1. Field of the Invention
This invention relates to methods of manufacturing pavers and, in particular, to methods of manufacturing photoluminescent pavers at a paver manufacturing facility.
2. Background Art
Paving blocks (i.e. pavers) are used for walkways, driveways and paths. The paving blocks allow ground motion without cracking which commonly occurs with concrete slabs and can be laid in various patterns that are aesthetically pleasing. Walkway lighting has long been used along with such paving blocks to increase safety and make for more sure footing or parking. Because the majority of walkway lighting is wired with low voltage electricity, there are electrical consumption costs associated with the use of such a system and difficulties in setup if the walkway is a long one or is located at a distance from an electrical outlet.
As described in U.S. Pat. No. 5,292,221, in automated brick or block making plants, a block machine presses moldable product into a block mold to produce green or uncured blocks. The green blocks are transported to kilns for curing and are thereafter palletized for shipment from the plant.
The block molding machine may dispense a plurality of green blocks on a rectangular metal pallet. The pallets are transported by conveyor to a stacker tower which receives the pallets, one at a time. After a pallet is received by the stacker at the level of the conveyor, the stacker shifts the pallet upwardly and then receives another pallet loaded with block directly therebeneath. This process continues until a vertical stack of pallets are held by the stacker.
The stacker is positioned adjacent a device known as a loader. The loader comprises a vertically-shiftable spade assembly from which a plurality of spades, positioned one above the other, extend laterally. There are the same number of spades in the loader as pallets with the spades being spaced apart from one another the same distance as the pallets in the stacker.
In operation, when the stacker is filled with loaded pallets, the loader carriage drives the spade assembly toward the stacker until each spade is received just beneath a corresponding pallet. One of the rams on the spade assembly actuates to shift the spades upwardly thereby lifting the pallets. The carriage then withdraws from the stacker, rotates 180° and advances toward a rack positioned at the other end of the spade assembly travel path. The carriage moves the spade assembly bearing the loaded pallets into the rack and a ram on the spade assembly actuates thereby lowering the assembly and depositing the stacked pallets on the rack.
Thereafter, either by way of a forklift or on automated transport cars, the racks are moved into kilns for curing.
After the blocks are cured, the racks are removed from the kilns and transported to a second stacker and unloader which operate in reverse fashion from the stacker and loader as described above and are referred to as an unloader and unstacker. The unloader carriage moves toward the rack bearing the cured block and positions a spade under each pallet. The ram on the spade assembly actuates thereby raising the spade assembly and the corresponding pallets which are then transported laterally by the unloader carriage toward the unstacker. Prior to reaching the unstacker the spade rotates 180° and thereafter drives into the unstacker and deposits the pallets thereon. The unstacker lowers each pallet, one at a time, onto a conveyor which transports the cured block to a palletizing station prior to shipment.
U.S. Pat. No. 6,665,986 discloses a phosphorescent paving block having a paving base, and a phosphorescent material in contact with the paving base. Additionally, the paving block can also have a light-transmitting cover and a light-transmitting base on either side of the phosphorescent material to form a laminate.
U.S. published patent application 2009/0262514 discloses a path marking system comprising a substrate defining cavity. A photoluminescent insert comprises a first resinous layer that is cast with photoluminescent particles suspended therein. Adhesive attaches the photoluminescent insert inside of the cavity. A marking device comprises a photoluminescent insert comprising cast resinous layers. A first one of the cast resinous layers includes photoluminescent particles suspended therein. A fastener includes a first portion cast in the photoluminescent insert and a second portion extending outside of the photoluminescent insert.
Other related U.S. patent documents include the following: 2007/0248836; 2009/0302760; 2009/0265979; 2005/0160637; 2006/0162620; U.S. Pat. Nos. 7,371,441; 6,627,315; 6,500,543; 7,066,680; 7,074,345; 6,309,562; 6,136,226; and 6,599,444.
U.S. patent publication 2008/007253 discloses a method and system for producing coated ballast pavers. A concrete mixture is shaped into uncured pavers. A reflective coating is applied to the top surface of the pavers. The uncured pavers and the coating are heated in a kiln to cure the concrete mixture and the reflective coating.
U.S. Pat. No. 7,364,615 discloses a method of forming pavers containing waste glass particles.
An object of at least one embodiment of the present invention is to provide a low cost method of mass producing photoluminescent pavers without extensive redesign of conventional paver manufacturing facilities.
In carrying out the above object and other objects of at least one embodiment of the present invention, a method of manufacturing photoluminescent pavers at a manufacturing facility is provided. The method includes providing a curable paver composition. The method further includes forming a plurality of uncured pavers from the curable paver composition. Each of the pavers has an upper surface. The method still further includes applying a curable liquid coating composition to the upper surfaces. The method further includes heating the uncured pavers in a kiln to form cured pavers wherein the applied liquid coating composition is substantially cured upon removal of the cured pavers from the kiln and wherein the cured coating composition includes a photoluminescent pigment layer having a binder with photoluminescent particulate pigment essentially uniformly dispersed in the binder and an optically transmissive clear coat layer in overlying relationship with the pigment layer.
The step of applying may include the steps of coating each of the upper surfaces with the binder to form a film, coating the outer surface of each of the films with the photoluminescent particulate pigment and coating the photoluminescent particulate pigment on each of the films with the clear coat.
The clear coat layer may be a sealer.
The binder may be a sealer such as an acrylic-based clear sealer.
The method may include the step of providing a conveyor that carries the uncured pavers and the step of applying may be performed while the uncured pavers are carried by the conveyor.
The step of applying may include the steps of providing at least one spray nozzle, spraying the binder through the at least one spray nozzle, providing at least one powder coating device and dispensing the photoluminescent particulate pigment through the at least one powder coating device.
The at least one powder coating device may include at least one powder coating spray gun.
The curable paver composition may include concrete.
Further in carrying out the above object and other objects of the present invention, a method of manufacturing both photoluminescent and non-photoluminescent pavers is provided. The method includes providing a curable paver composition. The method further includes forming first and second sets of uncured pavers from the curable paver composition. Each of the uncured pavers has an upper surface. The method still further includes applying a curable liquid coating composition to the upper surfaces of the first set of the uncured pavers. The method further includes heating the first set of uncured pavers in a kiln to form cured pavers. The applied liquid coating composition is substantially cured upon removal of the cured pavers from the kiln. The cured coating composition includes a photoluminescent pigment layer having a binder with photoluminescent particulate pigments essentially uniformly dispersed in the binder and an optically transmissive clear coat layer in overlying relationship with the pigment layer to form the photoluminescent pavers. The method still further includes heating the second set of uncured pavers in the kiln to form cured non-photoluminescent pavers.
The step of applying may include the steps of coating the upper surfaces of each of the first set of uncured pavers with the binder to form a film, coating the outer surface of each of the films with the photoluminescent particulate pigment and coating the photoluminescent particulate pigment on each of the films with the clear coat.
The clear coat may be a sealer.
The binder may be a sealer such as an acrylic-based clear sealer.
The method may further include the step of providing a conveyor that carries the first set of uncured pavers and the step of applying may be performed while the first set of uncured pavers are carried by the conveyor.
The step of applying may include the steps of providing at least one spray nozzle, spraying the binder through the at least one spray nozzle, providing at least one powder coating device and dispensing the photoluminescent particulate pigment through the at least one powder coating device.
The at least one powder coating device may include at least one powder coating spray gun.
The curable paver composition may include concrete.
The above object and other objects, features, and advantages of the present invention are readily apparent from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.
As shown in
The top surface 14 of each of the photoluminescent pavers 10 includes a coating, generally indicated at 22, which may also be referred to as a multi-layer film, that is adapted to provide photoluminescence. In other words, the film 22 provides luminescence in response to excitation by light. The coating 22 gives off light caused by absorption of radiant energy provided by the sun. The coating 22 may be provided over substantially the entire top surface 25 of an uncured paver. The coating 22 gives off light when exposed to sunlight. The coating 22 may have a color but preferably is clear.
The coating 22 includes a bottom layer 24, a middle layer 26 and a top layer 28. The middle layer 26 is a photoluminescent pigment layer having a binder with photoluminescent particulate pigment essentially uniformly dispersed therein. The top layer 28 is an optically transmissive clear coat layer in overlying relationship with the pigment layer. The bottom or binder layer binds the other layers 26 and 28 to the top porous surface of the paver body 12.
The photoluminescent coated paver 10 may be formed according to a method described with reference to
In a first step, a curable paver composition or mixture is provided to a mixing station which may include a mixing drum. The mixture may include sand, stone, water, cement and admixtures. The curable paver composition may be any composition that, when cured or otherwise solidified, provides sufficient weight and strength to withstand conditions in a paving environment. The curable paver composition may be any inorganic curable composition. Cements typically include mixtures of lime, and/or alumina, and/or silica. The curable paver composition may be concrete wherein an aggregate such as stone may be embedded in a matrix of mortar or cement.
The blended mix is then typically transferred by a conveyor belt to a molding machine at a forming station. The molding machine molds, vibrates and compresses the mix into the desired shape and density of the paver. In other words, the curable paver composition is shaped at the forming station into an uncured paver. The curable paver composition remains wet (or green) and thus may be shaped or otherwise processed into a desired final shape. The uncured paver may be shaped in a mold or may be shaped on an open tray. The curable paver composition exhibits sufficient physical integrity to self-sustain its shape.
The uncured pavers may be any shape as shown in
In a next step for forming the photoluminescent pavers, a curable liquid coating in the form of a curable binder is applied to the uncured paver at a first liquid coating station. If non-photoluminescent pavers are to be manufactured, the coating stations are skipped and the uncured pavers go directly to a loading/stacking station. The uncured pavers are typically transferred from the forming station to the coating station by a conveyor. The coating may be applied on substantially the entire porous top surface of the uncured paver. In other embodiments, the coating may be applied to both the top and at least one side surface. In other embodiments, the coating is applied to the top and each side surface. In still other embodiments, the coating may be applied to the top major surface and to any interlocking or overlapping portions. The binder penetrates the porous surfaces of the pavers and when cured forms the bottom layer 24.
The binder may be applied by using various methods. For example, the coating may be sprayed onto the uncured pavers by means of spray nozzles. In other embodiments, the coating composition may be applied by rolling or brushing the liquid coating composition onto the uncured pavers. In other embodiments, the coating composition can be knife coated on the uncured pavers.
In a next step, a powder coating in the form of a photoluminescent particulate pigment is coated on the outer surface of the binder film layer 24 at a powder coating station. The particulate pigment may also be applied using various methods. For example, the powder coating may be dispensed by powder coating devices such as spray guns. The powder coating devices dispense air fluidized powder coating material made up of air and airborne power coating material from an air fluidized powder feeding device connected to the coating devices.
Powder coatings are commonly applied to objects by powder spray guns that may be operated either manually or automatically. In an automatic system, one or more spray guns are controlled to spray powder onto the objects as the objects are conveyed past the guns. In a manual gun operation, typically each paver is suspended or otherwise positioned near a spray gun and the operator controls when the gun starts and stops spraying. A powder spray gun may be selected from a wide variety of gun designs. Since a powder spraying operation is intended to coat an object evenly, a common technique for spraying powder is to apply an electrostatic charge to the powder particles (i.e. particulate pigments) which causes the powder to better adhere to the paver and also results in a more uniform application. Electrostatic powder spray guns include corona guns and other types of guns.
In a next step, another liquid coating in the form of a clear binder or sealer is applied on top of the particulate pigment at a second liquid coating station. The uncured pavers are typically transferred between the coating stations by a conveyor. The second liquid coating may be applied on substantially the entire powder coating to complete the middle layer 26 and to form a clear coat top layer 28.
The second liquid coating or binder may be applied by using various methods. For example, the coating may be sprayed onto the particulate pigment by means of liquid spray nozzles. In other embodiments, the coating composition may be applied by rolling or brushing the liquid coating composition onto the particulate pigment. In other embodiments, the coating composition can be knife coated on the particulate pigment.
The uncured pavers with or without the curable liquid coating composition thereon are then loaded and/or stacked at a stacking station. The pavers may be on individual racks or may be stacked on top of each other. The pavers then travel on a pallet by a chain drive system and are stacked by a spade into racks. An automated car on tracks moves the racks into a kiln or a kiln system at a curing station.
Conditions are provided to allow the curable liquid coating composition to coextensively cure with the uncured pavers at the curing station. The coated, uncured pavers are cured in the kiln wherein the temperature is elevated above ambient temperature. The coated, uncured paver may also be cured in ambient conditions. In any event, after conditions for cure are provided, the resulting cured pavers include a photoluminescent coating or multi-layer film. The pavers and associated coating advantageously exhibit sufficient strength to withstand conditions in a paver environment. The photoluminescent coating adheres to the paver body and resists chipping, cracking and flaking.
Typically, the kiln system includes a large room kept at about 100 degrees F. Once the pavers are cured, the racks on which the pavers are supported are removed from the kiln by the automated car and taken to an unloading spade at an unloading unstacking station. The unloading spade typically goes to a line of elevated rollers. Since the coated pavers are fully cured, they may go on rollers straight outside the manufacturing facility to storage.
A plurality of coated pavers may be bundled and transported to a paver site. A plurality of coated pavers may be stacked on a pallet at a palletizing station. The stacked coated pavers may be secured to the pallet with wrapped plastic film. The stacked coated pavers may be secured using a plurality of straps. In any event, a plurality of coated pavers are grouped and transported to a paver site.
In certain embodiments, the coating composition may not require heating to cure and, depending upon the coating used, may cure in ambient atmospheric conditions. In such embodiments, the coating composition may be applied after the uncured paver is cured, but while at the manufacturing facility where the paver is manufactured. Application of coating composition prior to placement in the kiln may, however, advantageously decrease process time because the coating composition and concrete mixture cure simultaneously. For example, if the coating material is applied after curing the curable paver composition in the kiln, additional time must be given to allow the coating to cure prior to stacking and bundling for shipment. This additional time is eliminated by applying the coating composition prior to curing within the kiln. Accordingly, at least one technical advantage of the above disclosed process resides in the fact that the coating composition is applied to the uncured pavers prior to curing the pavers within the kiln.
Many advantages are realized by practicing the above disclosed method. Notably, a greater coating uniformity is achieved as compared to prior art methods. This in turn results in greater photoluminescent levels, less wasted binder and photoluminescent particulate pigment and greater durability. Further, because coating 22 is applied during manufacture, contamination is greatly controlled, resulting in better adhesion and coverage. Finally, by pre-applying coating 22, the costly and time consuming step of on-site coating is eliminated. This results in reduced cost and construction time.
The photoluminescent coating composition cures, hardens and/or dries into a cured coating or multi-layer film that adheres to the paver body 12. The coating composition provides a coating that is resistant to chipping, flaking or cracking due to thermal or physical stresses. The coating composition provides a coating that absorbs sunlight. The binder of the coating composition is substantially clear.
The photoluminescent particulate pigment of the coating composition is a light absorbing material. In these or other embodiments, the coating composition includes a light absorbing photoluminescent filler or particulate pigment. The coating composition also includes a binder and/or a matrix.
The coating composition employed in one or more embodiments of the present invention includes a photoluminescent particulate pigment and a binder. The pigment, which may also be referred to as a filler, includes photoluminescent particulate pigments. These pigments absorb light during daytime conditions. Examples of useful pigments include pigments such as photoluminescent pigment powder. The powder or pigments may comprise a phosphorescent material based on strontium oxide diluminate chemistry as identified in U.S. published application 2009/0262514. The photoluminescent matter may be a photoluminescent light green/light powder blue pigment powder such as that sold by Ambient Glow Technology of Canada.
The binder may include any film forming composition to which the pigment can be loaded and that will adhere to the substrate (i.e., the cured and/or uncured pavers). These binders form a matrix in which the pigment is evenly dispersed. The binder or matrix may include one or more polymers or polymer-forming constituents. For example, the matrix may include acrylics, acrylates, methacrylates, silicones, epoxies, polyureas, butyl rubber, neoprene, urethane, and polyurethanes. The binder may be an acrylic-based clear sealer such as that sold under the trade name Super Seal™ 2000 (Concrete Coatings, Inc.).
As defined herein, the term “clear” as used with the clear coat layer is defined as a material that can be seen through. The term “optically transmissive” as used herein is taken to mean transmissive to desired wavelengths of electromagnetic radiation such as in visible light. Generally transmissivities greater than 50 percent of visible light are contemplated with high transmissivities of greater than 90 percent being useful. The polymeric material of choice employed in the clear coat layer can be one that imparts suitable scratch and abrasion resistance as desired or required. As such, it is contemplated that the clear coat layer can include suitable abrasion resistance enhancing additives as would be known to the skilled artisan. It is also contemplated that the clear coat layer can include additives which impart ultraviolet resistance and resistance to other undesirable environmental factors. Once again, such additives are typically known to the skilled artisan.
It is contemplated that dispersion of the photoluminescent particulate pigment material is essentially uniform throughout the photoluminescent particulate pigment layer. As used herein, the term “essentially uniform” is taken to mean a dispersion of the particulate pigment material in a manner that exhibits minimal perceptible clumping or agglomeration of the particulate pigment.
It is further contemplated that the curable liquid coating composition is bonded to desired outer porous surfaces of the pavers. As used herein, the term “essentially permanent” is taken to mean that the pavers and overlying film material are integrally connected to one another throughout the life of the associated pavers.
While exemplary embodiments are described above, it is not intended that these embodiments describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. Additionally, the features of various implementing embodiments may be combined to form further embodiments of the invention.
This application is a continuation-in-part application of U.S. patent application entitled “Decorative Bench Or Seat Assembly Having A Photoluminescent Work Bonded Thereto”, filed Apr. 22, 2010, and having U.S. Ser. No. 12/765,087 now U.S. Pat. No. 8,393,676.
Number | Name | Date | Kind |
---|---|---|---|
604658 | Forster | May 1898 | A |
948770 | Price | Feb 1910 | A |
1078810 | Van Derveer | Nov 1913 | A |
1626095 | Ramsburg | Apr 1927 | A |
1756351 | Gentile | Apr 1930 | A |
1862382 | Mathis | Jun 1932 | A |
1886988 | Thelen | Nov 1932 | A |
2659422 | Holland | Nov 1953 | A |
3756657 | Johnson | Sep 1973 | A |
4600251 | Zimmerman | Jul 1986 | A |
5292221 | Fenander | Mar 1994 | A |
6090324 | Keady | Jul 2000 | A |
6136226 | Sakai | Oct 2000 | A |
6309562 | Sakai et al. | Oct 2001 | B1 |
6413007 | Lambright | Jul 2002 | B1 |
6500543 | Sakai | Dec 2002 | B2 |
6599444 | Burnell-Jones | Jul 2003 | B2 |
6627315 | Sakai | Sep 2003 | B2 |
6665986 | Kaplan | Dec 2003 | B1 |
D484714 | Que | Jan 2004 | S |
6887010 | Mayer Rodis | May 2005 | B2 |
7066680 | Wiley | Jun 2006 | B2 |
7074345 | Saito et al. | Jul 2006 | B2 |
7364615 | Bryant | Apr 2008 | B1 |
7371441 | Sakai et al. | May 2008 | B2 |
20030146534 | Chutich et al. | Aug 2003 | A1 |
20050160637 | Hesse | Jul 2005 | A1 |
20050161985 | Austin | Jul 2005 | A1 |
20060162620 | Horton, Jr. et al. | Jul 2006 | A1 |
20070248836 | Linde | Oct 2007 | A1 |
20080072531 | Oliveira | Mar 2008 | A1 |
20080131203 | Colletti | Jun 2008 | A1 |
20080217584 | Sturley | Sep 2008 | A1 |
20090262514 | Sturley | Oct 2009 | A1 |
20090265979 | Spittle et al. | Oct 2009 | A1 |
20090302760 | Tchakarov et al. | Dec 2009 | A1 |
Entry |
---|
Reckli GmbH—“Photo-Engraving Formliners” download, website: http://www.reckli.net/foto-gravur-matrizen.html?&L=5; dated Jan. 2009. |
Number | Date | Country | |
---|---|---|---|
20110262635 A1 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12765087 | Apr 2010 | US |
Child | 12766406 | US |