The invention relates to nano-crystalline cellulose film and in particular to a method of manufacturing a film containing nano-crystalline cellulose.
Cellulose is a semi-crystalline high-molecular weight homopolymer contained in virtually all plants. Its semi-crystalline nature implies it has ordered crystalline regions as well as disordered amorphous regions. Subjecting cellulose to degradation via acid hydrolysis yields a suspension of cellulose crystals because the amorphous regions are preferentially hydrolized. Depending on the hydrolysis conditions, cellulose can be degraded into crystals that are between the micron and nanometer ranges—typically, nanocrystals would result from further hydrolyzing, and subjecting microcrystals to high shear forces. Nanocrystalling cellulose has a size distribution that is species-dependent, but the typical range of crystal edge dimensions is 1-100 nm and that of crystal lengths is 20-2000 nm. Even though the tensile properties of nano-crystalline cellulose are an order of magnitude below those of carbon nanotubes, which is currently the strongest known structural material, they are sufficiently high to justify its inclusion into engineered biocomposite materials. Currently, both pure nano-crystalline cellulose films and nano-crystalline cellulose-based composite films have only been produced on a laboratory scale, and have not been commercially isolated. The challenges and uncertainties associated with the commercial production of both pure and composite nano-crystalline cellulose films are numerous, and include: the films' lack of flexibility, their low release coefficients, their behaviour under tension, their drainage characteristics and their response to impingement drying.
In one embodiment the present invention provides a method of manufacturing nano-crystalline cellulose film comprising the steps of (i) providing a suspension comprising nano-crystalline cellulose; (ii) uniformly dispensing the suspension onto at least one non-permeable sheet; (iii) drying the suspension using at least one non-contact drying apparatus; (iv) placing a semi-permeable sheet on the opposing surface of the suspension to the non-permeable sheet providing a sandwiched film configuration; (v) further drying the sandwiched film using at least one drying apparatus; (vi) removing the non-permeable sheet and the semi-permeable sheet from the sandwiched film; (vii) optionally further drying the gelled nano-crystalline film.
In one embodiment the suspension used in the method of the present invention comprises less than about 10% solids. In another embodiment the suspension comprises less than about 7% solids. In an alternate embodiment the suspension comprises about 5% solids.
In one embodiment the suspension consists essentially of nano-crystalline cellulose. In an alternative embodiment the suspension comprises at least one additional material operable to form a sheet, the material may be, for example, wood pulp. In a further embodiment, the suspension further comprises at least one additive, for example, a filler and/or a pigment.
The present invention further provides a nano-crystalline cellulose film made by the method described herein.
The present invention will now be described in further detail with reference to the following figures:
The present invention provides a method of manufacturing nano-crystalline cellulose film using a continuous process. The continuous process includes, but is not limited to, forming, pressing, drying, calendering and finishing the film, whose final state may be in roll or sheet form.
The method includes the use of a nano-crystalline cellulose suspension that may be prepared using techniques known in the art, including transformative technologies that use cellulosic fibre material from wood or vegetal sources, as described in [1] Wang, Neng; Ding, Enyong; Cheng, Rongshi: Preparation and liquid crystalline properties of spherical cellulose nanocrystals, Langmuir, Vol. 24, Nr. 1, pp: 5-8, (2008); [2] Habibi, Youssef; Foulon, Laurence; Aguioe-Boeghin, Voeronique; Molinari, Michaoel; Douillard, Roger: Langmuir-Blodgett films of cellulose nanocrystals: preparation and characterization, J. Colloid Interface Sci., Vol. 316, Nr. 2, pp: 388-397, (2007); [3] Bondeson, Daniel; Mathew, Aji; Oksman, Kristiina: Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis, Cellulose, Vol. 13, Nr. 2, pp: 171-180, (2006).
The nano-crystalline cellulose suspension used in the method described herein contains a % of solids that allows the nano-crystalline cellulose to remain in suspension to be used in the process described herein. However, it will be understood that the initial suspension used may contain solids in the range of 7-10%. In this embodiment, the process may further include a high-shear headbox that is operable to disperse the nano-crystalline cellulose suspension onto the fabric, as described further below. The use of the high-shear headbox allows for uniform dispersion of the nano-crystalline cellulose suspension which may be in the form of a gel due to the high % of solids. The initial suspension used in the present invention preferably contains less than 10% solids, more preferably the suspension contains less than 7% solids. In a preferred embodiment, the suspension includes 5% solids.
The method of the present invention will be described in further detail with reference to the accompany Figures.
Initially, the nano-crystalline cellulose suspension is placed in a stabilisation unit or reservoir, identified at numeral 10 in
In addition the non-permeable fabric is formed from a material that prevents water from permeating through it but allows water vapour to permeate through to assist in the drying process.
In order to achieve uniform deposition, of the suspension onto the fabric, the reservoir controls the amount and speed of the suspension leaving the reservoir. In addition, the non permeable fabric, onto which the suspension is placed, moves at a speed that may be adapted to allow for control of the amount of suspension received on the fabric.
In an alternative embodiment, the initial suspension comprises a mixture of nano-crystalline cellulose with other material, for example, traditional wood pulp, or additives. The mixture can then be used in the process described herein to form a composite material that includes nano-cellulose crystals. Examples of other materials that may be used include, but are not limited to, traditional wood pulp produced using any type of pulping process, for example, groundwood, thermo-mechanical pulping and haft pulping.
In an alternative embodiment, the initial suspension comprises a mixture of nano-crystalline cellulose with a plasticizing agent.
Other mixtures that may be used include a nano-crystalline cellulose suspension as described above in combination with additives, such as pigments and/or fillers. Examples of such additives include, but are not limited to clay, calcium carbonate and plastics.
It will be understood by a person skilled in the art that the pH, temperature and viscosity of the initial suspension, whether pure nano-crystalline cellulose or a mixture as described above, will affect the film-forming characteristics of the initial suspension.
As stated above, the fabric onto which the suspension is placed is a non permeable fabric. The non permeable fabric is formed of material that does not allow for the passage of fluids therethrough but allows for the passage of water vapour.
After the nano-crystalline suspension has been placed on the non permeable fabric the initial drying process begins, indicated in
Once the film and fabric has passed through the initial drying stage, an additional fabric layer is placed on top of the nano-crystalline cellulose layer. The additional fabric layer is preferably a semi permeable fabric layer, indicated at numeral 22, and is placed on the opposite surface of the nano-crystalline layer to the non permeable fabric. The addition of the semi permeable fabric creates a sandwich effect with the nano-crystalline film being surrounded by fabric. The semi permeable fabric layer is operable to allow for the passage of fluids and or gases through the fabric.
Once the nano-crystalline layer is placed between the two fabric layers the sandwiched film is then moved to a second drying stage, indicated at 24 in
Heat from the dryer is radiated through the non permeable fabric to the nano-crystalline film. The heat is transferred to the film and moisture in the film will then evaporate out of the film. The semi permeable fabric is therefore located on the outside which allows for moisture to evaporate from the nano-crystalline film and through and out of the semi permeable fabric.
It will be understood that the non permeable and semi permeable fabrics are used to maintain the nano-crystalline film within a support structure. Initially, the nano-crystalline film will not have gelled sufficiently to be able to be a self supporting film. Therefore, the sandwich configuration provides support for the structure of the film while allowing for sufficient heat to reach the film and moisture to evaporate. The fabric layers therefore provide support to the film structure while simultaneously allowing the film to dry and form a self-supporting film.
In this second stage of drying the sandwiched film may pass over one or between more than one drying unit. The number of units and the speed at which the sandwiched film passes between the units may be varied depending on the amount of drying required. Likewise, the amount of heat radiated from the dryers will also affect the rate of drying of the film.
Once the sandwiched film has passed through this second stage of drying, the nano-crystalline film will have gelled, shown at arrow B, and its consistency will permit transfer of the film to a separate drying stage, indicated at 26.
It will be understood that a person skilled in the art will be able to identify when the film has reached the gelling phase. The ability of the film to gel and form a more self sustaining film will be affected by the % solids included in the nano-crystalline cellulose suspension, the tensile strength and the tensile modulus of the film. These factors can be modified, for example, by reducing or increasing the % solids in the initial suspension, to ensure that the suspension is able to form a self-supporting gelled film at this stage of the process. In addition, modifications to the drying stages, e.g. length of drying time, heat emitted from the dryers and/or speed of the film passing through the drying stations, may be made to assist in the gelling of the film.
The third drying stage is often referred to in traditional paper making processes as a Unirun configuration, identified at numeral 26. It includes the use of a single semi permeable fabric sheet 22, on top of the nano-crystalline film. The nano-crystalline film is placed directly onto the drying apparatus and heat from the drying apparatus is transferred directly to the nano-crystalline film. Moisture evaporates from the nano-crystalline film out through the semi-permeable fabric. The semi-permeable fabric is used to hold the film against the drying apparatus while still allowing water vapour to evaporate from the film and through the fabric. This drying stage may include several drying apparatus 28, for example from about 3 up to about 20 dryer cans. The number of drying apparatus, or cans, will vary depending on the film stability, film machine speed and steam pressure in dryers. The number of individual drying apparatus used, the speed at which the film passes between them and the heat emitted by each drying apparatus may be changed or modified based on the drying requirements for the film.
At the exit of the third stage of drying, the gelled film will be self-supporting. If necessary, fourth and fifth drying stages may be used to further increase the film solids content. These fourth and fifth drying stages, illustrated in
Temperature profiles, of the drying apparatus, are controlled to allow moisture removal without destroying film integrity. The number of dryer sections and dryers per section may vary based on steam pressure profiles, and the film requirements, i.e. film thickness and basis weight and also on the speed of the equipment.
Once the film has passed through this drying stage it passes through a gauging system 30 shown in
After the film has passed through the gauging station, hard and/or soft calendering, indicated generally at 32 in
After the calendering station the film may optionally pass through a coating station, shown at numeral 33 in
Once the film has passed through the calendering and/or coating station, the film properties are measured again by a second gauging system 34 to provide feedback controls for the calendering and/or coating units.
It will be understood that the method of the present invention does not require all of the steps identified above. For example, the number of drying stages will depend on the efficiency of the initial drying stages. In addition the further processing steps that are discussed above to be applied to the film after formation are not required. For example, the gauging station, calendering and coating stations are optional.
At the end of the machine the film is put in reels, indicated generally at 36 in
The “parent” reel is then moved to the winder, indicated by numeral 40 on
At the end users, i.e. the customers, the rolls of films may be processed further. Rolls can be unwound and processed for molding, film coating, laminating, forming, slit in sheets etc. Rolls can also be put in a pulper in order to prepare NCC suspension for specific applications, shown at numeral 50 in
It will be understood by a person skilled in the art that not all of the process steps required above may be necessary for the nano-crystalline cellulose film or composite manufacturer. Some of the steps, for example the drying steps, may be removed if not required.
Examples of some of the end uses for nano-crystalline film include, but are not limited to (i) Aeronautics/Transportation for providing lighter components, better physical characteristics and longer life; (ii) Health & Science providing digestible/non-toxic film for digestive system; compatible film for chemical encapsulation; (iii) Electronics including film having polarisation characteristics; film that is more affordable than Carbon based products; (iv) Paper & Wood products including super resistant wood flooring varnishes; lightweight paper etc.
While this invention has been described with reference to illustrative embodiments and examples, the description is not intended to be construed in a limiting sense. Thus, various modification of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that the appended claims will cover any such modifications or embodiments. Further, all of the claims are hereby incorporated by reference into the description of the preferred embodiments.
Any publications, patents and patent applications referred to herein are incorporated by reference in their entirety to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61193316 | Nov 2008 | US |