This invention relates to the field of suspensions for hard disk drives. More particularly, this invention relates to a method of manufacturing piezoelectric microactuators having wrap-around electrodes such as for use in dual stage actuated (DSA) disk drive suspensions.
Magnetic hard disk drives and other types of spinning media drives such as optical disk drives are well known.
Both single stage actuated disk drive suspensions and dual stage actuated (DSA) suspension are known. In a single stage actuated suspension, only voice coil motor 112 moves suspension 105.
In a DSA suspension, as for example in U.S. Pat. No. 7,459,835 issued to Mei et al. as well as many others, in addition to voice coil motor 112 which moves the entire suspension, at least one microactuator is located on the suspension in order to effect fine movements of the magnetic head slider to keep it properly aligned over the data track on the spinning disk. The microactuator(s) provide much finer control and much higher bandwidth of the servo control loop than does the voice coil motor alone, which effects relatively coarse movements of the suspension and hence the magnetic head slider. A piezoelectric element or component, made of piezoelectric material, sometimes referred to simply as a PZT, is often used as the microactuator motor, although other types of microactuator motors are possible. In the discussion that follows, for simplicity the microactuator will be referred to simply as a “PZT,” although it will be understood that the microactuator need not be of the PZT type.
In assembling a DSA suspension, the process typically includes the steps of: dispensing liquid adhesive such as epoxy onto the suspension and/or the PZT; positioning the PZT into place on the suspension; and curing the adhesive, typically by thermal curing, ultraviolet (“UV”) curing, or other curing methods depending on the adhesive used. DSA suspensions often include both conductive epoxies and/or non-conductive epoxies to bond the PZT to the suspension. Conductive adhesives, such as silver-containing epoxies, are well known and are commonly used.
There are drawbacks to the prior methods of bonding PZTs to suspensions. It can be difficult to control exactly how much epoxy is dispensed, where the adhesive ends up due to flow of the liquid adhesive, and other issues. Various solutions have been proposed that involve, for example, channels underneath the PZTs to control the flow of adhesive and to channel any excess liquid epoxy away from sensitive areas. U.S. Pat. No. 6,856,075 to Houk, for example, proposes an adhesive attachment that has one or more reliefs under or partially under or adjacent to a PZT transducer to control the flow of adhesive by limiting or influencing adhesive travel or flow and simultaneously preventing excessive adhesive fillet height adjacent the piezoelectric motor. Additionally, if the PZT is located at or near the gimbal which carries the magnetoresistive read/write head, it becomes critical to be able to predict and control the flow of adhesive because differences in adhesive flow and distribution from one part to another can adversely affect the geometries, mechanical properties, and resulting performance of the suspension. These issues are particularly pronounced when the PZT is located at a particularly sensitive part of the suspension such as near or at the gimbaled head slider. Repeatability and predictability are especially critical in that area. Still further, the presence of liquid epoxy and its dispensing equipment within the final assembly room represents both a potential source of contamination, as well as an additional and expensive manufacturing step.
Another drawback to the prior attachment means is the delays in assembly time required for multiple rounds of epoxy, including both conductive epoxy and non-conductive epoxy, to be dispensed and then cured.
In order to address the foregoing disadvantages and other disadvantages of prior assembly processes, the present invention employs other types of adhesive than those traditionally used for DSA suspensions, and bonding and curing steps other than those traditionally used for DSA suspensions.
In one aspect, the invention employs adhesive films between the PZT and the suspension, and/or employs partially curing (B-staging) of a liquid or paste adhesive such as epoxy on the PZT before the PZT is placed onto the suspension component. The suspension component to which the PZT is affixed can be a base plate such as shown in
In a second aspect of the invention, the invention is of a method for producing a PZT microactuator or other electronic device having a wrap-around electrode, and of applying and using such a device. The wrap-around electrode is a conductive coating that wraps around at least part of the PZT to cover more than one face of the PZT, and thus conduct electricity to the opposite face. The wrap-around electrode simplifies both the assembly process and the final electrical connection(s) to the PZT in the completed suspensions. According to the method, a central electrode is first formed such as by sputtering on a first face of a wafer of piezoelectric material. A first side electrode on then formed on a first side or end of the wafer and over the adjacent edge, such that the first electrode extends onto the first face but is electrically not connected with, i.e., is discontinuous from, the central electrode on that face. Similarly, a second side electrode is also formed on a second side or end that is opposite the first side, with the second electrode also extending over an adjacent edge, such that the second electrode extends onto the first face but is also electrically discontinuous from the central. Conductive material is then deposited such as but sputtering on the second face of the wafer opposite the first face, with that conductive material extending to and being in electrical contact with the first and second side electrodes. The wafer now has one central electrode on the first face that covers most of the first face, and two side electrodes, with each side electrode covering not only its respective side but wrapping around that side and covering at least respective parts of the first and second faces, preferably at narrow respective strips on the first face on either side of the central electrode. The wafer is then cut in half. The result is two piezoelectric devices, each device having a wrap-around electrode such that the first face includes both electrodes. Both the drive and the ground connection can therefore both be made to the first face of the PZT, thus simplifying the electrical connections to it.
The invention simplifies the assembly process for a DSA suspension, and eliminates contamination sources in the sensitive final suspension assembly.
Exemplary embodiments of the invention will be further described below with reference to the drawings, in which like numbers refer to like parts. The drawing figures might not be to scale, and certain components may be shown in generalized or schematic form and identified by commercial designations in the interest of clarity and conciseness.
A first aspect of the invention is the use of adhesive film to attach the PZT to the suspension.
A suspension design that facilitates the use of integrated adhesive film is shown in
The adhesive film used can be either conductive or non-conductive, depending on whether an electrically conductive connection to the suspension or the interconnect circuit is desired, or a non-conductive connection to the suspension. Film adhesives are generally “preformed” or “B-staged,” and are available in rolls, sheets, or die-cut shapes.
In a slightly different embodiment, instead of applying adhesive film to the PZT and/or to the suspension, adhesive is applied to the PZT and is B-staged before final assembly.
The term “B-staged” or “B-staging” as used herein means, after a flowable adhesive has been dispensed, partially hardening the adhesive so that its flow rate is substantially reduced to the point that it no longer flows freely as a liquid, but is not so hard such that it is no longer available for effectively adhering to another surface. B-staging involves temporarily exposing the adhesive to an environment which causes accelerated hardening of the adhesive, then removing the adhesive from that environment such that the hardening rate slows down considerably so that the adhesive does not substantially harden during assembly. The removal of the PZT from that increased hardening environment can include simply removing the hardening accelerant from the environment. B-staging can cure or otherwise harden the adhesive to a degree such that the adhesive is no longer tacky. One method of B-staging is to partially cure a cross-linking polymer such as epoxy, such as by applying heat and/or UV, such that the epoxy achieves less than 10% cross-linking, then removing the curing source. For epoxies that are B-staged using heat, the epoxy may be immediately quenched down to a lower temperature at which cross-linking is negligible, i.e, at which the epoxy effectively ceases to harden, in order to stop the cross-linking process. For epoxies that are B-staged using UV, removing the PZT from the increased hardening environment can mean simply turning off the UV curing lamps.
With some adhesives, the adhesive may be mixed into a solvent to form a slurry, the solvent being one that evaporates at a lower temperature than which cross-linking begins to occur significantly. The adhesive may be a printable paste that is applied to the PZT. After dispensing, the adhesive is exposed to a specified thermal regime designed to evolve a majority of the solvent from the material without significantly advancing resin cross-linking. The result is an epoxy or other adhesive that no longer flows, but that is still available for adhering to another surface with the full or nearly full adherent strength of the epoxy.
B-staging an adhesive permits the adhesive and substrate construction to be “staged,” or held for a period of time prior to the bonding and curing, without forfeiting performance. A secondary thermal cure cycle yields fully crosslinked, void-free bonds. As used herein, the term “fully crosslinked” means at least 90% crosslinked.
The adhesive may take the form of a solid, thermosetting paste. The adhesive may be a printable paste that is printed by any known printing techniques that are suitable for use with adhesive, including screen printing, stencil printing, ink jet printing, spraying, stamping, and others. An advantage of using such printing techniques is that the adhesive can be dispensed in very fine and precise patterns onto the PZT, which helps to achieve control and repeatability of the adhesive's total mass and distribution within the finished suspension. One commercially available silver-filled conductive epoxy that is suitable for fluid jetting, screen printing, and stamping is EPO-TEK® H20E by Epoxy Technology, Inc. of Billerica, Mass.
A UV B-stage adhesive can be used. Such an adhesive is dispensed, then irradiated with UV energy in order to B-stage it. B-staging immediately after printing “freezes” the adhesives in position, which helps to precisely control any spread of the liquid epoxy. Unlike thermal staging, irradiating with UV energy eliminates the danger of advancing the thermoset reaction of the adhesive. UV B-staging can occur in seconds, while the thermal alternative can take an order of magnitude longer for the process.
Liquid epoxy or other adhesive may be first dispensed onto the PZT and/or onto the suspension, and then the epoxy is B-staged to the point that its flow is reduced to a negligible amount. The parts can then be assembled in the final, clean room assembly area for the disk drives, and the adhesive then fully cured either by heat or by UV. Such techniques have been used, or have been proposed to be used, in the integrated circuit (IC) packaging field under the broad term of wafer backside coating (WBC). Wafer backside coating techniques using both conductive and non-conductive adhesives can be adapted from die attach processes used in IC packaging to PZT attach processes for suspensions. Inkjet printing of polymers, both conductive and non-conductive, has also been proposed. Such inkjet printing techniques can be adapted for use in printing adhesives onto the PZTs for bonding those PZTs to suspensions.
It is anticipated that one method of production will be to begin with a wafer of PZT material, either applying already B-staged adhesive to it such as in adhesive film form or applying adhesive to it then B-staging the adhesive, then dicing the wafer into individual PZT microactuator motors. Pick-and-place machinery will be used to pick up the individual PZT die with the B-staged adhesive on it, assemble the PZT die to the suspension, and dwell there for the appropriate time and under the appropriate temperature and pressure conditions in order to fully cure the adhesive, and thus fully adhere the PZT to the suspension.
In another aspect, the invention is of a method of producing a piezoelectric microactuator or other electronic device having a wrap-around electrode, such that both the drive voltage and ground electrodes are located and accessible on the same side of the device.
As an alternative to the bonding structure shown in
Next, the PZT precursor 1632 is flipped over and preferably placed onto a second transfer tape in order to expose what had been the bottom surface 1631 of the PZT precursor (
The result of this process is two PZTs 1634, 1636 each of which has the same structure. A narrow stripe of metallization 1650 on the first PZT's top surface 1633 and near its end, defines a first electrode. The first electrode 1650 electrically wraps around via the metallized side surface 1605 of the PZT to the bottom surface 1631 of the PZT and to the metallization 1604 that generally covers bottom surface 1631. A second electrode 1652 on the top surface 1633 of the first PZT covers most, but not all, of the PZT top surface 1633. In this way, a first PZT has been constructed whose first electrode 1650 is located on the same surface of the first PZT as the second electrode 1652. Generally speaking, the first electrode can be the electrode at which the PZT drive voltage is applied with the second electrode being the electrode at which the PZT is grounded, or vice versa. The second PZT is substantially identical to the first PZT.
Next, the PZT precursor is flipped over and preferably placed onto a second transfer tape in order to expose what had been the bottom surface 1831 of the PZT precursor (
The result of this process is two PZTs each of which has the same structure. A narrow stripe of metallization 1844 on the first PZT's top surface 1833 and near its end, defines a first electrode. The first electrode 1844 electrically wraps around via the silver epoxy 1820 to bottom surface 1831 of the PZT and to the metallization that generally covers bottom surface 1831. A second electrode 1852 on the top surface 1833 of the first PZT covers most, but not all, of the PZT top surface 1833. In this way, a first PZT has been constructed whose first electrode 1844 is located on the same surface of the first PZT as the opposite electrode 1852. The second PZT is substantially identical to the first PZT.
It will be understood that the terms “generally,” “approximately,” “about,” and “substantially,” as used within the specification and the claims herein allow for a certain amount of variation from any exact dimensions, measurements, and arrangements, and that those terms should be understood within the context of the description and operation of the invention as disclosed herein.
It will further be understood that terms such as “top,” “bottom,” “above,” and “below” as used within the specification and the claims herein are terms of convenience that denote the spatial relationships of parts relative to each other rather than to any specific spatial or gravitational orientation. Thus, the terms are intended to encompass an assembly of component parts regardless of whether the assembly is oriented in the particular orientation shown in the drawings and described in the specification, upside down from that orientation, or any other rotational variation.
All features disclosed in the specification, including the claims, abstract, and drawings, and all the steps in any method or process disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. Each feature disclosed in the specification, including the claims, abstract, and drawings, can be replaced by alternative features serving the same, equivalent, or similar purpose, unless expressly stated otherwise. Thus, unless expressly stated otherwise, each feature disclosed is one example only of a generic series of equivalent or similar features.
It will be appreciated that the term “present invention” as used herein should not be construed to mean that only a single invention having a single essential element or group of elements is presented. Similarly, it will also be appreciated that the term “present invention” encompasses a number of separate innovations which can each be considered separate inventions. Although the present invention has thus been described in detail with regard to the preferred embodiments and drawings thereof, it should be apparent to those skilled in the art that various adaptations and modifications of the present invention may be accomplished without departing from the spirit and the scope of the invention. For example, instead of selectively applying and partially curing adhesive on the PZT, adhesively could be selectively applied and partially cured on other suspension components such as the flexure. Accordingly, it is to be understood that the detailed description and the accompanying drawings as set forth hereinabove are not intended to limit the breadth of the present invention.
This application is a divisional of U.S. patent application Ser. No. 14/316,633 filed Jun. 26, 2014, which is a continuation of U.S. patent application Ser. No. 14/045,773 filed Oct. 3, 2013, now U.S. Pat. No. 9,406,314, which claims priority from Provisional Patent Application No. 61/709,573 filed Oct. 4, 2012, the disclosures of which are incorporated by reference as if fully set forth herein.
Number | Name | Date | Kind |
---|---|---|---|
4383363 | Hayakawa et al. | May 1983 | A |
4633122 | Radice | Dec 1986 | A |
4762747 | Liu et al. | Aug 1988 | A |
5126615 | Takeuchi et al. | Jun 1992 | A |
5376860 | Sato | Dec 1994 | A |
5440075 | Kawakita et al. | Aug 1995 | A |
6108175 | Hawwa et al. | Aug 2000 | A |
6315856 | Asagiri et al. | Nov 2001 | B1 |
6393681 | Summers | May 2002 | B1 |
6393685 | Collins | May 2002 | B1 |
6703767 | Summers | Mar 2004 | B1 |
6716363 | Wright et al. | Apr 2004 | B1 |
6749707 | Saksa et al. | Jun 2004 | B2 |
6767079 | Moore | Jul 2004 | B1 |
6856075 | Houk et al. | Feb 2005 | B1 |
6882089 | Kashiwaya et al. | Apr 2005 | B2 |
7064401 | Uchiyama et al. | Jun 2006 | B2 |
7161797 | Vaisman et al. | Jan 2007 | B2 |
7167344 | Nakagawa et al. | Jan 2007 | B2 |
7382583 | Hirano et al. | Jun 2008 | B2 |
7449032 | Vaisman et al. | Nov 2008 | B2 |
7459835 | Mei et al. | Dec 2008 | B1 |
7485971 | Fuller et al. | Feb 2009 | B2 |
7538985 | Utsunomiya | May 2009 | B2 |
7580226 | Yao et al. | Aug 2009 | B2 |
7596859 | Yao et al. | Oct 2009 | B2 |
7630175 | Yamazaki et al. | Dec 2009 | B2 |
7671519 | Kear et al. | Mar 2010 | B2 |
7751153 | Kulangara et al. | Jul 2010 | B1 |
7974045 | Kwon et al. | Jul 2011 | B2 |
8053956 | Bibl et al. | Nov 2011 | B2 |
8085508 | Hatch | Dec 2011 | B2 |
8148877 | Jiang et al. | Apr 2012 | B2 |
8189301 | Schreiber | May 2012 | B2 |
8248735 | Fujimoto et al. | Aug 2012 | B2 |
8317961 | Kitada et al. | Nov 2012 | B2 |
8369047 | Fujimoto et al. | Feb 2013 | B2 |
8399059 | Steinfeldt et al. | Mar 2013 | B2 |
8526142 | Dejkoonmak et al. | Sep 2013 | B1 |
8561270 | Suarez et al. | Oct 2013 | B2 |
8570688 | Hahn et al. | Oct 2013 | B1 |
8773820 | Hahn et al. | Jul 2014 | B1 |
9406314 | Hahn et al. | Aug 2016 | B1 |
9911913 | Hahn et al. | Mar 2018 | B1 |
10381027 | Hahn et al. | Aug 2019 | B1 |
10762922 | Hahn et al. | Sep 2020 | B2 |
20010028953 | Bluem et al. | Oct 2001 | A1 |
20010046107 | Irie et al. | Nov 2001 | A1 |
20020014815 | Kurano et al. | Feb 2002 | A1 |
20030168006 | Williams | Sep 2003 | A1 |
20040238595 | Nogiwa et al. | Dec 2004 | A1 |
20050073552 | Smoot et al. | Apr 2005 | A1 |
20070139848 | Harris et al. | Jun 2007 | A1 |
20100177446 | Hancer et al. | Jul 2010 | A1 |
20100327699 | Hassanali et al. | Dec 2010 | A1 |
20110075301 | Tsuchiya et al. | Mar 2011 | A1 |
20120073869 | Kishi et al. | Mar 2012 | A1 |
20190362746 | Hahn et al. | Nov 2019 | A1 |
20200075049 | Hahn et al. | Mar 2020 | A1 |
Entry |
---|
Ablestik, “Ablecoat™ 8008NC,”—Developmental Technical Datasheet, Rancho Dominguez, CA. |
A1 Technology, Inc, “Die Attach Adhesive FAQs”. |
Dow Corning, “Die Attach Adhesives,” web page retrieved from: http://www.dowcorning.com/content/etronics/etronicsdieadh/. |
Dragoi, V., et al., “Adhesive Wafer Bonding for Wafer-Level Fabrication of Microring Resonators,” Romanian Journal of Information Science and Technology, vol. 10, No. 1, 2007, 3-11. |
Dragoi, V., et al. “Adhesive wafer bonding using photosensitive polymer layers,” Presented at SPIE—Microtechnologies for the New Millenium, symposia “Smart Sensors, Actuators, and MEMS,” May 4-6, 2009, Dresden, Germany. |
Epoxy Technology, Inc., “EPO-TEK H2OE Technical Data Sheet,” Feb 2010, Epoxy Technology, Inc., Billerica, MA. |
Gillen, Ken, “Step-by-Step: SMT—Adhesives/Epoxies and Dispensing” SNIT/May 1995, pp. 94. |
Henkel Corporation, “Hysol Brochure,” Henkel Americas, Europe, and Asia, www.henkel.com/electronics. |
Kropp, Michael and Behr, Andrew, “Innovations in IC Packaging Adhesives,” Electro IQ, http://www.electroiq.com/articles/ap/print/volume-14/issue . . . . |
Nakada, Davy, “We've Got Your Back: Die Attach With Wafer Backside Coating,” OnBoard Technology Jul. 2008—pp. 52-53. |
Perelaer, Jolke and Schubert, Ulrich S., “Inkjet Printing and Alternative Sintering of Narrow Conductive Tracks on Flexible Substrates for Plastic Electronic Applications,” Radio Frequency Identification Fundamentals and Applications, Design Methods and Solutions, pp. 265-286, Feb. 2010, Intech, Croatia. |
Savastano, David, “The Conductive Ink Market,” Ink World, http://www.inkworldmagazine.com/articles/2012/03/the-conductive-ink-market. |
Schake, Jeff, “A Baseline Study on the Performance of Stencil and Screen Print Processes for Wafer Backside Coating,” DEK USA Inc., Flemington, NJ USA. |
Schake, Jeff, et al., “Tooling Influence on Stencil Print Coating Uniformity for 150 μm Thick 200mm Wafers,” DEK Printing Machines Ltd., Weymouth, Dorset, United Kingdom. |
Winster, Tony, et al., “Wafer Backside Coating Of Die Attach Adhesives New Method Simplifies Process, Saves Money”. |
Office Action in U.S. Appl. No. 14/045,773, dated Oct. 23, 2015. |
Office Action in U.S. Appl. No. 14/045,773, dated Jan. 15, 2016. |
Office Action in U.S. Appl. No. 14/045,773, dated Apr. 8, 2016. |
Notice of Allowance in U.S. Appl. No. 14/045,773, dated Jun. 15, 2016. |
Office Action in U.S. Appl. No. 14/316,633, dated Aug. 29, 2016. |
First Action Interview Pilot Program Pre-Interview Communication in U.S. Appl. No. 14/316,633, dated Nov. 16, 2016. |
First Action Interview Office Action Summary in U.S. Appl. No. 14/316,633, dated May 4, 2017. |
Notice of Allowance in U.S. Appl. No. 14/316,633, dated Oct. 20, 2017. |
Office Action in U.S. Appl. No. 15/191,464, dated Jun. 7, 2018. |
Notice of Allowance in U.S. Appl. No. 14/182,285, dated May 23, 2014. |
Office Action in U.S. Appl. No. 15/191,464, dated Sep. 17, 2018. |
Notice of Allowance in U.S. Appl. No. 15/191,464, dated Apr. 23, 2019. |
Supplemental Notice of Allowance in U.S. Appl. No. 15/191,464, dated Jun. 14, 2019. |
Office Action in U.S. Appl. No. 16/538,780, dated Jan. 8, 2020. |
Notice of Allowance in U.S. Appl. No. 16/538,780, dated Apr. 27, 2020. |
International Search Report and Written Opinion in International Application No. PCT/US2021/014728, dated Mar. 31, 2021. |
Number | Date | Country | |
---|---|---|---|
20180198057 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
61709573 | Oct 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14316633 | Jun 2014 | US |
Child | 15912042 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14045773 | Oct 2013 | US |
Child | 14316633 | US |