This invention related generally to cutting knives with hardened edges and, in particular, to knives, blades, shears, punches and other cutting or hole-forming implements wherein the hard edge material is fashioned with a direct-metal deposition (DMD) process as opposed to gluing, brazing or other bonding dissimilar materials.
Cutting knives with durable sharp edges are needed in a wide variety of industries for cutting papers, coated papers, plastics, fibers, rubbers, card boards, films, foils, and biological tissues (i.e., in surgical applications). Conventional heat-treated edges presently in use have a limited life. Brazed carbide edges offer improved life, but failure at the brazed joint, and special requirements for sharpening carbide edges, makes them very expensive.
This invention broadly uses direct metal deposition (DMD) to fabricate knife edges with extended service life, while reducing the costs associated with sharpening and other post-processing requirements. The rapid solidification associated with DMD offers fine microstructure with improved micro-structure and mechanical properties. Knives produced in accordance with the invention exhibit superior edges, in some cases exceeding three times the life of comparable products available in the market.
A cutting knife fabricated in accordance with the invention begins with a metal blank or substrate. A metal alloy powder is deposited along the blank and melted with a laser beam so that the powder solidifies into a strip of material having a hardness and/or wear resistance greater than that of the starting material. The piece is then finished to produce a sharp edge in the solidified material.
The powder may be melted while it is being deposited, or it may be melted after being deposited. A slot or groove may be formed in the blank with the metal alloy powder being deposited into the slot or groove. In the preferred embodiments, a hardened steel alloy powder is deposited onto a mild steel blank. For example, a tool steel or vanadium steel powder may be deposited onto a 1018 steel blank. A combination of alloy powders may also be used, whether mixed or in layers.
A DMD system having a nozzle operative to deliver the powder on one or both sides of a line-shaped laser beam may be used in accordance with the invention, with the nozzle being moved along the blank to deposit and melt the powder. The line of the laser could be oriented substantially perpendicular to the strip. The finished edge may have a width sufficient to provide multiple sharpening. The finished sharp edge may be straight, serrated or curved.
As an introduction, commonly assigned U.S. Pat. No. 6,122,564 describes a laser-aided, computer-controlled direct metal deposition (DMD) system wherein successive layers of material are applied to a substrate so as to fabricate an object or provide a cladding layer. The deposition tool path may be generated by a computer-aided manufacturing system, and feedback monitoring may be used to control the dimensions and overall geometry of the fabricated section in accordance with a computer-aided design description.
DMD systems are capable of depositing sections on metallic substrates of a differing material than used in the deposition, on the condition that suitable choices of material are made and suitable surface treatment is performed to achieve a good metallurgical bond between the deposited material and the underlying substrate.
This invention extends and improves upon the teachings set forth in the ‘564 Patent, the entire content of which is incorporated herein by reference. A method according to the invention is depicted in
A blank 100 of metal such as mild steel is provided in
The forward portion 126 of the composite structure is also removed and a blade is formed through milling, grinding, cutting and/or polishing, thereby creating an edge 128 of hardened material 116 at an appropriate angle with surface such as 130. Since the angle is formed through known method the invention is not limited in this regard. For example, for paper cutting angles on the order of 15-35 degrees may be appropriate, though other surfaces are possible as depicted by the broken lines shown in
Having described the general method, one detailed exemplary manufacturing process will now be detailed with reference to
1) A long bar of mild steel (e.g., 1018 steel) is cut or formed into blanks having desired lengths or other dimensional parameters.
2) A slot of required size (e.g., 0.5″ wide×0.08″ deep) is machined into each blank. An appropriate radius may be used at the bottom of the groove. A groove location is identified from one long edge of the blank.
3) The machined blanks are placed in multi-blank (e.g., 4 blank) fixtures in a DMD machine, and hardened material is deposited into the milled slots.
4) Deposited blanks are inspected for visual defects, such as severe sink or pitting. Hardness is checked on random samples (RC 65-67).
5) A triple tempering of deposited blanks is performed at 1025° F. for 2 hours with air cooling between cycles. Again, hardness is checked on random samples (RC 65-67).
6) Blanks are machined to the following specifications:
7) Perform the following inspection operations: Measure thickness with micrometers and check overall length, width, angle of bevel, tapped hole size and location, and thickness of DMD material.
8) Carry out finish grinding—Grind face taper, Grind bevel face, Grind bevel angle. Inspect each knife during grinding operation.
9) Inspect random samples for dilution area by polishing and etching knife edge.
10) Perform final honing of knife edge.
11) Visually inspect honed edge of each knife, perform paper draw test on 1 of every three knives.
12) Chemically etch 1 knife per batch and record in logbook.
Two techniques may be used in accordance with the invention for depositing hard steels in the milled slots: the powder injection and powder pre-placement.
Powder injection technique
In this embodiment, the inventive, POM-designed line beam nozzle described below is used to inject tool steel powder in the melt pool created by a line laser beam in the milled slot.
Powder pre-placement technique
In this case, tool steel powder is placed uniformly in the groove to fill the machined slot. A scan with a high-power laser (e.g., CO2, Diode, Nd-Yag) is performed using appropriate settings. (e.g., P=3.5 kw; S=150 mm/min; Gases=25 lpm Nozzle Ar). The process parameters will depend on the geometry of the knife substrate and desired production volume and quality.
As mentioned, a line-beam nozzle was designed and preferably used for deposition with powder injection.
During use of the nozzle, the line of the laser is oriented substantially perpendicular to the axis of deposition (i.e., line 112 if
This application is a divisional of U.S. patent application Ser. No. 12/732,794, filed Mar. 26, 2010, which claims priority from U.S. Provisional Patent Application Ser. No. 61/163,591, filed Mar. 26, 2009, the entire content of both of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3990329 | Laurin | Nov 1976 | A |
4122603 | Sastri | Oct 1978 | A |
4299860 | Schaefer | Nov 1981 | A |
4428260 | Eby | Jan 1984 | A |
4896424 | Walker | Jan 1990 | A |
4945640 | Garg et al. | Aug 1990 | A |
5431071 | Williams | Jul 1995 | A |
5477616 | Williams et al. | Dec 1995 | A |
5842387 | Marcus et al. | Dec 1998 | A |
6109138 | Upton | Aug 2000 | A |
6316065 | Wallmann | Nov 2001 | B1 |
6422110 | Wurst et al. | Jul 2002 | B1 |
6534745 | Lowney | Mar 2003 | B1 |
6571665 | Julien | Jun 2003 | B2 |
6612204 | Droese et al. | Sep 2003 | B1 |
6701627 | Korb et al. | Mar 2004 | B2 |
7658129 | Korb et al. | Feb 2010 | B2 |
20010046105 | Matsushita | Nov 2001 | A1 |
20050038551 | Mazumder et al. | Feb 2005 | A1 |
20070137438 | Zhu et al. | Jun 2007 | A1 |
20070163128 | Tarrerias | Jul 2007 | A1 |
20070205184 | Mazumder et al. | Sep 2007 | A1 |
20070283786 | Kappmeyer | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
1191192 | Nov 1985 | SU |
Number | Date | Country | |
---|---|---|---|
20140026730 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61163591 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12732794 | Mar 2010 | US |
Child | 13949755 | US |