The present invention is directed to a method of fabricating organic thin films employing the technique of organic vapor phase deposition to form a highly ordered polycrystalline organic thin film.
Molecular organic compounds are employed as active materials in a variety of applications, including organic light emitting diodes (OLEDs), photovoltaic cells, photodetectors, lasers, and thin film transistors. Typically, these thin (˜100 nm) film devices are grown by thermal evaporation in high vacuum, permitting the high degree of purity and structural control needed for reliable and efficient operation (see S. R. Forrest, Chem. Rev. 97, 1793 (1997)). However, control of film thickness uniformity and dopant concentrations over large areas needed for manufactured products can be difficult when using vacuum evaporation (see S Wolf and R. N. Tauber, Silicon Processing for the VLSI Era (Lattice, 1986)). In addition, a considerable fraction of the evaporant coats the cold walls of the deposition chamber; over time, inefficient-materials use results in a thick coating which can flake off, leading to particulate contamination of the system and substrate. The potential throughput for vacuum-evaporated organic thin film devices is low, resulting in high production costs. In past work (see M. A. Baldo, M. Deutsch, P. E. Burrows, H. Gossenberger, M. Gerstenberg, V. S. Ban, and S. R. Forrest, Adv. Mater. 10, 1505 (1998)), low-pressure organic vapor phase deposition (LP-OVPD) has been demonstrated as an alternative technique that improves control over doping, and is adaptable to rapid, particle-free, uniform deposition of organics on large-area substrates.
Organic vapor phase deposition (OVPD) is similar to hydride vapor phase epitaxy used in the growth of III-V semiconductors (see G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy (Academic, London, 1989); G. H. Olsen, in GaInAsP, edited by T. P. Pearsall (Wiley, New York, 1982)). In LP-OVPD, the organic compound is thermally evaporated and then transported in a hot-walled reactor by an inert carrier gas toward a cooled substrate where condensation occurs. Flow patterns may be engineered to achieve a substrate-selective, uniform distribution of organic vapors, resulting in a very uniform coating thickness and minimized materials waste. Using atmospheric pressure OVPD, Burrows et. al. (see P. E. Burrows, S. R. Forrest, L. S. Sapochak, J. Schwartz, P. Fenter, T. Buma, V. S. Ban, and J. L. Forrest, J. Cryst. Growth 156, 91 (1995)) first synthesized a nonlinear optical organic salt 4′-dimethylamino-N-methyl-4-stilbazolium tosylate. In a variation on this method, Vaeth and Jensen (see K. M. Vaeth and K. Jensen, Appl. Phys. Lett. 71, 2091 (1997)) used nitrogen to transport vapors of an aromatic precursor, which was polymerized on the substrate to yield films of poly (s-phenylene vinylene), a light-emitting polymer. Recently, Baldo and co-workers (see M. A. Baldo, V. G. Kozlov, P. E. Burrows, S. R. Forrest, V. S. Ban, B. Koene, and M. E. Thompson, Appl. Phys. Lett. 71, 3033 (1997)) have demonstrated apparently the first LP-OVPD growth of a heterostructure OLED consisting of N,N-di-(3-methylphenyl)-N,N diphenyl-4,4-diaminobiphenyl and aluminum tris(8-hydroxyquinoline) (Alq3), as well as an optically pumped organic laser consisting of rhodamine 6G doped into Alq3. More recently, Shtein et al. have determined the physical mechanisms controlling the growth of amorphous organic thin films by the process of LP-OVPD (see M. Shtein, H. F. Gossenberger, J. B. Benziger, and S. R. Forrest, J. Appl. Phys. 89:2, 1470 (2001)).
Virtually all of the organic materials used in thin film devices have sufficiently high vapor pressures to be evaporated at temperatures below 400° C. and then transported in the vapor phase by a carrier gas such as argon or nitrogen. This allows for positioning of evaporation sources outside of the reactor tube (as in the case of metalorganic chemical vapor deposition (see S. Wolf and R. N. Tauber, Silicon Processing for the VLSI Era (Lattice, 1986); G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy (Academic, London, 1989)), spatially separating the functions of evaporation and transport, thus leading to precise control over the deposition process.
As mentioned above, one type of device which employs organic thin films is a thin film field effect transistor. Thin film field effect transistors employing organic channels, for application to organic electronic circuits such as display back panels, have been made using a wide range of compounds. To date, pentacene-containing devices exhibit the highest mobilities and other favorable characteristics for thin film transistor (“TFT”) applications. See G. Horowitz, J. Mater. Chem., 9 2021 (1999). The channel layers have been deposited by several techniques including solution processing (see A. R. Brown, C. P. Jarrett, D. M. deLeeuw, M. Matters, Synth. Met. 88 37 (1997)), ultrahigh vacuum organic molecular beam deposition (“OMBD”) (see C. D. Dimitrakopoulos, A. R. Brown, A. Pomp, J. of Appl. Phys. 80 2501 (1996)), high vacuum deposition (see D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, IEEE El. Dev. Lett 18 87 (1997)), vapor phase growth of single crystals (see J. H. Schön, S. Berg, Ch. Kloc, B. Batlogg, Science 287 1022 (2000)), and finally, organic vapor phase deposition (“OVPD”) (see P. E. Burrows, S. R. Forrest, L. S. Sapochak, et al., J. of Crystal Growth 156 91 (1995); M. Shtein, H. F. Gossenberger, J. B. Benziger, S. R. Forrest, J. of Appl. Phys. 89 1470 (2001); and J. H. Schön, Ch. Kloc, B. Batlogg, Organic Electronics 1 57 (2000)).
It has been shown that the performance characteristics of organic crystalline field effect transistors, such as mobility and on/off ratio, are significantly higher in single crystals (see J. H. Schön, S. Berg, Ch. Kloc, B. Batlogg, Science 287 1022 (2000)) than in polycrystalline thin films deposited by vacuum (see Y. Y. Lin, D. J. Gundlach, T. N. Jackson, S. F. Nelson, IEEE Trans. On El. Dev. 44 1325 (1997); D. J. Gundlach, H. Klauk, C. D. Sheraw, C. C. Kuo, J. R. Huang, T. N. Jackson, International Electron Devices Meeting Technical Digest, December 1999, 111-114), flash evaporation, or solution precipitation. It has also been demonstrated that purification by train sublimation at moderate pressures (ca. 760 Torr) and in reducing atmospheres (for example, H2) results in larger and more chemically-pure organic crystals with lower trap densities than conventional vacuum train sublimation (ca. 10−5 Torr) (see Ch. Kloc, P. G. Simpkins, T. Siegrist, R. A. Laudise, J. of Crystal Growth 182 416 (1997)). Although the mobility is highest in single crystals, practical field effect transistors require the deposition of the active layers onto substrates.
Specifically, pentacene TFTs made by solution precipitation and OMBD have an effective channel hole mobility, μeff, of about 0.04 cm2/V·s at room temperature, and are typically the lowest of the described techniques. Large (ca. 0.5 cm) single crystals of compounds such as α-hexithiophene (α-6T) (see Ch. Kloc, P. G. Simpkins, T. Siegrist, R. A. Laudise, J. of Crystal Growth 182 416 (1997)), tetracene (see J. H. Schön, Ch. Kloc, A. Dodabalapur, B. Batlogg, Science 289 599 (2000)), and pentacene (see J. H. Schön, Ch. Kloc, R. A. Laudise, B. Batlogg, Phys. Rev. B 58 12952 (1998)) have been grown in inert and reducing atmospheres, with the metal contacts and gate insulators deposited onto the free-standing crystals. These devices have yielded the highest mobilities of 1.3 and 2.7 cm2/V·s at room temperature for electrons and holes, respectively (see J. H. Sch{umlaut over (0)}n, Ch. Kloc, R. A. Laudise, B. Batlogg, Phys. Rev. B 58 12952 (1998)). A more practical technique for TFT fabrication uses vacuum thermal deposition of pentacene films onto the gate insulator followed by evaporation of the source and drain contacts through a shadow mask. The resulting pentacene crystallite size is typically <1 μm, while using a shadow mask limits the minimum channel length to about 15 μm. With the channel considerably longer than the average pentacene grain size, the resulting mobility is typically between 0.1 and 0.5 cm2/V·s (see Y. Y. Lin, D. J. Gundlach, T. N. Jackson, S. F. Nelson, IEEE Trans. On El. Dev. 44 1325 (1997); and S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 72 1854 (1998)). For increased ease of integration with established technologies, and also to decrease the channel length, TFTs have been made with source and drain contacts pre-patterned by photolithography followed by vacuum deposition of the pentacene channel. However, in that case, μeff equals about 0.1 cm2/V·s, despite the shorter channel length (see S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T. N. Jackson, Appl. Phys. Lett. 72 1854 (1998)).
Mobility has been reported to depend on the substrate temperature during deposition, which controls the size and connectivity of individual grains of the deposited polycrystalline thin film (see G. Horowitz and M. E. Hajlaoui, Adv. Mater. 2000 12 (1999)). Lin and co-workers have used this property to grow double-layer structures, where the first pentacene layer is grown at 70° C. to yield large grains, followed by a growth at 25° C. to fill in the intergrain gaps and increase the film connectivity (see Y. Y. Lin, D. J. Gundlach, T. N. Jackson, S. F. Nelson, IEEE Trans. On El. Dev. 44 1325 (1997)). This yielded a mobility as large as 1.5 cm2/V·s for devices where the gate insulator was pre-coated with a self-assembled monolayer (“SAM”) of octadecyltrichlorosilane (“OTS”) (see T. N. Jackson, Y. Y. Lin, D. J. Gundlach, H. Klauk, IEEE J. of Sel. Topics in Quant. Electr. 4 100 (1998)). Thin film transistors without the SAM exhibited μeff<0.5 cm2/V·s.
An object of the present invention is to provide a method of using organic vapor phase deposition to fabricate highly ordered polycrystalline organic thin films, such as, for example, pentacene. According to the method of the present invention, organic vapor phase deposition offers the ability to vary the grain size of polycrystalline organic thin films via both the deposition chamber pressure and the substrate temperature. OVPD proceeds by evaporation of the source material followed by transport by an inert carrier gas toward a cooled substrate, where selective condensation occurs. Both reducing and oxidizing carrier gases may be used in the method of the present invention. This OVPD technique allows for independent control of source evaporation rate, carrier gas flow rate, deposition chamber pressure, and substrate temperature.
The highly ordered polycrystalline organic thin films produced by the method of the present invention may be used in a variety of applications, including OLEDs, photovoltaic cells, photodetectors, lasers, and thin film transistors. For example, thin film transistors employing such polycrystalline organic thin films exhibit competitive performance characteristics, such as carrier mobility, on/off ratio, threshold voltage and subthreshold slope. By varying both the substrate temperature and the deposition chamber pressure during the organic vapor phase deposition process, the performance characteristics of the TFT can be enhanced. For pentacene films deposited at substrate temperatures of Ts=20° C. and at deposition chamber pressures of Pdep=0.25 Torr, the apparent room temperature field-effect hole mobilities range from μeff=0.01 to 0.2 cm2/V·s for films deposited onto the surface of the source and drain contacts. The mobility increases with channel length, which ranges from 2 μm to 30 μm. Organic film growth at Ts=50° C. and Pdep=8 Torr yields a larger organic crystalline grain size (>5 μm), resulting in a maximum μeff=0.6 cm2/V·s for source and drain contacts deposited onto the pentacene film surface. For films deposited onto the source and drain contacts at this higher temperature and pressure, however, μeff=0.002 to 0.05 cm2/V·s, despite having the average crystallite size exceed the smallest channel length. These low apparent μeff values are attributed to poor contact due to dewetting at the organic film-metal contact interface. In addition, by increasing the hydrophobic character of the gate insulator-pentacene interface, μeff, on/off ratios, and subthreshold slope of pentacene channel TFTs can be significantly improved due to the decrease in density and energy of charge traps at the pentacene-oxide interface as a result of the hydrophobic treatment.
FIG. 1. X-Ray diffraction patterns of pentacene thin films deposited by OVPD on (100) Si (100 referring to cut of the Si wafer relative to the crystallographic plane orientation of Si) and thermally-grown SiO2: a) SiO2, 1000 Å, 40° C., 2 Torr; b) SiO2, 1000 Å, 40° C., 6.2 Torr; c) SiO2, 1200 Å, 10° C., 0.14 Torr; d) Si, 2100 Å, 50° C., 0.14 Torr; e) Si, 2100 Å, 10° C., 0.14 Torr; f) Si, 1000 Å, 10° C., 0.15 Torr; Inset magnifies patterns for samples a, b, and c, showing features (B) and (C) which correlate to high-pressure depositions. Feature (D) appears to be more prominent for low-pressure cases.
a. Drain-source current (IDS) versus drain-source voltage (VDS) for different gate biases of a typical OVPD deposited pentacene TFT. The device has a gate width-to-length ratio, W/L=100 μm/10 μm with an active layer consisting of about 500 Å-thick pentacene grown at 0.25 Torr and 10° C. substrate temperature.
b. IDS versus VGS at VDS=−30V for a bottom contact device (i.e., type I device) having channel width and length of 100 and 10 μm, respectively (same device as
FIG. 3. Scanning electron micrographs of OVPD deposited pentacene TFTs: a) Ts=20° C., Pdep=0.85 Torr; b) Ts=20° C., Pdep=0.85 Torr; c) Ts=65° C., Pdep=8 Torr; d) Ts=65° C., Pdep=8 Torr, top-deposited contacts, as shown in the inset.
FIG. 4. Apparent effective channel hole mobility, μeff, versus gate length (L) for a type I TFT with pentacene channel deposited at: Ts=20° C. and Pdep=0.25 Torr (squares); Ts=50° C. and Pdep=10.5 Torr (open triangles); and Ts=50° C. and Pdep=7.5 Torr (open stars) on type I substrates. The effect of using a type II TFT structure, with top-deposited contacts, for high Ts and Pdep is also shown (filled triangle). Lines serve only as guides to the eye.
FIG. 7. X-Ray diffraction patterns of pentacene thin films deposited by OVPD on thermally-grown SiO2 and OTS-treated SiO2, with corresponding SEM images. Pentacene was deposited at Ts=40° C. and Pdep=6 Torr.
FIG. 8. Photograph of water droplets on the treated SiO2 substrates. The surface treatments were, from left to right: (a) O2 plasma; (b) O2 plasma+Bake@150° C.; (c) O2 plasma+Bake+OTS; (d) O2 plasma+OTS.
a. Drain-source current (IDS) versus gate-source voltage (VGS) for OVPD deposited pentacene TFT having various SiO2 surface treatments. All of the devices had a gate width-to-length ratio, W/L=1000 μm/45 μm with an active layer consisting of ˜500 Å thick pentacene grown at 6 Torr and 40° C. substrate temperature.
b. Field-effect hole mobility, μeff, versus VGS at VDS=−40V for the device in
FIG. 10. Plot of IDS versus VGS for pentacene channel TFTs on SiNx, SiO2, and OTS-treated SiO2, illustrating the hysterisis due to charge trapping. Pentacene was deposited at Ts=40° C. and Pdep=6 Torr.
The present invention is directed to a method of using organic vapor phase deposition to fabricate polycrystalline organic thin films.
The polycrystalline organic thin films produced according to the method of the present invention can be employed in devices such as, for example, OLEDs, photovoltaic cells, photodetectors, lasers, and TFTs. Thus, the method of the present invention can be used in fabricating such OLEDs, photovoltaic cells, photodetectors, lasers, and TFTs which employ a polycrystalline organic thin film.
The method of the present invention employs organic vapor phase deposition at moderate deposition chamber pressures and substrate temperatures for the deposition of organic polycrystalline films having significantly larger purity and grain size than what is achievable by vacuum thermal evaporation. That is, by employing organic vapor phase deposition, the method of the present invention allows for the fabrication of a polycrystalline organic thin film with a resulting crystallite size on the order of the shortest device dimension. For example, in a horizontal TFT, the crystallite size would be between about 1 and about 10 microns; in a vertical TFT, an OLED and a vertical solar cell, the crystallite size would be between about 500 Å and about 1 micron; in a horizontal solar cell, the crystallite size would be between about 1 and about 100 microns; and in a photodetector, the crystallite size would be between about 5 Å and about 1 micron.
According to the method of the present invention, we have discovered that when employing OVPD to fabricate a polycrystalline organic thin film, for example, of pentacene, at low deposition chamber pressures, Pdep, (<1 Torr), and low substrate temperatures, Ts, (<30° C.), the pentacene grain size is <0.5 μm, while at higher Pdep and Ts (>4 Torr and >50° C., respectively) the pentacene grain diameter can exceed 5 μm. By varying both the substrate temperature and the deposition chamber pressure during the OVPD process, the performance characteristics of the organic thin film can be enhanced. For example, when the polycrystalline organic thin film serves as the active layer of a TFT, the OVPD process offers the unique advantage of allowing the morphology and electrical characteristics of the pentacene channel to be controlled by varying the deposition chamber pressure and the substrate temperature.
The polycrystalline organic thin film may be comprised of any molecular organic compound, preferably flat, planar, stacking molecular organic compounds. Representative examples of such compounds include porphyrins, triphenyls, α-6T, tetracene and pentacene, with pentacene being particularly preferred.
The present invention will now be described in detail for specific preferred embodiments of the invention, it being understood that these embodiments are intended only as illustrative examples and the invention is not to be limited thereto.
Polycrystalline pentacene TFTs using two different contact arrangements were fabricated employing the method of the present invention. In a type I device, 500 Å thick Au source and drain contacts are formed using photolithography on an about 2000 Å thick plasma enhanced chemical vapor deposited (“PECVD”) SiNx gate insulator layer; the (100)-oriented highly n-type doped Si wafer serves as the gate electrode. The pre-patterned substrates are subsequently treated in 100 mTorr O2 plasma for 5 minutes at 50 W, and pentacene is deposited (at 0.1-1 Å/s) by OVPD within 1 hr of the treatment. In a type II device, pentacene was deposited onto a similarly O2 plasma-treated SiNx gate insulator, followed immediately by vacuum deposition of the Au source and drain contacts through a shadow mask. Type I devices contain 2, 6, 10 and 30 μm long by 100 μm wide channels, while the type II devices have 15-40 μm long by 1000 μm wide channels.
A schematic diagram of a cross-section of a type I device is shown in FIG. 5. As can be seen in
Materials for use in a TFT are known in the art, and such materials may be used in accordance with the method of the present invention. For instance, the substrate may be comprised of, for example, glass, Al2O3 or Si; the gate electrode may be comprised of, for example, Au or Si; and the organic thin film may be comprised of, for example, pentacene, copper phthalocyanine (CuPc) or 2, 3, 7, 8, 12, 13, 17, 18-octaethyl-21H,23H-porphine platinum(II) (PtOEP).
A schematic diagram of a type II device is shown in FIG. 6. As explained above and as can be seen in
Typical transfer characteristics of a type I device (10×100 μm channel) are shown in
IDS=−½×CD×(W/L)×μeff×(VGS−VT)2 (1);
where IDS is the drain-source voltage, CD is the gate capacitance per area of the dielectric, W/L is the channel width to length ratio, and VGS and VT are the gate-source and threshold voltages, respectively. Note that since both IDS and VT depend on the contact injection efficiency, μeff extracted using Eq. (1) is not an accurate measure of the film mobility itself, but serves as a lumped indicator of ease of hole transport in the device.
Tested in air, the device in
As shown in
To obtain larger pentacene grains, Ts was increased from 20° C. to 50° C., and Pdep from 0.25 Torr to 10.5 Torr. However, despite the larger grain size (>1 μm in FIG. 3(c)), μeff for a type I device dropped to 0.002 cm2/V·s. On the other hand, in a type II device with top-deposited contacts, μeff increased to 0.6 cm2/V·s at Pdep=10.5 Torr and T=50° C., as shown in FIG. 4. The large difference between μeff of type I and type II devices can be understood by comparing FIGS. 3(c) and 3(d), which reveal de-wetting of the gold pads by the pentacene in the type I structure (FIG. 3(c)), leading to poor overlap between the contacts and the organic channel. This increases the contact series resistance, leading to an apparent drop in μeff. As shown in
In another embodiment of the present invention, polycrystalline pentacene channel TFTs were fabricated by OVPD of pentacene onto a treated ˜2100 Å thick thermal-SiO2 gate insulator at Pdep=6 Torr and Ts=40° C., followed immediately by vacuum thermal evaporation of the Au source and drain contacts through a shadow mask (a type II device). The surface treatments of the SiO2 included: (a) exposure to O2 plasma; (b) plasma followed by baking at 150° C. in air; (c) baking at 150° C. followed by a soak in a 30 μM solution of octadecyltrichlorosilane (OTS) in chloroform and hexane and a 1 hour bake at 150° C. in air; and (d) plasma followed by the OTS step. The treatments (a), (b), (c), and (d) are listed in order of decreasing polar character of the resulting surface, which was determined by comparing the surface wetting angle of water. Treatment (b) simply dehydrates the surface, while treatment (c) enhances that effect by assembling a surfactant on the SiO2 surface with the hydrophobic tails pointing away from the substrate. Plasma treatment results in a very polar oxide surface, which enhances the assembly of the polarheaded OTS, resulting in the end to a more hydrophobic surface that (c).
The OTS treatment involves dissolving octadecyltrichlorosilane in a mixture of polar and non-polar solvents (chloroform and hexanes, respectively) and soaking the SiO2 wafer in this solution for several minutes to several hours. During the soak, micelles of OTS land and unfold on the oxide surface, while the chlorine in the original OTS molecule is displaced by oxygen from water to cross-link the individual OTS molecules. Following the soak, the wafer is sonicated for 20 minutes in chloroform to remove excess OTS, after which it can be baked at 150° C. for 1 hour to further strengthen the OTS-OTS and OTS-SiO2 bond.
FIG. 9(a) plots IDS against VGS at VDS=−40 volts for the TFTs with the different surface treatments. The “on” current increase with hydrophobicity of the SiO2-pentacene interface spans one order of magnitude, accompanied by an order of magnitude decrease in the “off” current. Changes in the source-drain current are accompanied by an increase in μeff and the on/off ratio, as shown below in. Table 1, while the subthreshold slope, mst, (in volts/decade) decreases. The decrease in mst may be attributed to the lower number of surface dipoles in the hydrophobically treated samples, which can result from the oxygenating treatment of the gate dielectric and can increase charge trap density and/or energy at the pentacene-oxide interface. When the baking step is omitted after the OTS treatment, μeff is higher, reaching 1.4 cm2/V·s for freshly purified pentacene, as indicated below in Table 1. Interestingly, when O2 plasma-treated SiNx, is used as the gate dielectric in pentacene channel TFTs, μeff has been higher than in the case of SiO2. Previous x-ray and SEM studies (see T. N. Jackson, et al., IEEE J. of Sel. Topics in Quant. Electr., 4: 100 (1998)) of organic vapor phase deposited pentacene on SiO2 and SiNx suggest that the pentacene-SiNx interaction is weaker than that in pentacene-SiO2 (and weaker still than pentacene-OTS), leading to improved organic layer ordering, larger crystallites and hence higher μeff with the SiNx insulator. Certainly in the case of SiNx gate dielectric, the pentacene deposition conditions used herein yield larger grains (>2 μm compared to <0.5 μm on OTS, see FIG. 7), which explain the relatively high μeff in the absence of OTS.
As shown in FIG. 9(b), the effective field-effect hole mobility, μeff, in organic vapor phase deposited pentacene channel TFTs increases with the non-polar character of the gate-dielectric-pentacene interface.
No clear trend was observed for VT (see Table I below). Since the pentacene deposition for the first four samples in Table 1 was carried out simultaneously, and the substrates were taken from a single SiO2 on Si wafer, VT does not seem to be a bulk property of pentacene nor of gate insulator. There was a small but significant variability in VT, on/off ratio, and μeff (<30%) of pentacene-channel TFTs from different pentacene runs, as well as hysterisis in IDS vs. VGS scans.
a) Pentacene purified twice by vacuum train sublimation but stored for 3 months under vacuum at room temperature. Channel length, L = 45 μm.
b) Pentacene purified twice by vacuum train sublimation. Channel length, L = 50 μm.
c) Plasma-enhanced chemical vapor deposited SiNx was used as the gate dielectric in this pentacene channel TFT (see T. N. Jackson, et al., IEEE J of Sel. Topics in Quant. Electr., 4: 100 (1998)). Channel length, L = 45 μm.
d) Pentacene purified twice by vacuum train sublimation and used immediately after. Channel length, L = 50 μm.
This application is a continuation of U.S. patent application Ser. No. 09/946,372, filed Sep. 4, 2001 now U.S. Pat. No. 6,734,038. The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university-corporation research agreement: Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.
This invention was made with Government support under Contract No. DMR94-00362 awarded by NSF/MRSEC. The government has certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
4269682 | Yano et al. | May 1981 | A |
5213675 | Yamaguchi et al. | May 1993 | A |
5402748 | Takai et al. | Apr 1995 | A |
5468519 | Akiyama et al. | Nov 1995 | A |
5554220 | Forrest et al. | Sep 1996 | A |
5736073 | Wadley et al. | Apr 1998 | A |
5953828 | Hillman | Sep 1999 | A |
6207239 | Affinito | Mar 2001 | B1 |
6232157 | Dodabalapur et al. | May 2001 | B1 |
6265243 | Katz et al. | Jul 2001 | B1 |
6278127 | Dodabalapur et al. | Aug 2001 | B1 |
6326640 | Shi et al. | Dec 2001 | B1 |
6337102 | Forrest et al. | Jan 2002 | B1 |
6664137 | Weaver | Dec 2003 | B1 |
20030056720 | Dauelsberg et al. | Mar 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20040191952 A1 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09946372 | Sep 2001 | US |
Child | 10819658 | US |