1. Field of the Invention
The present invention relates generally to an apparatus for transferring or dissipating heat from heat-generating components such as electronic components, and more particularly to a method of manufacturing a sintered heat pipe.
2. Description of Related Art
Heat pipes have excellent heat transfer performance due to their low thermal resistance, and therefore are an effective means for transfer or dissipation of heat from heat sources. Currently, heat pipes are widely used for removing heat from heat-generating components such as central processing units (CPUs) of computers. A heat pipe is usually a vacuum casing containing therein a working fluid, which is employed to carry, under phase transitions between liquid state and vapor state, thermal energy from one section of the heat pipe (typically referring to as the “evaporating section”) to another section thereof (typically referring to as the “condensing section”). Preferably, a wick structure is provided inside the heat pipe, lining an inner wall of the casing, for drawing the working fluid back to the evaporating section after it is condensed at the condensing section. Specifically, as the evaporating section of the heat pipe is maintained in thermal contact with a heat-generating component, the working fluid contained at the evaporating section absorbs heat generated by the heat-generating component and then turns into vapor. Due to the difference of vapor pressure between the two sections of the heat pipe, the generated vapor moves towards and carries the heat simultaneously to, the condensing section where the vapor is condensed into liquid after releasing the heat into ambient environment by, for example, fins thermally contacting the condensing section. Due to the difference of capillary pressure developed by the wick structure between the two sections, the condensed liquid is then wicked back by the wick structure to the evaporating section where it is again available for evaporation.
The wick structure currently available for heat pipes includes fine grooves integrally formed at the inner wall of the casing, screen mesh or bundles of fiber inserted into the casing and held against the inner wall thereof, or sintered powder combined to the inner wall by sintering process. Among these wicks, the sintered powder wick is preferred to the other wicks with respect to heat transfer ability and ability against gravity of the earth.
Currently, a conventional method for making a sintered powder wick includes filling powders necessary to construct the wick directly into a hollow casing which has a closed end and an open end. A mandrel has been inserted into the casing through the open end of the casing; the mandrel functions to hold the filled powders against an inner wall of the casing. Then the powders are sintered at high temperatures to form the wick. However, this method is unfavorable to construct a uniform wick in that it is difficult to control the pore size distribution over the wick formed. The pore size distribution of a wick, however, has a great impact on the performance of that wick, since excessively small pore size will generate a large flow resistance to the condensed liquid to flow back and excessively large pore size will noticeably decrease the capillary force that is needed to draw the condensed liquid back. Therefore, a wick that has an uneven pore size distribution will greatly affect its performance in conveying the condensed liquid, and sometimes will cause the heat pipe incorporating that wick to suffer dry-out problem at the evaporating section when the condensed liquid is not timely sent back to that evaporating section.
Therefore, it is desirable to provide a method of manufacturing a sintered heat pipe which can effectively control the pore size distribution over the wick of the sintered heat pipe.
The present invention relates to a method of manufacturing a heat pipe having a sintered powder wick formed inside the heat pipe. The method employs tape-casting technology to produce thin sheets of powder. These sheets are then sintered to form the wick of the heat pipe. A preferred method includes the following steps: (1) providing a slurry of the powders necessary to construct said wick; (2) casting the slurry onto a moving surface; (3) drying the slurry on the moving surface to form a green tape; (4) rolling the green tape onto a mandrel; (5) inserting the mandrel and the green tape into a hollow casing which has a closed end and an open end, whereby the green tape is held against an inner wall of the casing by the mandrel; (6) sintering the green tape into a wick on the inner wall of the casing; (7) removing the mandrel from the wick and the casing through the open end of the casing; and (8) filling a working fluid into the casing via the open end thereof and sealing the open end of the casing.
The advantage of the casting procedure in relation to other methods, e.g. the conventional sintering process, is that the powders necessary to construct the sintered powder wick are evenly mixed or distributed in the mixture of the slurry. Therefore, the sintered powder wick constructed from this procedure has a uniform structure in the pore size distribution over the wick formed, which is contributory to eliminating the dry-out problem and increasing the heat transfer performance of the heat pipe employing this wick. Also coupled with the procedure is the advantage of a high manufacturing capacity and an economical production.
Other advantages and novel features of the present invention will become more apparent from the following detailed description of preferred embodiment when taken in conjunction with the accompanying drawings, in which:
In the present invention, a method 20, as shown in
The storage container 31 defines a gap 311 at that sidewall to which the casting blade 32 is affiliated. During the casting process, the slurry 30 flows from the storage container 31 via the gap 311 onto a flat support surface, for example, a carrier belt 40 as shown in this embodiment, which is continuously moved with a controlled velocity under the container 31 by two rollers (not labeled). As the slurry 30 is drawn out and spread onto the carrier belt 40 from the container 31 by the movement of the carrier belt 40, the casting blade 32 scrapes over the slurry 30 to produce a slurry layer on the carrier belt 40 with uniform thickness. The thickness of the slurry layer is controlled by a height of the casting blade 32 above the carrier belt 40 and therefore is adjustable by regulating the position of the casting blade 32 in relation to the carrier belt 40. The slurry layer then passes through a drying zone, for example, an array of infrared lamps 50 located above the carrier belt 40 as shown in this embodiment, in order to remove the solvent from the slurry layer. It is recognized that by passing the slurry layer through a drying chamber will also serve the drying purpose. Since only a relatively low temperature is needed to fulfill the drying process, the binder contained in the slurry layer is not removed. After the drying process, a green tape 60 is thus formed, which is very flexible, due to the additives, and easy to handle. The binder gives the green tape 60 enough green strength for it to be removed from the carrier belt 40 without damage. Typically, a bottom of the green tape 60 generally will accumulate a relatively larger amount of the binder than other portions of the green tape 60, thus forming a bonding layer 61 at that position.
The green tape 60 is then cut with lasers or blades into desired shapes, depending on the specific requirements, as shown in
The advantage of the casting procedure in relation to other methods, e.g. the conventional sintering process, is that the powders necessary to construct the sintered powder wick 14 are evenly mixed and distributed in the mixture of the slurry 30 due to the additives. Therefore, the sintered powder wick 14 constructed from this procedure has a uniform structure in the pore size distribution over the wick 14, which is contributory to increasing the heat transfer performance of the heat pipe employing this wick 14. Also coupled with the procedure is the advantage of a high manufacturing capacity and an economical production.
Referring to
Referring to
It is to be understood, however, that even though numerous characteristics and advantages of the present invention have been set forth in the foregoing description, together with details of the structure and function of the invention, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
094101105 | Jan 2005 | TW | national |
094108405 | Mar 2005 | TW | national |