The subject matter of the present disclosure relates generally to a method of manufacturing a hub for a non-pneumatic wheel.
The pneumatic tire is a known solution for compliance, comfort, mass, and rolling resistance. However, the pneumatic tire has disadvantages in complexity, the need for maintenance, and susceptibility to damage. A device that improves on pneumatic tire performance could, for example, provide more compliance, better control of stiffness, lower maintenance requirements, and resistance to damage.
Non-pneumatic tire or wheel constructions provide certain such improvements. The details and benefits of non-pneumatic tire or non-pneumatic wheel constructions are described in e.g., U.S. Pat. Nos. 6,769,465; 6,994,134; 7,013,939; and 7,201,194. Certain non-pneumatic tire and wheel constructions propose incorporating a resilient, annular shear band, embodiments of which are described in e.g., U.S. Pat. Nos. 6,769,465 and 7,201,194. Such non-pneumatic tire and wheel constructions provide advantages in performance without relying upon a gas inflation pressure for support of the loads applied to the tire or wheel.
In some non-pneumatic constructions, vehicle load is applied to a Wheel hub that is connected with an annular shear band through load bearing members in the form of e.g., a web or spoke. These members can transmit the load to the annular shear band through e.g., tension, compression, or both. A layer of tread can be applied to the shear band to provide protection against from the travel surface.
The non-pneumatic wheel may wear or suffer damage during use. For example, the tread may wear, the load bearing members may be cut or nicked, and other effects from usage may occur. For certain constructions, the tread, load bearing members, and annular band may be constructed from various polymeric materials that wear or age from use while the hub may be constructed from one or more metals and could potentially be reused.
However, replacement or repair of the tread or the load bearing members may not be practical or economical. For example, because of the integral construction of the hub and load bearing members, prior non-pneumatic wheels may not be readily amenable to substituting different spokes or an annular band into the non-pneumatic wheel, substituting different hubs into the non-pneumatic wheel, or both. Such a substitution would require e.g., destructive steps to cut or extricate the spoke from the annular band or the hub of the non-pneumatic wheel.
Accordingly, a method of manufacturing a hub for a non-pneumatic; wheel having spokes that can be removably attached to the hub would be helpful. Such a method that can utilize relatively inexpensive materials and economical processes would be particularly useful.
The present invention provides a method for manufacturing a wheel hub for a non-pneumatic. wheel. A sheet of material may be folded, cut, bent, and otherwise processed to form portions of the desired wheel hub. The wheel hub may be connected with an annular band through load supporting members that can be selectively connected and disconnected from the hub. Additional objects and advantages of the invention will be set forth in part in the following description, or may be apparent from the description, or may be learned through practice of the invention.
In one exemplary aspect of the present invention, a method of manufacturing a wheel hub is provided that includes bending a sheet of material into a plurality of precursor elements that repeat along a predetermined direction; attaching the sheet from the bending to an annular member having axial, radial, and circumferential directions such that the precursor elements repeat along the circumferential direction; and cutting each precursor element along the axial direction so as divide each precursor element into pairs of opposing fingers and create a plurality of channels extending along the axial direction. This exemplary method may include shaping each opposing finger so as to form the channels into a predetermined shape along the axial direction.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
FIG.1 illustrates a perspective view of an exemplary embodiment of a non-pneumatic wheel including an exemplary wheel hub of the present invention.
For purposes of describing the invention, reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment, can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such. modifications and variations as come within the scope of the appended claims and their equivalents.
As used herein, the following definitions apply.
Axial direction A refers to a direction parallel to an axis about which a referenced exemplary wheel or tire rotates during use.
Radial direction R refers to a direction perpendicular to axial direction A with radially-outer or radially outward referring to a general direction away from axial direction A, and radially-inner or radially inward referring to a general direction towards axial direction A.
Circumferential direction C refers to a direction defined by defined by the circumference of the wheel or tire, or the direction of rotation the wheel or tire about an axis.
FIGS. I and 2 illustrate an exemplary embodiment of a non-pneumatic wheel 100 of the present invention defining radial direction R, circumferential direction C, and axial direction A. Wheel 100 includes a non-pneumatic tire 102 supported on a hub 300, which includes an annular receiver 304 that may be connected with a central portion 302.
Referring now to
Central portion 302 of hub 300 is configured for supporting wheel 100 on a vehicle. In this exemplary embodiment, hub 300 includes a plurality of spokes or arms 306 extending radially outward from a centroid 308 (
Annular shear band 104 may include one or more reinforcing bands, reinforcing plies, shear layers, and other components (not shown). For example, shear band 104 may be constructed with a radially-inner reinforcing band, a radially-outer reinforcing band, and a shear layer positioned therebetween. Shear band 102 provides a stiffness that allows spokes 106 to support hub 300 during use of wheel 100 on a vehicle. At the same time, shear band 102 provides a resiliency or compliance over the ground surface that provides for a smoother, more comfortable ride.
Shear band 102 is depicted in
As shown in
Referring now to
An exemplary method as may be used to manufacture a hub 300 with annular receiver 304 will now be further described with reference to
For this exemplary embodiment, precursor elements repeat along predetermined direction P and have a continuous profile along axial direction A. After forming, each precursor element 334 may have a trapezoidal shape and is connected to adjacent precursor elements by a base 336. The particular shape of precursor element 334 and base 336 shown in the figures is by of example only. Other shapes may also be used depending upon e.g., the shape desired for channels 318. For example, each precursor element could be shaped as a triangle, semi-circle, and other shapes as well.
As shown in
Referring now to
As shown in
The shape (as viewed e.g., along axial direction. A shown in
In yet another exemplary aspect of the present invention, fingers 320 and 322 can be further processed to provide additional options for determining the shape of channels 318. Returning to
While the present subject matter has been described in detail with respect to specific exemplary embodiments and methods thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, the scope of the present disclosure is by way of example rather than by way of limitation, and the subject disclosure does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent, to one of ordinary skill in the art using the teachings disclosed herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/055436 | 9/8/2017 | WO | 00 |