The present invention disclosed herein relates to a lithium battery, and more particularly, to a method of manufacturing a lithium battery.
As the importance of energy storage and conversion technologies is being emphasized, the interest with respect to lithium batteries is significantly increasing. Such a lithium battery may include a cathode, a separator, an anode, and an electrolyte. The electrolyte includes lithium salt and a solvent for dissociating the lithium salt. The electrolyte may serve as a medium through which ions are moved between the cathode and the anode. Since the lithium battery has a relatively high energy density than other batteries and is miniaturized and lightweight, the lithium battery is being actively researched and developed for a power source of potable electronic equipment. In recent, as the performance of portable electronic equipment is improved, the portable electronic equipment increases in power consumption. Thus, lithium batteries are required to have high power and good discharge characteristics. In addition, there is required that lithium batteries are automatically and continuously manufactured and mass-produced.
The present invention provides a method of manufacturing a lithium battery having a large area and improved battery performance.
The feature of the present invention is not limited to the aforesaid, but other features not described herein will be clearly understood by those skilled in the art from descriptions below.
Embodiments of the present invention provide methods of manufacturing a lithium battery, the methods including: providing a anode part including a anode collector, a anode layer, and a anode electrolyte layer which are successively stacked on a first pouch film; providing a cathode part including a cathode collector, a cathode layer, and a cathode electrolyte layer which are successively stacked on a second pouch film; and sealing the first and second pouch films to couple the anode part to the cathode part.
In some embodiments, the providing of the anode part may include: depositing or sputtering copper on the first pouch film to form the anode collector; screen-printing anode paste on the anode collector to form the anode layer; and screen-printing electrolyte paste on the anode layer to form the anode electrolyte layer.
In other embodiments, the forming of the anode collector may further include forming an anode terminal contacting the anode collector on the first pouch film to protrude from the anode collector, wherein the anode terminal may be formed together with the anode collector by depositing or sputtering the copper.
In still other embodiments, the electrolyte paste may include a cellulose-based polymer, a polyvinylidene fluoride-based polymer, a lithium salt, an organic solvent, and an inorganic material.
In even other embodiments, the providing of the cathode part may include: depositing or sputtering aluminum on the second pouch film to form the cathode collector; screen-printing cathode paste on the cathode collector to form the cathode layer; and screen-printing electrolyte paste on the cathode layer to form the cathode electrolyte layer.
In yet other embodiments, the anode layer may include: a bottom surface contacting the anode collector; a top surface facing the bottom surface to contact the anode electrolyte layer; and a side surface connecting the bottom surface to the top surface, wherein the anode electrolyte layer may contact the top surface and the side surface.
In further embodiments, the cathode layer may include: a top surface; a bottom surface facing the top surface to contact the cathode collector; and a side surface connecting the top surface to the bottom surface, wherein the cathode electrolyte layer may contact the top surface and the side surface.
Embodiments of the present invention provide methods of manufacturing a lithium battery, the methods including: providing a anode part; providing a cathode part; and coupling the anode part to the cathode part to assemble the lithium battery, wherein the providing of the anode part includes: forming a anode collector on a first pouch film; forming a anode layer on the anode collector; and forming a anode electrolyte layer on the anode layer, wherein the providing of the cathode part includes: forming a cathode collector on a second pouch film; forming a cathode layer on the cathode collector; and forming a cathode electrolyte layer on the cathode layer.
In some embodiments, the forming of the anode collector may include depositing or sputtering copper on the first pouch film.
In other embodiments, the forming of the anode layer may include: mixing an anode active material, a conductive material, and electrolyte paste with each other to manufacture anode paste; and screen-printing the anode paste on the anode layer.
In still other embodiments, the forming of the anode electrolyte layer may include screen-printing electrolyte paste to cover the anode layer.
In even other embodiments, the forming of the cathode collector may include depositing or sputtering aluminum on the second pouch film.
In yet other embodiments, the forming of the cathode layer may include: mixing a cathode active material, a conductive material, and electrolyte paste with each other to manufacture cathode paste; and screen-printing the cathode paste on the cathode layer.
In further embodiments, the forming of the cathode electrolyte layer may include screen-printing electrolyte paste to cover the cathode layer.
In still further embodiments, the assembling of the lithium battery may include: stacking the anode part and the cathode part on each other to allow the negative and cathode electrolyte layers to contact each other; and thermally bonding the first and second pouch films to each other.
The accompanying drawings are included to provide a further understanding of the present invention, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the present invention and, together with the description, serve to explain principles of the present invention. In the drawings:
For sufficient understanding of configurations and effects of the present invention, preferred embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. The present invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present invention to those skilled in the art. It would be understood to a person skilled in the art that the concept of the present invention may be performed under any adequate environments.
In the following description, the technical terms are used only for explain a specific exemplary embodiment while not limiting the present invention. The terms of a singular form may include plural forms unless referred to the contrary. The meaning of “include,” “comprise,” “including,” or “comprising,” specifies a component, a step, an operation and/or an element and/or a component but does not exclude other components, steps, operations, and/or elements.
It will be understood that when an element such as a film (or layer) or substrate is referred to as being “on” another element, it can be directly on the other element or intervening elements may also be present.
Also, though terms like a first, a second, and a third are used to describe various regions and layers in various embodiments of the present invention, the regions and the layers are not limited to these terms. These terms are used only to discriminate one region or film (or layer) from another region or film (or layer). Therefore, a layer referred to as a first layer in one embodiment can be referred to as a second layer in another embodiment. An embodiment described and exemplified herein includes a complementary embodiment thereof. It is also noted that like reference numerals denote like elements in appreciating the drawings.
Unless the terms used in the embodiments of the present invention are differently defined, the terms may be construed as commonly well-known meaning to a person skilled in the art.
Hereinafter, a method of manufacturing a lithium battery according to the present invention will be described in detail with reference to the accompanying drawings.
Referring to
Referring to
Referring to
A cellulose-based polymer and a polyvinylidene fluoride-based polymer may be mixed with each other, and then the mixture may be dissolved into a solvent to add a nonaqueous electrolyte solution and an inorganic material, thereby manufacturing the electrolyte paste. The cellulose-based polymer and the polyvinylidene fluoride-based polymer may be mixed at a weight ratio of about 1:99 to about 99:1. The cellulose-based polymer may have high adhesion and include cellulose, ethyl cellulose, butyl cellulose, carboxylmethyle cellulose, or hydroxypropyl cellulose. A polyvinylidene fluoride-based polymer may have a film formation characteristic. Also, the polyvinylidene fluoride-based polymer may include polyvinylchloride derivatives, acrylonitrile-based polymer derivatives, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, a copolymer of vinylidene fluoride and trifluoropropylene, a copolymer of vinylidene fluoride and tetrafluoropropylene, polymethylmethacylate, polyethylacrylate, polyethylmetacrylate, polybutylacrylate, polybutylmethacrylate, polyvinylacetate, polyvinylalcohol, polyimide, polysulfone, or polyurethane.
The nonaqueous electrolyte solution may be an organic solvent in which lithium salt is dissolved. The organic solvent may include at least one of ethylene carbonate, propylene carbonate, ethyl methyl carbonate, gammabutyrolactone, ethylene glycol, triglyme, polyethylene oxide, and polyethylene glycol dimethyl ether. The lithium salt may include at least one of lithium perchlorate (LiClO4), lithium triplate (LiCF3SO3), lithium hexafluorophosphate (LiPF6), lithium tetrafluorophosphate (LiBF4), and lithium fluoromethanesulfonyl imide (LiN(CF3SO2)2).
The inorganic particle may include an oxide-based inorganic particle, for example, lithium aluminum titanium phosphate (LATP), lithium aluminum germanium phosphate (LAGP), lithium lanthanum zirconium oxide (LLZO), lithium lanthanum titanium oxide, lithium lanthanum niobium oxide (LLNO), lithium lanthanum tallium oxide, or lithium barium lanthanum tallium oxide (LBLTO). The inorganic particle may have a size of about 500 nm to about 50 nm The electrolyte paste may be used for forming the anode electrolyte layer 140 as well as manufacturing anode paste and cathode paste.
The anode electrolyte layer 140 may have a thickness of about 5 μm to about 150 μm. A anode part 100 in which the first pouch film 110, the anode collector 120, the anode layer 130, and the anode electrolyte layer 140 are successively stacked on each other may be formed according to the above-described manufacturing processes.
Referring to
Referring to
Referring to
Referring to
Referring to
Hereinafter, the method of manufacturing the lithium battery and results obtained by evaluating characteristics of the lithium battery according to the present invention will be described in more detail with reference to Experimental examples of the present invention.
Manufacture of Lithium Battery
(Manufacture of Electrolyte Paste)
Ethyl cellulose is melted into N-methyl pyrrolidone (NMP), and a copolymer of vinylidene fluoride and hexafluoropropylene is melted to manufacture polymer matrix. The ethyl cellulose and the copolymer may have about 30 wt % and 70 wt %, respectively. Lithium hexafluorophosphate (LiPF6) may be melted into an organic solvent to manufacture about 1 molar concentration of a nonaqueous electrolyte solution. The organic solvent is used by mixing about 1:1 weight ratio of ethylene carbonate (EC) and dimethyl carbonate. About 300 wt % of a nonaqueous electrolyte and about 30 w % of lithium aluminum titanium phosphate (LATP) may be added into the polymer matrix in order. Thereafter, a stirring process may be performed.
(Manufacture of Cathode Part)
A nylon layer, an aluminum foil, and a cast polypropylene layer may be laminated to form a pouch layer having a thickness of about 120 mm. The pouch layer may be processed by using a corona discharger under the atmosphere so that the pouch layer has surface energy of about 50 dyne/cm or more. The pouch layer may be provided within a vacuum chamber, and a collector layer may be deposited on the pouch layer to have a length of about 120 mm, a width of about 87 mm, and a height of about 8 mm. The deposition process may be performed by using aluminum for a time of about 15 minutes under the high vacuum condition. Also, a metal terminal contacting the deposited aluminum collector layer may be formed together. About 10 wt % of the electrolyte paste, about 85 wt % of lithium cobalt oxide (LiCoO2), and about 5 wt % of acetylene black may be mixed with each other to manufacture cathode paste. The cathode paste may be applied on the aluminum collector layer to a thickness of about 100 μm. Also, the electrolyte paste may be directly applied again on a surface of the cathode layer formed as described above to form an organic/inorganic hybrid solid electrolyte layer on the surface of the cathode layer.
(Manufacture of Anode Part)
An anode part may be manufactured through the same process as that of the cathode part. However, a collector layer may be deposited by using copper. Anode paste which is manufactured by mixing about of 10 wt % of electrolyte paste, about 85 wt % of natural graphite, and about 5 wt % of acetylene black with each other may be applied on a copper collector layer to a thickness of about 50 μm. Also, the electrolyte paste may be directly applied again on a surface of the anode layer formed as described above to form an organic/inorganic hybrid solid electrolyte layer on the surface of the anode layer.
(Manufacture of Lithium Battery)
A cathode part and an anode part which are formed on a pouch film contact each other to seal four corners of the pouch film through vacuum thermal bonding, thereby manufacturing a lithium battery.
A lithium battery may be manufactured through the same method as that of Experimental example 1. However, cathode paste manufactured by mixing about 10 wt % of cathode paste, about 85 wt % of olivine (LiFePO4), and about 5 wt % of acetylene black with each other may be used.
(Manufacture of Electrolyte Film)
Electrolyte paste which is the same as that of Experimental example 1 may be casted on a release paper to evaporate N-methylpyrrolidone (a co-solvent), thereby manufacturing an organic/inorganic hybrid solid electrolyte film.
(Manufacture of Cathode Part)
A collector layer is formed using carbon paste. An electrode plate may be manufactured through the same method as that of Experimental example 1 except that a cathode layer uses a polyvinylidene fluoride binding material instead of the electrolyte paste. Here, the formation of the electrolyte layer on a cathode plate through the coating of the electrolyte paste may be omitted.
(Manufacture of Anode Part)
A collector layer is formed using carbon paste. An electrode plate may be manufactured through the same method as that of Experimental example 1 except that an anode layer uses a polyvinylidene fluoride binding material instead of the electrolyte paste. Here, the formation of the electrolyte layer on an anode plate through the coating of the electrolyte paste may be omitted.
(Manufacture of Lithium Battery)
The cathode plate manufactured as described above, the casted organic/inorganic hybrid solid electrolyte film, and the anode plate may be stacked on each other to manufacture a lithium battery.
A lithium battery is manufactured through the same method as that of Comparison example 1. However, cathode paste manufactured by mixing about 10 wt % of polyvinylidene fluoride, about 85 wt % of olivine (LiFePO4), and about 5 wt % of acetylene black with each other may be used.
Evaluation of Lithium Battery Performance
Referring to
In Experimental examples 1 and 2 (a1 and a2), the anode layer 130 and the cathode layer 230 of the lithium battery 1 may be respectively covered by the anode electrolyte layer 140 and the cathode electrolyte layer 240 to maximize the contact between the anode layer 130 and the anode electrolyte layer 140 and between the cathode layer 230 and the cathode electrolyte layer 240. Thus, electron conduction and collection characteristics of the lithium battery 1 may be improved to increase performance of the lithium battery 1.
Referring to
The method of manufacturing the lithium battery according to the present invention may include a process of providing the cathode part and a process of sealing the first and second pouch films through the vacuum thermal bonding to couple the anode part to the cathode part. The negative and cathode parts may be continuously manufactured at a time on the pouch films by directly applying the collector layer, the electrode layer, and the electrolyte layer. Since the negative and cathode electrolyte layers 140 and 240 which include the same material physically contact each other, the interface resistance of the lithium battery may be reduced. Also, the electron conduction and collection characteristics of the lithium battery may be improved to improve the performance of the lithium battery. In the method of manufacturing the lithium battery according to the embodiment, the lithium battery having the large area may be effectively manufactured.
While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2012-0072366 | Jul 2012 | KR | national |
10-2012-0123651 | Nov 2012 | KR | national |
This U.S. non-provisional patent application claims priority under 35 U.S.C. §119 of Korean Patent Application Nos. 10-2012-0072366, filed on Jul. 3, 2012, and 10-2012-0123651, filed on Nov. 2, 2012, the entire contents of which are hereby incorporated by reference.