Method of manufacturing insulation displacement contact dimple

Information

  • Patent Grant
  • 6434820
  • Patent Number
    6,434,820
  • Date Filed
    Tuesday, October 5, 1999
    25 years ago
  • Date Issued
    Tuesday, August 20, 2002
    22 years ago
Abstract
Disclosed is a method for manufacturing an insulation displacement contact dimple comprising the steps of. (a) positioning a metal element between a first concave upper die and a first convex lower die having a radius to form a dimple shape in the medial element; (b) positioning the dimple shaped metal element formed in step (a) between a second concave upper die and second convex lower die having a radius smaller than the radius of the first convex lower die to reform the dimple shaped metal element formed in step (a); and (c) positioning the dimple shaped metal element formed in step (b) between a third concave upper die and a third convex lower die having a radius larger than the radius of the second convex lower die. A contact dimple manufactured by the method is also disclosed.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to electrical connectors and more particularly to insulation displacement contact terminals.




2. Brief Description of Prior Developments




In order to further miniaturize various electronic systems, insulation displacement contact terminals have been substituted for soldered connections in a number of applications. Such terminals are disclosed, for example, in U.S. Pat. Nos. 4,050,760 and 4,385,794. In such terminals, insulated wires to be connected are inserted into contact channels having opposed transverse projections known as dimples. These dimples remove insulation from the wires so inserted to allow electrical connection between these wires and the terminal. Heretofore these contact dimples have been formed by a process of inwardly shearing the side walls of the contact channels.




The effectiveness of the connection with those contact dimples is dependent, at least in part, on the amount of pressure applied to connected wires by the contact dimples. A continuing need, therefore, exists for means by which pressure applied by such dimples on the connecting wire can be increased.




SUMMARY OF THE INVENTION




It has been found that the amount of pressure which may be applied to inserted wires is advantageously affected by a number of factors including the stiffness or spring rate of the contact channel, the channel yield strength and the sharpness of the front face of the dimples. It has also been found that the shearing process for forming these dimples may adversely affect these factors. In the method of the present invention the contact dimples are formed in a compressive operation in which a compressive force is inwardly exerted on a metal blank after which the metal is formed into a contact channel. For the purpose of this disclosure a compressive operation will be considered to be any metal forming operation including sizing, swaging, coining and extruding in which a metal blank or slug is squeezed to thereby change its form through the direct application of compressive force. The metal strained in this way by compressive stresses is plastically deformed and behaves like a viscous liquid. Preferably the method of the present invention will be carried out by swaging and preferably in a series of successive steps.




In the present invention insulation displacement contact dimples are preferably produced in a punch press in three general steps. In the first step, a metal strip stock element is positioned between a first concave upper die and a first convex lower die. In this step the metal is not only stretched, but is swaged along the side of the dimple shaped element. An upper cavity is formed between the dimple shaped element and the first upper die and the metal is extruded upwardly toward that upper cavity. In the second step, the dimple shaped element is positioned between a second concave upper die and a second convex lower die. This lower die has a radius that is smaller than the radius of the first convex lower die used in the first step. Thus, the height of the dimple is raised. In this second step swaging also occurs on the side of the dimple but at a greater height than on the first step. In a third step, the dimple shaped element is positioned between still another third concave upper die and a third convex lower die. This third convex lower die has a greater radius and a steeper slope than the second convex lower die. In this step a lower cavity is initially formed between the dimple shaped element and the third convex die and an upper cavity between the dimple shaped element and the third concave die. The dies press against the dimple shaped element at points between these upper and lower cavities and begin to swage the metal. The forces involved are such that the metal will flow into the upper cavity first and then once the upper cavity is filled will flow into the lower cavity. The two cavities are needed since the metal at the top and bottom of the dimple shaped element will be thinner than the metal in the middle. The lower cavity allows the extra metal in the middle to flow into it while the upper cavity is still being filled near the top and bottom of the dimple. The process is also capable of flowing the metal into the upper die into a radius that is smaller than the thickness of metal. Alternatively, the third step may involve filling the lower end of the dimple shaped element by thinning the metal at the lower end and extruding the metal upwardly. The method produces a sharp dimple with a small radius on the front face that efficiently pierces wire insulation and extrudes into the copper conductor. In many cases the first, second and third upper dies will be identical and the same upper die can be used for all three steps.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention is further described with reference to the accompanying drawings in which:





FIG. 1

is a perspective view of a preferred embodiment of the insulation displacement contact terminal of the present invention;





FIG. 2

is a top plan view of the terminal shown in

FIG. 1

;





FIG. 3

is a front elevational view of the terminal shown in

FIG. 1

;





FIG. 4

is a side elevational view of the terminal shown in

FIG. 1

;





FIG. 5

is a top plan view of an individual channel in the terminal shown in

FIG. 1

;





FIG. 6

is a vertical cross sectional view of the channel shown in

FIG. 5

;





FIG. 7

is an end view of the channel shown in

FIG. 5

;





FIG. 8

is an alternate embodiment of the channel shown in

FIG. 5

;





FIG. 9

is a vertical cross sectional view of the channel shown in

FIG. 8

;





FIG. 10

is an end view of the channel shown in

FIG. 8

;





FIG. 11

is a schematic view of an end view of the dimple of the present invention;





FIG. 12

is a schematic top plan view of the dimple shown in

FIG. 11

;





FIG. 13

is a schematic end view of a prior art dimple;





FIG. 14

is a schematic top plan view of a prior art dimple;





FIGS. 15 through 18

are sequential schematic illustrations taken through the transverse axes of a strip stock metal element position between an upper and a lower die illustrating steps in the method of the present invention;





FIG. 19

is a longitudinal cross sectional view of a metal element position between an upper, lower die showing another step in the method of the present invention;





FIG. 20

is a magnified photograph showing a cross sectional view at a pair of opposed dimples of the present invention between which a wire is engaged;





FIG. 21

is a magnified photograph showing a cross sectional view of a pair of opposed prior art sheared dimples between which a wire is engaged;





FIG. 22

is a graph showing spring-back as a function of wire height on tests performed with terminals manufactured according to a preferred embodiment of the present invention;





FIG. 23

is a graph showing insulation displacement opening as a function of wire height on tests performed with terminals manufactured according to a preferred embodiment of the present invention;





FIG. 24

is a graph showing normal area as a function of wire height on tests performed with manufactured according to a preferred embodiment of the present invention;





FIG. 25

is a graph showing normal force as a function of wire height on tests performed with manufactured according to a preferred embodiment of the present invention;





FIG. 26

is a graph showing normal pressure as a function of wire height on tests performed with manufactured according to a preferred embodiment of the present invention; and





FIG. 27

is an end view similar to

FIG. 11

showing another embodiment of the dimple of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




Referring to

FIGS. 1 through 3

the insulation displacement contact cable connector of the present invention has an insulated body


10


which may preferably be a flame retardant GFR nylon. On its front side it has two rows of ten pin receiving apertures as at


12


and latching apertures as at


14


and a plurality of contacts as at


16


.




Referring to

FIGS. 5 through 6

the terminals include an intermediate conductor engaging portion generally at numeral


18


which includes tines


20


and


22


which engage a pin (not shown) in an array of pins on a circuit board, a stiffening rib


24


and a latching finger


26


which engages the terminal. The terminal also includes a forward wire engaging portion generally at numeral


28


which includes a terminal for


30


and sidewalls


32


and


34


. In these sidewalls there are centering flares as at


36


and lead in flares as at


38


. On the inner side of the sidewalls there are opposed contact dimples


40


and


42


. Longitudinally inward from these dimples there is another set of contact dimples


44


and


46


.




Referring to

FIGS. 8 through 10

, there is shown terminals having only a single set of contact dimples per channel which include an intermediate conductor engaging portion shown generally at numeral


48


which includes tines


50


and


52


, stiffening rib


24


and latching finger


56


.




The terminal also includes a forward wire engaging portion generally at numeral


58


which includes a channel floor


60


and sidewalls


62


and


64


. In these sidewalls there are wire strain relief flaps as at


66


and


68


. On the inner side of the sidewalls there is a single pair of opposed contact dimples


70


and


72


.




Referring to

FIGS. 11 and 12

, there is shown a contact channel with channel floor


74


and sidewalls


76


and


78


. Contact dimples


80


and


82


extend from these sidewalls. Each of these contact dimples has a top cover section as at


84


, a medial section as at


86


and a bottom section as at


88


. A lower floor section


90


extends from the sidewalls to contact the bottom section. The top section has a thickness t


t


which is preferably in the range of 0.002″ to 0.008″, the medial section has a thickness t


m


which is preferably in the range of 0.002″ to 0.008″ and the bottom section has a thickness t


b


which is preferably in the range of 0.002″ to 0.008″. Referring to

FIGS. 13 and 14

, in the prior art channel there is likewise a channel floor


92


and sidewalls


94


and


96


from which contact dimples


98


and


100


extend. These prior art contact dimples have a top arm section


102


, a medial section


104


and a bottom section


106


but do not have a lower arm section as is shown at numeral


90


in FIG.


11


.




Referring to

FIGS. 15 through 19

, the method of manufacturing the contact dimple of the present invention is illustrated. Referring particularly to

FIG. 15

the first step in the method of the present invention is illustrated. A metal element


108


is positioned between a first upper die


110


and a first lower die


112


and the punch press is activated until the position as shown in

FIG. 15

is achieved such that a first upper cavity


114


is formed. During this step compressive and preferably swaging force is applied to the side as at


15


of the now dimple shaped metal element as at arrows


116


and


118


and metal in the metal element is caused to be extruded or otherwise flow in the direction of the upper cavity as at arrow


120


. It will also be observed that the metal element has a base


112


and an apex


124


and the difference between these points define a height h


a


. The first lower die also has a slope defined by angle a


a


. It will also be observed that the lower die has a radius r


a


which is the radius of the circle c


a


which has a curve coinciding with the lower die at its apex. It will also be noted from

FIG. 15

that the upper die has a depth d


u


and a radius r


u


which is the radius of a circle as at c


u


which coincides with its curve at its deepest point


125


. It will also be noted that the upper die has a slope defined by angle a


u


between its side and base. After the completion of the first step, the metal element is removed from between the first and second die and positioned between two other dies or alternatively between the first upper die and a second lower die.

FIG. 16

shows the metal element at the completion of this second step in which there is a second upper die


126


, a second lower die


128


and the reformed metal element


130


. Between the upper die and the metal element is a second upper cavity


132


between the reformed metal element and the second lower die there are also lateral cavities


134


and


136


. Above these lateral cavities compressive and preferably swaging forces are applied to the side of the reformed metal element as at arrows


138


and


140


so as to cause the element to be extruded or otherwise flow toward the second upper cavity as in the direction of arrow


142


. The metal element has a base


144


and an apex


146


and a difference in height between these points is h


b


. There is also a radius r


b


on the second lower die which is the radius of the circle c


b


coinciding with the curve of the apex. On completion of the second step, the metal element is removed from between the second upper die and the second lower die and placed between two other dies or alternatively the same upper die will be used. The beginning of this step is illustrated in

FIG. 17

in which the reformed metal element


130


removed from the end of the second step is inserted between a third upper die


150


and third lower die


152


. A third upper cavity


154


is formed between the metal element and the third upper die, and there are contact points as at


156


and


158


where the third lower die bears against the metal element to form a second lower cavity


160


and lateral access spaces as at


162


and


164


. Referring to

FIG. 18

the relative positions of the elements shown in

FIG. 17

at the end of the third step are illustrated in which between the upper die


150


and the lower die


152


there is interposed the reformed metal element


170


. There is a reformed third lower cavity


172


between the third lower die and the metal element and lateral cavities


174


and


176


also positioned between the metal element and the third lower die. The dimple base is shown at


178


and its apex or top at


180


. Between the base


178


, prime and the top of the metal element there is a height h


c


. There is also a radius of the circle coinciding with the curve of the apex of the third lower die r


c


wherein that circle is shown at c


c


. Also shown is the angle between the base of the metal element and the slope of the side of the third lower die a


c


. Referring particularly to

FIG. 19

, it will be seen that the metal is thinned by forcing it through neck


182


.




Preferably the heights of the lower dies and the depths of the upper dies will be in the range of 0.013″ to 0.021″. The radius of the upper dies will be in the range of 0.002″ to 0.020″ but normally not more than the thickness of the metal element. The radius of the first lower die will preferably be in the range of 0.003″ to 0.005″, the second lower die will be in the range of 0.004″ to 0.006″ and the third lower die will be in the range of 0.010″ to 0.015″. The slope of the upper dies will preferably be in the range of 20° to 80°. The slope of the first lower die will preferably be in the range of 30° to 40°, the second lower die will be 40° to 50° and the third lower die will be 50° to 60°.




Referring to

FIG. 20

, further details of the contact dimple manufactured by this invention are illustrated. As is similar to the configuration shown in

FIGS. 11-12

, above the channel floor


274


there are opposed contact dimples


230


and


232


. Each of these contact dimples has a top arm section as at


284


, a medial section as at


286


, a bottom section as at


288


and a lower arm section


290


. Differences between the contact dimple of this invention and the prior art sheared dimple shown in

FIG. 21

are apparent. A wire


184


is retained between these. Referring to

FIG. 21

, it will be seen that, similarly to

FIGS. 11-13

, the prior art sheared dimples


298


and


300


are positioned above a channel floor


192


and each have a top arm as at


302


, a medial section as at


304


and a narrowed bottom section as at


306


but no lower floor section. A wire


186


is retained between these contacts.




Example and Test




1) Making the Terminals




Strip stock metal elements having a thickness of 0.008″ and being a CDA52100 3/4 hard phorphor bronze alloy were processed in three sets of dies as described in the attached Table 1. A Brudener model BBV190/85 punch press was used under the following conditions: 450 strokes per minute with a 0.154″ feed length. The channels formed by this process were used in an AT&T 963T2 connector. Eight 0.5 mm wire with 0.9 mm diameter semi-rigid PVC insulation were inserted in ten connectors at each of three different depth settings by means of an AT&T 1038A wire insertion machine, #5M1-377. The stuffer blade and wire depth gage used were as specified in AT&T X-20712 requirements. The machine was set for full insertion and gradually backed off the stuffer blade on each machine setting. Thus machine setting ‘1’ specifies the deepest insertion and subsequent machine setting numbers are progressively higher in the insulation displacement contact (IDC) dimple. While there was no precise adjustment for depth on the machine used, an attempt was made to space the settings in 0.003″ increments and all figures and tables in this example starting with a number refer to the machine setting number. All connector samples were numbered first by the machine setting number and then by order of insertion. All odd numbered samples for each machine setting were potted in epoxy so that they could be cross sectioned later to determine wire position and penetration of the wire by the IDC dimple of the connector contact.




2) Collection of Data




All physical measurements except for depth gage measurements performed on the samples were done on a toolmakers microscope. The depth gage used was made from a dial indicator, model B6K, fixtured to seat on the insulator as specified in X-20712. The contact spring rate was measured using INSTRON pull tester #BLN796835-A. For all even numbered connector samples for each machine setting, the inside width of the top of contact was measured with the wire inserted. The wire was then removed and the width was measured again. The elastic deflection at the top is thus the difference. All measurements were taken after the contact was first removed from the insulator. This data is listed in Tables 2, 3 and 4. All odd numbered connector samples for each machine setting were potted and ground to the middle of the first dimple. Wire height was calculated by measuring the distance to both the bottom and top of the wire from the inside bottom of the contact, adding the two measurements and dividing in half. The dimple opening was measured at the wire height. This data is listed in Tables 5, 6 and 7. Depth gage measurements were made after wire insertion as specified in the X-20712 requirements and are listed in Tables 5, 6 and 7. Depth gage readings were not taken for even numbered connectors. Electrical continuity between the wire and the connector contact was checked after wire insertion by inserting each end of a wire into two adjacent contacts and then probing the two contacts. To determine which of the two contacts was not making contact if an open occurred, the wire was cut between the two contacts and each contact and wire probed separately.




3) Calculated Data




Height to gage was considered to be the difference between the actual wire height measured and the height calculated from the wire depth gage reading. The height was calculated from the gage reading by subtracting the gage reading, half the outside diameter of the wire over the insulation and the metal thickness of the contact from the insulator channel depth. Connector contact elastic deflection at wire height is calculated from the average spring-back at the top of the contact for each machine setting. The calculated value was directly proportional to the height of the wire from the neutral axis in the bottom of the contact channel to the height of the top of the contact channel to this neutral axis. The normal area at the dimple (wire interface) in the area of the contact interface normal to the force applied by the contact we assume this area to be the intersection of two cylinders at right angles to each other. The depth of this intersection is determined from the measured dimple opening. A computer program was designed to integrate this area from the geometry involved. This method neglects any extra interface area created by extrusion of the wire in a direction perpendicular to the axis of the wire so the calculated area may under estimate the actual normal area. The spring rate of the connector contact near the top of the IDC channel was measured at 488 lbs/in on an Instron pull tester. The spring rate of unsupported terminals (no insulator housing) was calculated from an actual measured value at a given height in the channel and corrected for actual wire height using a ratio of calculated spring rates. The structural effect of drawing the dimples was to make the sides of the contact channel containing the dimples extremely stiff compared to the remaining part of the sides and the bottom of the channel. Thus in this area it was assumed the parts to be inelastic and prorated deflection of the contact at the wire height from the measured deflection at the top of the channel. Since both the contact deflection and wire height on the same sample could not be measured the averages from each sample for the calculations was used. The normal pressure for each machine setting is the normal force divided by the average normal area. All values stated are in pounds per square inch. The main calculated results for each machine setting are listed in Table 8.




4) Measured Results




Original measurements indicated that there was electrical continuity between the wire and contact through all three machine settings. The spring-back of the contact as measured at the top of the contact channel is shown plotted versus wire height in

FIG. 22

on the right side. The plot shows the spring-back measured at the top of the IDC contact channel decreases the further the wire is inserted in the contact. It was found that the contact does not spread against the insulator walls at the top. It was also found that the contacts with dimples do not require the support of the insulator needed by the sheared IDC dimples. The spring-back of the contact at the wire height is shown plotted versus wire height in

FIG. 22

on the left side. The plot of IDC dimple opening versus the wire height is shown on FIG.


23


. As shown in Tables 2, 3 and 4, the IDC dimple opening decreases at a very slow rate as the wire is inserted further. The normal area of contact between the wire and contact at the IDC dimple is shown plotted on FIG.


24


. As the wire was inserted further into the IDC dimple the increase in normal area is slight. This was due to the slow change in the IDC dimple opening and to the initial heavy penetration of the wire by the IDC dimple. The plot of normal force versus wire height is shown on FIG.


24


. It was found that a large increase in the force that is obtained with the swaged IDC dimples at any height which is believed to be due to both the increased elastic deflection of the contact and the increased spring rate. Due to the slight increase in normal area and the slightly larger increase in normal force as the wire is inserted further, normal pressure increases with wire depth. The results are plotted on FIG.


25


. The actual average normal pressure may be somewhat smaller than calculated due to the area possibly being underestimated. As shown in the results listed in Tables 1A, 2A and 3A, the wire height calculated from the depth gage measurements have lower results by an average of 0.001″ to 0.002″ from the actual measured height. However the standard deviation was small. Thus wire height can be determined with reasonable accuracy for the wire tested here by applying a correction factor to the depth gage readings. The cross section of the inserted wire for machine settings 1 through 3 shows a variation of up to 0.002″ in wire height along the length of the contact. This is apparently caused by the large insertion forces needed on this type IDC dimple. It was found that the top of the wire was at times flattened by the stuffer blade pressure and the insulation in this area has been pierced by the blade.




5) Conclusions




The data showed that the position of the wire that maximizes normal pressure on the contact is the deepest insertion possible. The actual minimum wire height (0.015) obtained by using the standard stuffer blade was less than half the diameter of the insulated wire (0.018). The insulated wire was pushed to the bottom of the channel at the IDC dimple slot compressing the insulation (0.003). AT&T Network Systems International (NSI) design guideline of 0.00079 inch/leg (20-um/leg) minimum spring-back of the IDC contact at the wire position over the entire insertion depth range were met. The maximum pressure on the wire at the IDC dimple was 60496 psi (417N/mm


2


) when using the standard stuffer blade. Indicating an ability to meet NSI design guideline of 29,000 psi (200 N/mm


2


) at all wire heights allowed in X-20712. The swaged IDC dimples resulted in a contact that does not depend on the strength of the connector insulator, results in a greater elastic range (spring-back), significantly increase the spring rate of the IDC channel and results in over twice the pressure on the wire at the IDC dimple for the gage of the wire tested.




Referring to

FIG. 27

, another preferred embodiment of the insulation displacement contact of the present invention is shown. In this figure there is shown a contact channel with channel floor


274


and sidewalls


276


and


278


. Contact dimples


280


and


282


extend from these sidewalls. Each of these contact dimples is spaced above the channel floor and has a top cover section as at


284


, a medial section as at


286


and a bottom section as at


288


. A lower floor section


290


extends from the sidewalls to contact the bottom section. The top section has thickness t


t


′ which is preferably in the range of 0.002″ to 0.008″, the medial section has a thickness t


m


′ which is preferably in the range of 0.002″ to 0.008″ and the bottom section has a thickness t


b


′ which is preferably in the range of 0.002″ to 0.008″. It will be noted that the sidewalls


276


and


278


are canted slightly inwardly from the floor


274


to their upper edges. Those skilled in the art will appreciate that this arrangement may allow for efficiencies in cutting and removing insulation.




While the present invention has been described in connection with the preferred embodiments of the various figures, it is to be understood that other similar embodiments may be used or modifications and additions may be made to the described embodiment for performing the same function of the present invention without deviating therefrom. Therefore, the present invention should not be limited to any single embodiment, but rather construed in breadth and scope in accordance with the recitation of the appended claims.
















TABLE 1











radius (in.)




slope (°)




height/depth (in.)



























upper dies (identical)




.0050




50




.0196






first lower die




.0035




39




.0160






second lower die




.0050




56




.0181






third lower die




.0120




60




.0185


























TABLE 1











radius (in.)




slope (°)




height/depth (in.)



























upper dies (identical)




.0050




50




.0196






first lower die




.0035




39




.0160






second lower die




.0050




56




.0181






third lower die




.0120




60




.0185






















TABLE 3











DEPTH SETTING NUMBER = 2













CON-





CANNEL WIDTH
















NECTOR




CONTACT




CONTIN-




WITH




WIRE







NUMBER




NUMBER




UITY




WIRE




REMOVED




DELTA



















2




1




Y




0.0629




0.0579




0.0050







2




Y




0.0631




0.0579




0.0052







3




Y




0.0633




0.0575




0.0058







4




Y




0.0636




0.0582




0.0054







5




Y




0.0633




0.0571




0.0062







6




Y




0.0632




0.0576




0.0056







7




Y




0.0623




0.0575




0.0048







8




Y




0.0629




0.0569




0.0060






4




1




Y




0.0625




0.0577




0.0048







2




Y




0.0632




0.0578




0.0054







3




Y




0.0634




0.0577




0.0057







4




Y




0.0637




0.0582




0.0055







5




Y




0.0630




0.0578




0.0052







6




Y




0.0633




0.0578




0.0055







7




Y




0.0625




0.0575




0.0050







8




Y




0.0626




0.0573




0.0053






6




1




Y




0.0627




0.0579




0.0048







2




Y




0.0629




0.0581




0.0048







3




Y




0.0633




0.0571




0.0062







4




Y




0.0634




0.0576




0.0058







5




Y




0.0629




0.0577




0.0052







6




Y




0.0632




0.0573




0.0059







7




Y




0.0629




0.0575




0.0054







8




Y




0.0625




0.0568




0.0057






averages





1.00




0.06302




0.05760




0.00542






std. dev.





0.00




0.00036




0.00037




0.00042






















TABLE 4











DEPTH SETTING NUMBER = 3













CON-





CANNEL WIDTH
















NECTOR




CONTACT




CONTIN-




WITH




WIRE







NUMBER




NUMBER




UITY




WIRE




REMOVED




DELTA



















2




1




Y




0.0624




0.0576




0.0048







2




Y




0.0644




0.0580




0.0064







3




Y




0.0637




0.0575




0.0062







4




Y




0.0635




0.0577




0.0058







5




Y




0.0633




0.0577




0.0056







6




Y




0.0647




0.0581




0.0066







7




Y




0.0634




0.0576




0.0058







8




Y




0.0629




0.0568




0.0061






4




1




Y




0.0637




0.0580




0.0057







2




Y




0.0634




0.0575




0.0059







3




Y




0.0641




0.0579




0.0062







4




Y




0.0626




0.0578




0.0048







5




Y




0.0639




0.0577




0.0062







6




Y




0.0629




0.0570




0.0059







7




Y




0.0628




0.0579




0.0049







8




Y




0.0625




0.0569




0.0056






6




1




Y




0.0645




0.0583




0.0062







2




Y




0.0644




0.0582




0.0062







3




Y




0.0642




0.0582




0.0060







4




Y




0.0642




0.0579




0.0063







5




Y




0.0637




0.0579




0.0058







6




Y




0.0638




0.0580




0.0058







7




Y




0.0629




0.0569




0.0060







8




Y




0.0633




0.0573




0.0060






averages





1.00




0.06355




0.05768




0.00587






std. dev.





0.00




0.00066




0.00042




0.00046






















TABLE 5











DEPTH SETTING NUMBER = 1


















CONNECTOR




CONTACT




CONTI-




DEPTH




WIRE




HEIGHT




IDC




NORMAL






NUMBER




NUMBER




NUITY




GAGE




HEIGHT




TO GAGE




OPENING




AREA









1




1




Y




0.0394




0.0156




0.0020




0.0131




0.000122







2




Y




0.0391




0.0161




0.0022




0.0132




0.000120







3




Y




0.0389




0.0145




0.0004




0.0133




0.000119







4




Y




0.0388




0.0159




0.0017




0.0130




0.000124







5




Y




0.0387




0.0142




−.0001




0.0135




0.000115







6




Y




0.0391




0.0142




0.0003




0.0135




0.000115







7




Y




0.0390




0.0157




0.0017




0.0133




0.000119







8




Y




0.0385




0.0158




0.0013




0.0128




0.000127






3




1




Y




0.0382




0.0145




−.0003




0.0134




0.000117







2




Y




0.0383




0.0159




0.0012




0.0133




0.000119







3




Y




0.0386




0.0149




0.0005




0.0131




0.000122







4




Y




0.0393




0.0148




0.0011




0.0132




0.000120







5




Y




0.0386




0.0158




0.0014




0.0131




0.000122







6




Y




0.0386




0.0156




0.0012




0.0132




0.000120







7




Y




0.0382




0.0143




−.0005




0.0132




0.000120







8




Y




0.0391




0.0146




0.0007




0.0128




0.000127






5




1




Y




0.0389




0.0165




0.0024




0.0132




0.000120







2




Y




0.0387




0.0164




0.0021




0 0132




0.000120







3




Y




0.0375




0.0160




0.0005




0.0133




0.000119







4




Y




0.0391




0.0163




0.0024




0.0133




0.000119







5




Y




0.0397




0.0163




0.0030




0.0132




0.000120







6




Y




0.0388




0.0160




0.0018




0.0132




0.000120







7




Y




0.0389




0.0154




0.0013




0.0131




0.000122







8




Y




0.0384




0.0154




0.0008




0 0127




0.000129






averages






 0.03877




 0.01545




 0.00121




 0.01317




 0.0001209






std. dev.






 0.00045




 0.00073




 0.00089




 0.00019




 0.0000033






















TABLE 6











DEPTH SETTING NUMBER = 2


















CONNECTOR




CONTACT




CONTI-




DEPTH




WIRE




HEIGHT




IDC




NORMAL






NUMBER




NUMBER




NUITY




GAGE




HEIGHT




TO GAGE




OPENING




AREA









1




1




Y




0.0380




0.0191




0.0041




0.0131




0.000122







2




Y




0.0370




0.0170




0.0010




0.0134




0.000117







3




Y




0.0364




0.0174




0.0008




0.0134




0.000117







4




Y




0.0367




0.0174




0.0011




0.0136




0.000114







5




Y




0.0362




0.0191




0.0023




0.0134




0.000117







6




Y




0.0362




0.0171




0.0003




0.0133




0.000119







7




Y




0.0370




0.0190




0.0030




0.0133




0.000119







8




Y




0.0372




0.0175




0.0017




0.0131




0.000122






3




1




Y




0.0375




0.0177




0.0022




0.0130




0.000124







2




Y




0.0367




0.0184




0.0021




0.0134




0.000117







3




Y




0.0360




0.0185




0.0015




0.0132




0.000120







4




Y




0.0364




0.0189




0.0023




0.0133




0.000119







5




Y




0.0362




0.0171




0.0003




0.0134




0.000117







6




Y




0.0375




0.0174




0.0019




0.0133




0.000119







7




Y




0.0372




0.0189




0.0031




0.0133




0.000119







8




Y




0.0376




0.0171




0.0017




0.0128




0.000127






5




1




Y




0.0373




0.0167




0.0010




0.0132




0.000120







2




Y




0.0369




0.0182




0.0021




0.0130




0.000124







3




Y




0.0368




0.0183




0.0021




0.0130




0.000124







4




Y




0.0365




0.0174




0.0009




0.0130




0.000124







5




Y




0.0369




0.0182




0.0021




0.0129




0.000126







6




Y




0.0373




0.0173




0.0016




0.0130




0.000124







7




Y




0.0372




0.0184




0.0026




0.0132




0.000120







8




Y




0.0370




0.0181




0.0021




0.0130




0 000124






averages






 0.03690




 0.01793




 0.00183




 0.01319




 0.0001206






std. dev.






 0.00050




 0.00074




 0.00088




 0.00020




 0.0000033






















TABLE 7











DEPTH SETTING NUMBER = 3


















CONNECTOR




CONTACT




CONTI-




DEPTH




WIRE




HEIGHT




IDC




NORMAL






NUMBER




NUMBER




NUITY




GAGE




HEIGHT




TO GAGE




OPENING




AREA









1




1




Y




0.0339




0.0222




0.0031




0.0131




0.000122







2




Y




0.0342




0.0214




0.0026




0.0130




0.000124







3




Y




0.0346




0.0206




0.0022




0.0128




0.000127







4




Y




0.0348




0.0203




0.0021




0.0129




0.000126







5




Y




0.0339




0.0213




0.0022




0.0131




0.000122







6




Y




0.0340




0.0202




0.0012




0.0130




0.000124







7




Y




0.0341




0.0201




0.0012




0.0133




0.000119







8




Y




0.0337




0.0219




0.0026




0.0129




0.000126






3




1




Y




0.0340




0.0228




0.0038




0.0132




0.000120







2




Y




0.0341




0.0208




0.0019




0.0134




0.000117







3




Y




0.0337




0.0203




0.0010




0.0134




0.000117







4




Y




0.0334




0.0229




0.0033




0.0133




0.000119







5




Y




0.0335




0.0225




0.0030




0.0134




0.000117







6




Y




0.0332




0.0233




0.0035




0.0134




0.000117







7




Y




0.0334




0.0234




0.0038




0.0131




0.000122







8




Y




0.0344




0.0213




0.0027




0.0131




0.000122






5




1




Y




0.0336




0.0220




0.0026




0.0139




0.000109







2




Y




0.0342




0.0213




0.0025




0.0137




0.000112







3




Y




0.0336




0.0217




0.0023




0.0130




0.000124







4




Y




0.0341




0.0205




0.0016




0.0132




0.000120







5




Y




0.0341




0.0218




0.0029




0.0132




0.000120







6




Y




0.0339




0.0205




0.0014




0.0131




0.000122







7




Y




0.0341




0.0204




0.0015




0.0134




0.000117







8




Y




0.0350




0.0200




0.0020




0.0131




0.000122






averages






 0.03398




 0.02140




 0.00237




 0.01321




 0.0001203






std. dev.






 0.00043




 0.00103




 0.00079




 0.00025




 0.0000042






















TABLE 8











FORCE AND PRESSURE AT IDC DIMPLE ON INSERTED WIRE


















SPRING BACK




WIRE




IDC DIMPLE




NORMAL




NORMAL




NORMAL


















MACHINE




AT TOP




AT WIRE




HEIGHT




OPENING




AREA




FORCE




PRESSURE






SETTING




(inches)




(inches)




(inches)




(inches)




(inches)




(lbs)




(lbs/in-sq)









1




0.00525




0.00179




0.01545




0.01317




0.0001209




7.3075




60496






2




0.00542




0.00208




0.01793




0.01319




0.0001206




6.6008




54760






3




0.00587




0.00262




0.02140




0.01321




0.0001203




6.0864




50623













Claims
  • 1. A method for manufacturing an insulation displacement contact dimple comprising the steps of:(a) positioning a metal element between a first concave die and a first convex die having a radius to form a dimple shape in the metal element; (b) positioning the dimple shaped metal element in step (a) between a second concave die and a second convex die having a radius smaller than the first convex die to form the metal element in the dimple shape having a greater height than the dimple formed in step (a); and (c) positioning the dimple shaped element found in step (b) between a third concave die and a third convex lower die having a radius larger than the radius of the second die.
  • 2. The method for manufacturing an insulation displacement contact dimple of claim 1 wherein in step (a) the metal is stretched.
  • 3. The method for manufacturing an insulation displacement contact dimple of claim 2 wherein in step (a) the metal is compressed along the side of the dimple shaped element.
  • 4. The method for manufacturing an insulation displacement contact dimple of claim 3 in step (a) the metal is swaged.
  • 5. The method for manufacturing an insulation displacement contact dimple of claim 1 wherein in step (a) there is a first cavity between the dimple shaped element and the first die and metal is extruded upwardly towards said first cavity.
  • 6. The method for manufacturing an insulation displacement contact dimple of claim 1 wherein in step (b) the metal is compressed along the side of the dimple shaped element.
  • 7. The method for manufacturing an insulative displacement contact dimple of claim 6 wherein in step (b) the metal is swaged.
  • 8. The method for manufacturing an insulation displacement contact dimple of claim 6 wherein there is a base of the dimple shaped element and in step (a) metal is compressed at a first height above the base and in step (b) the metal is compressed at a second height above the base and said second height is greater than said first height.
  • 9. The method for manufacturing an insulation displacement contact dimple of claim 8 wherein in step (b) there is a second cavity between the concave die and the dimple shaped element and metal is caused to flow toward said second cavity in step (b).
  • 10. The method for manufacturing an insulation displacement contact dimple of claim 9 wherein there are lateral cavities between the second convex die and the dimple shaped element.
  • 11. The method for manufacturing an insulation displacement contact dimple of claim 1 wherein in step (c) the third convex die has a steeper slope than the second convex die.
  • 12. The method for manufacturing an insulation displacement contact dimple of claim 11 wherein there is a third cavity between the dimple shaped element and the third concave die.
  • 13. The method for manufacturing an insulation displacement contact dimple of claim 12 wherein there is a cavity between the element and the third die.
  • 14. The method for manufacturing an insulation displacement contact dimple of claim 13 wherein in step (c) metal is caused to flow into the third concave die.
  • 15. The method for manufacturing an insulation displacement contact dimple of claim 14 wherein in step (c) metal is caused to flow into the cavity.
  • 16. The method for manufacturing an insulation displacement contact dimple of claim 15 wherein in step (c) metal is caused to flow into the cavity before metal is caused to flow into the third cavity.
  • 17. The method for manufacturing an insulation displacement contact dimple of claim 16 wherein said dimple has a top, bottom and medial section and the metal has a thickness and the thickness in the top and bottom sections is greater than the thickness in the medial section.
  • 18. The method for manufacturing an insulation displacement contact dimple of claim 17 wherein some metal is caused to flow into the third cavity while metal is still being caused to flow into the cavity.
  • 19. The method for manufacturing an insulation displacement contact dimple of claim 18 wherein the third convex die has a radius and said radius is smaller than the thickness of the metal.
  • 20. The method of claim 19 wherein the thickness of the metal in the dimple in the top section is from about 0.002″ to about 0.008″, the thickness of the dimple in the bottom section is from about 0.002″ to about 0.008″ and the thickness of the dimple in the medial section is from about 0.002″ to about 0.008″.
  • 21. The method of claim 1 wherein the radius of the first convex die is from about 0.003″ to about 0.005″, the radius of the second convex die is from about 0.004″ to about 0.006″, and the radius of the third convex die is from about 0.010″ to about 0.015″.
  • 22. The method of claim 1 wherein the slope of the first lower die is from about 30° to about 40°, the slope of the second lower die is from about 40° to about 50° and the slope of the third lower die is from about 50° to about 60°.
  • 23. The method of claim 1 wherein the metal element initially positioned between the first concave die and the first convex die in step (a) has a thickness of between about 0.005″ and about 0.020″.
  • 24. The method of claim I wherein the metal element initially positioned between the first concave die and the second concave die in step (a) is an alloy selected from a group consisting of a copper alloy and a spring steel.
  • 25. The method of claim 1 wherein the first concave die, the second concave die and the third concave die are identical.
  • 26. A method for manufacturing an insulation displacement contact dimple comprising the steps of:(a) providing an insulation displacement contact; (b) positioning said insulation displacement contact between a first concave die and a first convex die having a radius to form a dimple having a height; (c) positioning said dimple between a second concave die and a second convex die having a radius larger than said radius of said first convex die to increase said height of said dimple.
  • 27. The method as recited in claim 26, wherein the insulation displacement contact providing step includes positioning said insulation displacement contact between a third concave die and a third convex die having a radius larger than said radius of said first convex die before step (b) to form said dimple having a height less than said height formed in step (b).
  • 28. In a method of manufacturing an insulation displacement contact having a dimple thereon, wherein the improvement comprises creating said dimple in a plurality of metal forming steps.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation-in-part of application Ser. No. 08/580,761 filed Dec. 29, 1995, now abandoned, a division of Ser. No. 08/315,440 filed Sep. 30, 1994, abandoned.

US Referenced Citations (12)
Number Name Date Kind
3867005 Hoppe Feb 1975 A
3926498 Hoppe Dec 1975 A
4018177 McKee Apr 1977 A
4027521 McKee Jun 1977 A
4035049 McKee Jul 1977 A
4040702 McKee Aug 1977 A
4050760 Cohen Sep 1977 A
4208083 Kirby Jun 1980 A
4208084 Kali Jun 1980 A
4385794 Lucius May 1983 A
6012942 Volstorf Jan 2000 A
6021568 Volstorf Feb 2000 A
Foreign Referenced Citations (1)
Number Date Country
2 059 307 Apr 1981 GB
Continuation in Parts (1)
Number Date Country
Parent 08/580761 Dec 1995 US
Child 09/412179 US