2006 JP
2007-222644 Sep 2007 JP
2008-511414 Apr 2008 JP
2008-516654 May 2008 JP
2006-518249 Aug 2008 JP
2008-178690 Aug 2008 JP
2009-504290 Feb 2009 JP
2009-240348 Oct 2009 JP
2010-518907 Jun 2010 JP
2010-258181 Nov 2010 JP
2010-534080 Nov 2010 JP
2012-520157 Sep 2012 JP
2013-013216 Jan 2013 JP
2013-519497 May 2013 JP
2013-128792 Jul 2013 JP
2014-004303 Jan 2014 JP
2014-524274 Sep 2014 JP
2015-514529 May 2015 JP
2015-514531 May 2015 JP
2015-515429 May 2015 JP
2015-122448 Jul 2015 JP
2015-527172 Sep 2015 JP
2015-181800 Oct 2015 JP
2016-002466 Jan 2016 JP
2016-509950 Apr 2016 JP
2016-532500 Oct 2016 JP
2017-500932 Jan 2017 JP
6063151 Jan 2017 JP
2017-176719 Oct 2017 JP
2017-532084 Nov 2017 JP
6267625 Jan 2018 JP
2018-057878 Apr 2018 JP
2019-523110 Aug 2019 JP
6572056 Sep 2019 JP
2020-072985 May 2020 JP
2018-510708 Mar 2021 JP
10-2011-0098192 Sep 2011 KR
131676 Feb 2017 RO
2 051 695 Jan 1996 RU
374317 Nov 1999 TW
97202 Jan 2012 UA
WO 92015239 Sep 1992 WO
WO 94009835 May 1994 WO
WO 97037696 Oct 1997 WO
WO 97039785 Oct 1997 WO
WO 98043688 Oct 1998 WO
WO 99049912 Oct 1999 WO
WO 00033047 Jun 2000 WO
WO 00033446 Jun 2000 WO
WO 02022200 Mar 2002 WO
WO 02041935 May 2002 WO
WO 02070039 Sep 2002 WO
WO 03075981 Sep 2003 WO
WO 03103745 Dec 2003 WO
WO 2005020848 Mar 2005 WO
WO 2005028014 Mar 2005 WO
WO 2005037345 Apr 2005 WO
WO 2007033933 Mar 2007 WO
WO 2007105842 Sep 2007 WO
WO 2008017289 Feb 2008 WO
WO 2008081783 Jul 2008 WO
WO 2009010888 Jan 2009 WO
WO 2009046789 Apr 2009 WO
WO 2009046790 Apr 2009 WO
WO 2009073037 Jun 2009 WO
WO 2010119267 Oct 2010 WO
WO 2010142286 Dec 2010 WO
WO 2010143272 Dec 2010 WO
WO 2011003043 Jan 2011 WO
WO 2011081626 Jul 2011 WO
WO 2011160858 Dec 2011 WO
WO 2012018917 Feb 2012 WO
WO 2012047540 Apr 2012 WO
WO 2012112129 Aug 2012 WO
WO 2012112378 Aug 2012 WO
WO 2013037380 Mar 2013 WO
WO 2013120957 Aug 2013 WO
WO 2013160443 Oct 2013 WO
WO 2013167432 Nov 2013 WO
WO 2013173239 Nov 2013 WO
WO 2014042925 Mar 2014 WO
WO 2014141284 Sep 2014 WO
WO 2014165635 Oct 2014 WO
WO 2015039605 Mar 2015 WO
WO 2015063281 May 2015 WO
WO 2015085076 Jun 2015 WO
WO 2015085220 Jun 2015 WO
WO 2015109028 Jul 2015 WO
WO 2015172173 Nov 2015 WO
WO 2015175718 Nov 2015 WO
WO 2016001284 Jan 2016 WO
WO 2016028644 Feb 2016 WO
WO 2016066180 May 2016 WO
WO 2016137743 Sep 2016 WO
WO 2016146661 Sep 2016 WO
WO 2016146663 Sep 2016 WO
WO 2017004175 Jan 2017 WO
WO 2017015764 Feb 2017 WO
WO 2017021465 Feb 2017 WO
WO 2017032751 Mar 2017 WO
WO 2017053988 Mar 2017 WO
WO 2017060257 Apr 2017 WO
WO 2017066257 Apr 2017 WO
WO 2017106190 Jun 2017 WO
WO 2017112695 Jun 2017 WO
WO 2017112698 Jun 2017 WO
WO 2017147291 Aug 2017 WO
WO 2017159849 Sep 2017 WO
WO 2017162619 Sep 2017 WO
WO 2017205909 Dec 2017 WO
WO 2017214118 Dec 2017 WO
WO 2018007120 Jan 2018 WO
WO 2018036927 Mar 2018 WO
WO 2018048800 Mar 2018 WO
WO 2018088939 Mar 2018 WO
WO 2018089970 May 2018 WO
WO 2018109038 Jun 2018 WO
WO 2018139508 Aug 2018 WO
WO 2018197306 Nov 2018 WO
WO 2018213089 Nov 2018 WO
WO 2019013794 Jan 2019 WO
WO 2019034670 Feb 2019 WO
WO 2019034775 Feb 2019 WO
WO 2019035804 Feb 2019 WO
WO 2019038343 Feb 2019 WO
WO 2019057636 Mar 2019 WO
WO 2019078723 Apr 2019 WO
WO 2019135767 Jul 2019 WO
WO 2019137911 Jul 2019 WO
WO 2019138350 Jul 2019 WO
WO 2019145253 Aug 2019 WO
WO 2019158996 Aug 2019 WO
WO 2019161245 Aug 2019 WO
WO 2019180104 Sep 2019 WO
WO 2019180179 Sep 2019 WO
WO 2019180181 Sep 2019 WO
WO 2019193604 Oct 2019 WO
WO 2018135477 Nov 2019 WO
WO 2018135478 Nov 2019 WO
WO 2019211410 Nov 2019 WO
WO 2019219868 Nov 2019 WO
WO 2019219871 Nov 2019 WO
WO 2019219872 Nov 2019 WO
WO 2019219874 Nov 2019 WO
WO 2019219876 Nov 2019 WO
WO 2019219881 Nov 2019 WO
WO 2019219882 Nov 2019 WO
WO 2019219883 Nov 2019 WO
WO 2019219884 Nov 2019 WO
WO 2019219885 Nov 2019 WO
WO 2019229210 Dec 2019 WO
WO 2019229211 Dec 2019 WO
WO 2019229214 Dec 2019 WO
WO 2019229220 Dec 2019 WO
WO 2019229221 Dec 2019 WO
WO 2019229222 Dec 2019 WO
WO 2019229223 Dec 2019 WO
WO 2019234145 Dec 2019 WO
WO 2019234146 Dec 2019 WO
WO 2019234148 Dec 2019 WO
WO 2019234149 Dec 2019 WO
WO 2019234151 Dec 2019 WO
WO 2019234152 Dec 2019 WO
WO 2019234153 Dec 2019 WO
WO 2019234161 Dec 2019 WO
WO 2019234162 Dec 2019 WO
WO 2019234163 Dec 2019 WO
WO 2019234164 Dec 2019 WO
WO 2019234166 Dec 2019 WO
WO 2019234167 Dec 2019 WO
WO 2019234169 Dec 2019 WO
WO 2019239259 Dec 2019 WO
WO 2019241556 Dec 2019 WO
WO 2019243582 Dec 2019 WO
WO 2019243588 Dec 2019 WO
WO 2020003110 Jan 2020 WO
WO 2020011760 Jan 2020 WO
WO 2020011795 Jan 2020 WO
WO 2020011797 Jan 2020 WO
WO 2020016438 Jan 2020 WO
WO 2020028312 Feb 2020 WO
WO 2020028537 Feb 2020 WO
WO 2020030686 Feb 2020 WO
WO 2020030700 Feb 2020 WO
WO 2020030706 Feb 2020 WO
WO 2020064707 Apr 2020 WO
WO 2020064911 Apr 2020 WO
WO 2020073047 Apr 2020 WO
WO 2020089429 May 2020 WO
WO 2020132211 Jun 2020 WO
WO 2020187797 Sep 2020 WO
WO 2020198280 Oct 2020 WO
WO 2020219430 Oct 2020 WO
WO 2020234785 Nov 2020 WO
WO 2020242881 Dec 2020 WO
WO 2020243756 Dec 2020 WO
WO 2021046275 Mar 2021 WO
WO 2021062265 Apr 2021 WO
WO 2021067691 Apr 2021 WO
WO 2021119478 Jun 2021 WO
WO 2021150777 Jul 2021 WO
WO 2021152013 Aug 2021 WO
WO 2022056542 Mar 2022 WO
WO 2022063650 Mar 2022 WO
WO 2022072944 Apr 2022 WO
WO 2022074136 Apr 2022 WO
WO 2022076862 Apr 2022 WO
WO 2022076948 Apr 2022 WO
WO 2022109589 May 2022 WO
WO 2022109590 May 2022 WO
WO 2022109591 May 2022 WO
WO 2022173970 Aug 2022 WO
WO 2022174249 Aug 2022 WO
WO 2023278599 Jan 2023 WO
WO 2023014742 Feb 2023 WO
WO 2023049813 Mar 2023 WO
WO 2023076869 May 2023 WO
Non-Patent Literature Citations (26)
Entry
“ABMD—Taking a Closer Look at Impella ECP as the Pivotal Trial Gets Underway”, Guggenheim, Press Release, Mar. 29, 2022, pp. 4.
Vollkron et al., “Advanced Suction Detection for an Axial Flow Pump”, Artificial Organs, 2006, vol. 30, No. 9, pp. 665-670.
Vollkron et al., “Development of a Suction Detection System for Axial Blood Pumps”, Artificial Organs, 2004, vol. 28, No. 8, pp. 709-716.
Atkinson et al., “Pulse-Doppler Ultrasound and Its Clinical Application”, The Yale Journal of Biology and Medicine, 1977, vol. 50, pp. 367-373.
Leguy et al., “Assessment of Blood Volume Flow in Slightly Curved Arteries from a Single Velocity Profile”, Journal of Biomechanics, 2009, pp. 1664-1672.
Lombardi et al., “Flow Rate Profiler: an instrument to measure blood velocity profiles”, Ultrasonics, 2001, vol. 39, pp. 143-150.
Mushi et al., “Identification of Fluidic Element Models to Simulate the Short-Term Baroreflex”,|Proceedings of the 45th IEEE Conference on Decision & Control, San Diego, CA, Dec. 13-15, 2006, pp. 6.
Sinha et al., “Effect of Mechanical Assistance of the Systemic Ventricle in Single Ventricle Circulation with Cavopulmonary Connection”, The Journal of Thoracic and Cardiovascular Surgery, Apr. 2014, vol. 147, No. 4, pp. 1271-1275.
“Understanding Hot-Wire Anemometry”, Advanced Thermal Solutions, Inc., 2007, pp. 13-17.
Vieli, A., “Doppler Flow Determination”, BJA: British Journal of Anaesthesia, 1988, vol. 60, pp. 107S-112S.
Yuanyuan et al., “Characteristics Analysis for Doppler Ultrasound Blood Flow Signals”, China Medical Device Information, 5(1), Feb. 28, 1999, pp. 36-42.
Zhang, Dabiao et al., “Design of Microwave Velocity and Distance Monitor System”, Instrument Technique and Sensor, Hebei Normal University, Apr. 25, 2004, pp. 3.
Hertz Ph.D et aL, “Ultrasonic Engineering in Heart Diagnosis”, The American Journal of Cardiology, Jan. 1967, vol. 19, No. 1, pp. 6-17.
International Search Report and Written Opinion received in PCT Application No. PCT/EP2019/064154, dated Sep. 6, 2019 in 8 pages.
International Preliminary Report on Patentability and Written Opinion received in PCT Application No. PCT/EP2019/064154, dated Dec. 10, 2020 in 7 pages.
Kong et al., “A Stein Equation Approach for Solutions to the Diophantine Equations,” 2010 Chinese Control and Decision Conference, Xuzhou, May 26, 2010, pp. 3024-3028.
Koseli et al., “Online Viscosity Measurement of Complex Solutions Using Ultrasound Doppler Velocimetry”, Turk J Chem, Jan. 2006, vol. 30, pp. 297-305.
McCormick et al., “Resolution of a 2/spl pi/ Ambiguity Problem in Multiple Frequency Spectral Estimation,” in IEEE Transactions on Aerospace and Electronic Systems, Jan. 1995, vol. 31, No. 1, pp. 2-8.
Syrmos et al., “A Generalized Bezout Equation in Output Feedback Design,” Proceedings of the 31st IEEE Conference on Decision and Control, Tucson, AZ, USA, Dec. 1992, vol. 4, pp. 3590-3594.
Udesen et al., “A Simple Method to Reduce Aliasing Artifacts in Color Flow Mode Imaging”, IEEE Ultrasonics Symposium, 2005, Rotterdam, The Netherlands, Sep. 18-21, 2005, pp. 1352-1355.
Escudeiro et al., “Tribological behavior of uncoated and DLC-coated CoCr and Ti-alloys in contact with UHMWPE and PEEK counterbodies;” Tribology International, vol. 89, 2015, pp. 97-104.
Hinkel et al., “Pump Reliability and Efficiency Increase Maintenance Program—Utilizing High Performance Thermoplastics;” Proceedings of the 16th International Pump Users Symposium, Texas A&M University. Turbomachinery Laboratories; 1999, pp. 115-120.
Murali, Akila, “Design of Inductive Coils for Wireless Power Transfer to Pediatric Implants”, A graduate project submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering, California State University, Northridge, May 2018, pp. 37.
Neale, Michael J., “The Tribology Handbook;” 1999, Butterworth-Heinemann, Second Edition, pp. 582.
Park et al., “A Novel Electrical Potential Sensing Method for in Vitro Stent Fracture Monitoring and Detection”, Jan. 1, 2011, vol. 21, No. 4, pp. 213-222.
Sak et al., “Influence of polyetheretherketone coatings on the Ti-13Nb-13Zr titanium alloy's bio-tribological properties and corrosion resistance;” Materials Science and Engineering: C, vol. 63, 2016, pp. 52-61.
Related Publications (1)
Number Date Country
20210290930 A1 Sep 2021 US